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Abstract 
 
The advent of the computer had forced the 
application of mathematics to all branches of 
human endeavor.  One important property of 
mathematical problems is the stability of 
their solutions to small changes in the initial 
data. Problems that fail to satisfy this 
stability condition are called ill-posed.  If the 
initial data in such problems are known only 
approximately and contain a random error, 
then the above mentioned instability of their 
solutions leads to non-uniqueness of the 
classically derived approximate solutions 
and to serious difficulties in their physical 
interpretation.  In solving such problems, 
one must first define the concept of an 
approximate solution that is stable to small 
changes in the initial data, and to use special 
methods for deriving this solution.  We are 
working in the development of the 
regularization method in the construction of 
approximate solutions of ill-posed problems.   
 
1. INTRODUCTION 
 
The rapidly increasing use of computational 
technology requires the development of 
computational algorithms for solving broad 
classes of problems.  But just what do we 
mean by the "solution" of a problem? What 
requirements must the algorithms for finding 
a "solution" satisfy?   

Many features of problems encountered in 
practice are not reflected by the classical 
conceptions and formulation of problems.  
Let us illustrate this. Consider  the following 
equation: 
 

       Az = u      (1) 
 

 
where z is an unknown vector, u is a known 
vector and A = {aij} is a square matrix with 
elements aij. 
 
If the system is nonsingular (Eq. 2), that is, 
if det A ≠ 0, it has a unique solution, which 
we can find by Cramer's rule or by some 
other method. 
 
                       5z1 + 7z2 = 5 
                     √2z1 + √98z2 = √50     (2) 

 
 

If the system is singular (Eq 3), det A = 0, it 
will have a solution (not unique) only when 
the condition for existence of a solution 
(vanishing of the relevant determinants) is 
satisfied. 
 
                       z1 + 7z2 = 5 
                     √2z1 + √98z2 = √50     (3) 

 
 
We are dealing with some other system  



Ãz = v such that ||Ã-A|| ≤ δ and || v - u|| ≤ δ, 
where the meaning of the norm is usually 
determined by the nature of the problem. 
Since we have the approximate system      
Ãz = v rather than the exact one, we can 
speak only of finding an approximate 
solution. 
 
2. SOLUTION OF ILL-POSED 
PROBLEMS 
 
We know the difficulties involved in solving 
ill-posed linear systems.  Large changes in 
the solution may result from small changes 
in the right hand members of the system.   
 
If a singular system (Eq. 2) has any solution 
at all, it has infinitely many.  We have to 
consider a whole class of system of 
equations that are indistinguishable from 
each other that may include both singular 
and unsolvable systems.  The methods of 
constructing approximate solutions of this 
class must be generally applicable.  These 
solutions must be stable under small changes 
in the initial data.  The construction of such 
methods is based in the idea of 
regularization method. 
 
Suppose that the system Az = u is singular 
and that the vector u constituting the right-
hand member satisfies the conditions of 
solvability of the system.  The solution of 
such system is not unique.  Let FA (Fig. 1) 
denote the set of its solutions.  We then pose 
the problem of finding a normal solution 
(Fig. 1) of the system.  We define the 
normal solution of the system Az = u for the 
vector z1 as the solution z0 for which 
 

             ||z0-z1|| = inf ||z-z1||,         (4) 
     z∈FA  

 
 
where z1 is a fixed element (vector) 
determined by the formulation of the 

problem and ||z||, the norm of the vector z, is 
defined by the formula in Eq. 5. 
 

||z|| = √(z1
2 + z2

2 + ….zn
2)    (5) 

 
 
 
 
 
 
 
 

Fig. 1 Geometry of Pseudosolution 
 
 

We shall assume for simplicity that z1 = 0.  
The normal solution is unique.   
 
In linear algebra, a vector z minimizing the 
discrepancy ||Az-u||2 is called 
pseudosolution of the system Az = u. 
 
Suppose that, instead of the exact singular 
system Az=u, we have the system with 
approximate right-hand member 

 
Az = v, 

 

where || v – u|| ≤ δ and the vector v may fail 
to satisfy the solvability condition. It is 
natural to seek an approximate normal 
solution of the system Az = v among the 
vectors z such that ||Az - v || ≤ δ.  By the 
definition of normal solution, this solution 
will minimize the functional Ω[z] = ||z-z1||

2.  
The problem reduces to minimizing the 
functional ||z-z1||

2 on the set of vectors 
satisfying the inequality ||Az - v || ≤ δ.  It 
reduces to finding the vector zα minimizing 
the smoothing functional Eq. 6. 
 
Mα[z, v,A] = ||Az - v||2 + α||z – z1||

2, α>0  (6) 
 
 

The value of the parameters α is the 
determined from the condition ||Azα- v|| = δ, 
that is, from discrepancy.   



 
If we have the case in which both the right-
hand member of the equation and the matrix 
A are inexactly given; that is, let us look at 
an equation of the form  
 

Ãz = v, 
 

where  
 

||Ã-A|| ≤ δ, || v -u|| ≤ δ 
 

Minimizing the functional form we obtain, 
 
Mα[z,v,Ã] = ||Ãz - v||2 + α||z – z1||

2, α>0  (7) 
 
based in A. Tikhonov Theorem. 
 
Let us suppose that the vector u satisfies the 
conditions for solvability and the z0 is the 
normal solution of the equation Az = u. 
 
Applying this method we obtained stability 
in our nonsingular system.  This can be 
observed in Table 1 when all 
approximations converge to solution 
(0.1,0.7).   
 

Table 1. Approximation of Solution for the Linear 
System  (3). 

 

NUMBER OF 
DIGITS 

SOLUTION 
Z1 

SOLUTION 
Z2 

1 0 .7 
2 .11 .69 
3 .098 .7 
4 .0994 .7 
5 .1 .69999 
6 .999896 .700025 
7 .1 .6999999 
8 .09999999 .7 
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