

Elastic Grid Reservations with User-Defined Optimization Policies

Workshop on Adaptive Grid Middleware, 30th September 2004

Thomas Röblitz, Florian Schintke and Jan Wendler

{roeblitz,schintke,wendler}@zib.de

Zuse Institute Berlin

Thomas Röblitz

Why do we need reservations?

Higher guarantee that specific resource allocations succeed!

• Hotel reservation, ticket reservation, ...

- CPU reservation, bandwidth reservation, ...
- Reservations have been already studied in many areas incl.
 network management, CPU cycle scheduling and Grid computing.
 - → What's still to be done? *Flexibility & Efficiency*

How do we reserve? – Rigid Parameters

Rigid request: Reserve 16 CPUs at cluster ELFIE from 30/09/04 10:00 til 30/09/04 12:00.

How do we reserve? – Time & CPU range

Elastic request: Reserve 12-16 CPUs at cluster ELFIE for 2 hours from 30/09/04 10:00 til

30/09/04 13:00 with s=0.1, p=0.9 (speedup parameters^{*}).

Determine alternative duration:

•Assume 2 hours given for 16 CPUs (*dur_{ref}=2, N_{ref}=16*).

• dur(N)=sp(N_{ref})*dur_{ref}/sp(N)

•dur(15) = 02:03h, dur(14) = 02:06h,

•dur(13) = 02:10h, dur(12) = 02:14h

*Speedup *sp* defined as *sp(N)=1/(s+p/N)*;
s - sequential part, p – parallel part.
(G. Amdahl 1967, *Validity of the single-processor approach to achieving large scale computing capabilities*)

How do we reserve? – All together

Flexible aspects of a reservation request:

- CPU range
- time range
- location

Elastic request: Reserve 8-16 CPUs at ANY cluster for 2 hours from 30/09/04 10:00 til 30/09/04 13:00 with s=0.1, p=0.9 (speedup parameters). The duration is given for 16 P4 (2GHz) CPUs.

Attributes of a request:

- CPU range: *np_{min}*, *np_{max}*
- time range: earliest start time (est), duration (dur), latest end time (let)
- CPU-time relation: speedup (sp)
- performance: *np*_{ref}, *dur*_{ref}, *perf*_{ref}
- miscellaneous, e.g. uid/gid/certificate

Algorithm – Goals

- efficiency number of reservation tries in case of success/failure
 - ➔ tradeoff between flexibility and reservation tries
- impact on user jobs longer wait time
 - reservations reduce the optimization space for a local scheduler

Algorithm – Services & Interactions

Algorithm – Probe Phase Overview

- goal: minimize number of tries in case of success AND failure
- idea:
 - o obtain additional information about system utilization from the CRSs
 - o only consider candidates where the system utilization promises success
 - → reservation probability value (esr estimated success rate)

Algorithm – Probe Phase ESR

- Domain for esr is $[0, 1] \subset R$.
- static: the longer the book-ahead period t is the higher is the esr value

$$\rightarrow esr(t,h) := 1 - e^{-\frac{t}{h}}$$

 history: determine average of idle processors idle^{NP} for the requested time range using a `calendar' of logged utilization records

$$\Rightarrow esr(t,np) := \begin{cases} 1 & ,2np < idle^{NP}(t) \\ 2 + \frac{2np}{idle^{NP}(t)} & ,\frac{idle^{NP}}{2}np \le idle^{NP}(t) \\ 0 & ,elsewise \end{cases}$$

 load: approximate the time T_{wkl} that is reached, when the current workload (running + idle jobs and existing reservations) is finished

$$\Rightarrow esr(t, T_{wkl}) \coloneqq \begin{cases} 1 & , t \ge T_{wkl} \\ 0 & , t < T_{wkl} \end{cases}$$

Algorithm – Reserve Phase Overview

- problem: many candidates
- goal: select `best' candidate among the many
- idea: sort the possible candidates according the user's preferences
- preferences are prioritized, for example
 - o 1st level: end time
 - o 2nd level: *np* (number of processors)
 - o 3rd level: cost
- any metric may be used within the preferences

 GRS probes the CRSs to calculate the values of the metrics that are used in the preferences

Thomas Röblitz

Evaluation – Selected Results

additional waiting time in seconds

Thanks!

