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ABSTRACT 
 

In this paper we introduce different parallel 
methods for solving differential equations.  A 
differential equation is said to be an equation 
containing the derivatives of one or more dependent 
variables, with respect to one or more independent 
variables. 
 Using different parallel algorithms to 
resolve this equations we develop quicker, faster and 
more exact approximations. 
 
 
1. Introduction 
 
 The purpose of this paper is to find a quick 
and exact set of approximations to the solution of a 
given differential equation.  The methods to be used 
are Euler and Taylor modified to work in parallel 
environments, specifically in MPI and CILK.  We 
used initial value problems to implement our 
algorithms.  Because of the nature of initial value 
problems, most numerical methods used to 
approximate their solutions are “step methods”, this 
is, methods that use previously computed 
approximations to produce the following ones.  This 
implies inherently serial algorithms.   We developed 
4 different methods that approximated the solutions 
using parallel methods.  Two of the methods, one 
using MPI and other using Cilk, used a combinations 
of the Euler and Taylor methods to find the set of 
approximate values.  The other two methods, also in 
MPI and Cilk, used a higher degree of approximation 
using Taylor  order 4.   
 
 This parallel algorithm is implemented in 
Cilk 5.2 and in MPI, and run on a symmetric 
multiprocessor with four Xeon 400Mhz 
multiprocessors. In order to test the accuracy of the 

computed results, we used an initial value problem 
with a well known analytical solution. 
 
 
2. Software 
 

This program is implemented in 2 
environments, Cilk and MPI. MPI stands for 
Message Passing Interface. The purpose of MPI, in 
very terms, is to develop a widely used standard for 
writing message-passing programs. As such the 
interface attempts to establish a practical, portable, 
efficient, and flexible standard for message passing. 
The standard defines the syntax and semantics of a 
core of library routines useful to a wide range of 
users writing portable message-passing programs in 
Fortran 77 or C. MPI also forms a possible target for 
compilers of languages such as High Performance 
Fortran. MPI is used to specify the communication 
between a set of processes forming a concurrent 
program. 
 

CILK is a language for multithreaded 
parallel programming based on ANSI C. The Cilk 
runtime system automatically manages the low level 
details of executing parallel Cilk code by 
implementing an efficient work-stealing scheduler. 
The CILK runtime system takes care of details such 
as load balancing, paging, and communication 
protocols. CILK is algorithmic in that the runtime 
system guarantees efficiency and predictable 
performance. 
 
3. The problem and its applications 
 
 We used a differential equation with a 
known analytical solution, so the exact values could 
be compared with the computer outputs. The 
diffrenttial equation was:  

y’ = (2/t)y + t2et ; [1,2] 
y(1) = 0 



 
The exact solution is: 
 

y(t) = t2 (et – e) 
 

The methods e used to find the approximations were 
Euler, Taylor of order 2, and Taylor of order 4.   
 
Euler: 
 

Wi+1 = Wi + hf(ti, Wi) 
 

Taylor order 2: 
 

Wi+1 = Wi + hf(ti, Wi) + (h2/2!)f'(ti, Wi) 
W0 = á 

 
 
Taylor order 4: 
 

Wi+1 = Wi + hf(ti, Wi) + (h2/2!)f’'(ti, Wi) + 
(h3/3!)f’’’(ti, Wi) + (h4/4!)fIV(ti, Wi)   

W0 = á 
 

 
4. The algorithms 
 
 The program computes an approximation of 
a differential equation.  In the first method it 
calculates a high precision approximation using the 
Taylor method from point a to point b in step sizes of 
h-high.  When the first step size of the 
approximation is calculated the Euler function 
calculates a low precision approximation of that first 
step size generate by Taylor, dividing it in h-low 
division.  The Euler function uses as initial value an 
approximated value calculated by the Taylor 
function.  Thus the final approximation is an 
approximation of another approximation. 
 
INPUT endpoints a,b; integer N_high; integer 
N_low. 
 
Step 1  set ss_high = (b-a)/N_high; 
 t=a; 
 
Step 2  For i1=1,2,…., N_high do steps 3, 4, 5, 6. 
 
Step 3 set w=w + hf(t,w)+(h2 / 2!)f((t,w) ;  
           Compute  wi   
 t=a + ih; 
 
Step 4 Call function Euler(w, t, (t+ss_high),              
N_low, i) 

 
Step 5  set ss_low = ((t+ss_low) – t) / N-low; 
 
Step 6  For i2=1,2,….,N_low do step 7,8. 
 
Step 7 set w=w + hf(t,w) ; Compute wi . 
              t=a + ih; 
 
Step 8 OUTPUT (t, w) 
 
Step 9   Stop 
 
 
 In the second method we only use the 
Taylor approximation of order 4. 
 
INPUT endpoints a,b,   integer h; 
 
Step 1  ss=(b-a)/h;     t=a; 
 
Step 2   set w1 = w + hf(t,w) 
             set w2 = h2/2! f’(t,w) 
             set w3 = h3/3! f’’(t,w) 
             set w4 = h4/4! f’’’(t,w)  
 
Step 3   for i = 1,2,…,h  do steps  4, 5  
 
Step 4   Pn do wn 

                      

Step 5    w = w1 + w2+ w3 + w4; 
 t = a + ih;  
 
Step 6     Output (t,w) 
 
Step 9     Stop 
 
 
5. Experimental results 
 
After analyzing the problem and finally achieving 
the correct source for the first algorithm, we started 
to calculate the approximations of our differential 
equation.  When we entered N_high as 1, the Taylor 
function will only be executed 1 time and the 
approximation will depend exclusively on the N_low 
divisions on the Euler function.  Since our Euler 
function is a serial code, hence almost no parallelism 
was achieved.  In the case where N_high is 1, the 
bigger N_low is, the error between the exact solution 
and the approximation is smaller. 



In the cases where N_high is greater than 1, 
the program starts to give results (in terms of 
reducing the error). We expected to find that the 
bigger both N’s got, the error of the approximation 
would get smaller.  After running the program 
several times, we found out that the value of N_high 
is the key to the approximation, the bigger the 
number, the better the approximation. Since our 
program calculates first with Taylor and then with 
Euler the error produced by the Taylor 
approximation is carried over to the Euler calculation 
of the approximate solution.  Because of this, the 
value of  N_low is not as important as N_high. For 
example, with N_high equal to 100 and N_low equal 
to 10, the error was of  0.177086.   If we use the both 
N_high and N_low equal to 100, the error is 
0.1766470, which is a difference of 0.000439 with 
90 more step sizes.  The bigger the N_high, the 
effect that N_low has on the approximation 
decreases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This graph represents the relation between 

the Exact differential equation, the approximate 

solution using the Taylor method, Euler method 

and our Taylor-Euler method. 
 

Now we will discuss the results for the 
second algorithm. Because of the nature of the 
method  (Taylor order 4), this parallel approach 
gives a more exact approximation of the differential 
equation than the previous method.  When 
implemented in MPI, there occurs parallelism any 
time when two or more processes are been executed 
at the same time.  Our algorithm divides the work to 
be done by the approximation in four functions.  
Theoretically each process computes one of the 
functions and returns the value to P0, P0 then adds up 
the individual values to obtain the approximation of 
that  step size.  In practice, the parallelism is not 
optimize since it needs all four values to continue to 

the next step size , hence the actual speed of the 
approximation depends on the slowest of the 
processes.   
 
 Cilk uses spawns to distribute the work 
between the processes.  Using Cilk is not as easy to 
achieve parallelism. In MPI we can force parallelism 
assigning each process a specific work.  Cilk works 
using a work-stealing scheduler.  Assuming we have 
more than one processor, when a Cilk procedure 
spawns, its processor post the work locally by 
growing its stack of jobs. If a processor is idle it 
steals work from this stack.     
 
6. Conclusions 
 
 After we analyze the results of both 
environments for the first algorithm, comparing the 
time, the parallelism, the precision and more 
important the performance, we conclude that in MPI 
the program depends on the value of N_high because 
if the N_high is a big number the processor 0 take a 
lot of time to send the array  of initial values to the 
other processors.  But if the N_high is a small 
number its calculation will be quicker and the result 
of it will be a faster approximation.  In the Cilk 
environment we can observe a similar patron but 
with the difference that in Cilk the Taylor method 
doesn’t affect the parallelism of the algorithm. The 
Euler method generates separate sets of jobs that 
depending on the work that one processor is doing 
the other processors steal part of these jobs creating 
an overlapping of some processes.  In other words, 
the environment depends on the N_high or Taylor 
approximation. 
 
 The implementation of the Taylor order 4 
algorithm in both Cilk and MPI was achieved.  The 
Cilk implementation was quicker in calculating the 
approximations.  Perhaps the work-stealing method 
was not optimal, if the primary processor does not 
generates the work for other processor the 
calculations are all done by only one process.  In 
comparison with MPI, where the parallelism is 
forced, in Cilk the parallelism is left to the software.  
In the majority of the cases, most of the work was 
done by only one of the processors.  The 
approximations using the Cilk where much much 
quicker than those done by MPI.   
  
 Both languages use very different methods 
to produce parallelism.  The different 
implementations that can be accomplished with one 
of the languages doesn’t necessarily can be 
implemented in the other.  In our case we could 
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implement both methods in both MPI and Cilk, and 
we did get good results from them. 
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