
Solving Differential Equations in Parallel

Francisco Alvarado and Angel Tirado
Advisor: Dr. Jaime Seguel

Mathematics Department

University of Puerto Rico, Mayagüez Campus
Mayagüez, Puerto Rico 00681-5000

franciscoalvarado@yahoo.com
tirado_a@hotmail.com

ABSTRACT

In this paper we introduce different parallel
methods for solving differential equations. A
differential equation is said to be an equation
containing the derivatives of one or more dependent
variables, with respect to one or more independent
variables.
 Using different parallel algorithms to
resolve this equations we develop quicker, faster and
more exact approximations.

1. Introduction

 The purpose of this paper is to find a quick
and exact set of approximations to the solution of a
given differential equation. The methods to be used
are Euler and Taylor modified to work in parallel
environments, specifically in MPI and CILK. We
used initial value problems to implement our
algorithms. Because of the nature of initial value
problems, most numerical methods used to
approximate their solutions are “step methods”, this
is, methods that use previously computed
approximations to produce the following ones. This
implies inherently serial algorithms. We developed
4 different methods that approximated the solutions
using parallel methods. Two of the methods, one
using MPI and other using Cilk, used a combinations
of the Euler and Taylor methods to find the set of
approximate values. The other two methods, also in
MPI and Cilk, used a higher degree of approximation
using Taylor order 4.

 This parallel algorithm is implemented in
Cilk 5.2 and in MPI, and run on a symmetric
multiprocessor with four Xeon 400Mhz
multiprocessors. In order to test the accuracy of the

computed results, we used an initial value problem
with a well known analytical solution.

2. Software

This program is implemented in 2
environments, Cilk and MPI. MPI stands for
Message Passing Interface. The purpose of MPI, in
very terms, is to develop a widely used standard for
writing message-passing programs. As such the
interface attempts to establish a practical, portable,
efficient, and flexible standard for message passing.
The standard defines the syntax and semantics of a
core of library routines useful to a wide range of
users writing portable message-passing programs in
Fortran 77 or C. MPI also forms a possible target for
compilers of languages such as High Performance
Fortran. MPI is used to specify the communication
between a set of processes forming a concurrent
program.

CILK is a language for multithreaded
parallel programming based on ANSI C. The Cilk
runtime system automatically manages the low level
details of executing parallel Cilk code by
implementing an efficient work-stealing scheduler.
The CILK runtime system takes care of details such
as load balancing, paging, and communication
protocols. CILK is algorithmic in that the runtime
system guarantees efficiency and predictable
performance.

3. The problem and its applications

 We used a differential equation with a
known analytical solution, so the exact values could
be compared with the computer outputs. The
diffrenttial equation was:

y’ = (2/t)y + t2et ; [1,2]
y(1) = 0

The exact solution is:

y(t) = t2 (et – e)

The methods e used to find the approximations were
Euler, Taylor of order 2, and Taylor of order 4.

Euler:

Wi+1 = Wi + hf(ti, Wi)

Taylor order 2:

Wi+1 = Wi + hf(ti, Wi) + (h2/2!)f'(ti, Wi)
W0 = á

Taylor order 4:

Wi+1 = Wi + hf(ti, Wi) + (h2/2!)f’'(ti, Wi) +
(h3/3!)f’’’(ti, Wi) + (h4/4!)fIV(ti, Wi)

W0 = á

4. The algorithms

 The program computes an approximation of
a differential equation. In the first method it
calculates a high precision approximation using the
Taylor method from point a to point b in step sizes of
h-high. When the first step size of the
approximation is calculated the Euler function
calculates a low precision approximation of that first
step size generate by Taylor, dividing it in h-low
division. The Euler function uses as initial value an
approximated value calculated by the Taylor
function. Thus the final approximation is an
approximation of another approximation.

INPUT endpoints a,b; integer N_high; integer
N_low.

Step 1 set ss_high = (b-a)/N_high;
 t=a;

Step 2 For i1=1,2,…., N_high do steps 3, 4, 5, 6.

Step 3 set w=w + hf(t,w)+(h2 / 2!)f((t,w) ;
 Compute wi
 t=a + ih;

Step 4 Call function Euler(w, t, (t+ss_high),
N_low, i)

Step 5 set ss_low = ((t+ss_low) – t) / N-low;

Step 6 For i2=1,2,….,N_low do step 7,8.

Step 7 set w=w + hf(t,w) ; Compute wi .
 t=a + ih;

Step 8 OUTPUT (t, w)

Step 9 Stop

 In the second method we only use the
Taylor approximation of order 4.

INPUT endpoints a,b, integer h;

Step 1 ss=(b-a)/h; t=a;

Step 2 set w1 = w + hf(t,w)
 set w2 = h2/2! f’(t,w)
 set w3 = h3/3! f’’(t,w)
 set w4 = h4/4! f’’’(t,w)

Step 3 for i = 1,2,…,h do steps 4, 5

Step 4 Pn do wn

Step 5 w = w1 + w2+ w3 + w4;
 t = a + ih;

Step 6 Output (t,w)

Step 9 Stop

5. Experimental results

After analyzing the problem and finally achieving
the correct source for the first algorithm, we started
to calculate the approximations of our differential
equation. When we entered N_high as 1, the Taylor
function will only be executed 1 time and the
approximation will depend exclusively on the N_low
divisions on the Euler function. Since our Euler
function is a serial code, hence almost no parallelism
was achieved. In the case where N_high is 1, the
bigger N_low is, the error between the exact solution
and the approximation is smaller.

In the cases where N_high is greater than 1,
the program starts to give results (in terms of
reducing the error). We expected to find that the
bigger both N’s got, the error of the approximation
would get smaller. After running the program
several times, we found out that the value of N_high
is the key to the approximation, the bigger the
number, the better the approximation. Since our
program calculates first with Taylor and then with
Euler the error produced by the Taylor
approximation is carried over to the Euler calculation
of the approximate solution. Because of this, the
value of N_low is not as important as N_high. For
example, with N_high equal to 100 and N_low equal
to 10, the error was of 0.177086. If we use the both
N_high and N_low equal to 100, the error is
0.1766470, which is a difference of 0.000439 with
90 more step sizes. The bigger the N_high, the
effect that N_low has on the approximation
decreases.

This graph represents the relation between

the Exact differential equation, the approximate

solution using the Taylor method, Euler method

and our Taylor-Euler method.

Now we will discuss the results for the
second algorithm. Because of the nature of the
method (Taylor order 4), this parallel approach
gives a more exact approximation of the differential
equation than the previous method. When
implemented in MPI, there occurs parallelism any
time when two or more processes are been executed
at the same time. Our algorithm divides the work to
be done by the approximation in four functions.
Theoretically each process computes one of the
functions and returns the value to P0, P0 then adds up
the individual values to obtain the approximation of
that step size. In practice, the parallelism is not
optimize since it needs all four values to continue to

the next step size , hence the actual speed of the
approximation depends on the slowest of the
processes.

 Cilk uses spawns to distribute the work
between the processes. Using Cilk is not as easy to
achieve parallelism. In MPI we can force parallelism
assigning each process a specific work. Cilk works
using a work-stealing scheduler. Assuming we have
more than one processor, when a Cilk procedure
spawns, its processor post the work locally by
growing its stack of jobs. If a processor is idle it
steals work from this stack.

6. Conclusions

 After we analyze the results of both
environments for the first algorithm, comparing the
time, the parallelism, the precision and more
important the performance, we conclude that in MPI
the program depends on the value of N_high because
if the N_high is a big number the processor 0 take a
lot of time to send the array of initial values to the
other processors. But if the N_high is a small
number its calculation will be quicker and the result
of it will be a faster approximation. In the Cilk
environment we can observe a similar patron but
with the difference that in Cilk the Taylor method
doesn’t affect the parallelism of the algorithm. The
Euler method generates separate sets of jobs that
depending on the work that one processor is doing
the other processors steal part of these jobs creating
an overlapping of some processes. In other words,
the environment depends on the N_high or Taylor
approximation.

 The implementation of the Taylor order 4
algorithm in both Cilk and MPI was achieved. The
Cilk implementation was quicker in calculating the
approximations. Perhaps the work-stealing method
was not optimal, if the primary processor does not
generates the work for other processor the
calculations are all done by only one process. In
comparison with MPI, where the parallelism is
forced, in Cilk the parallelism is left to the software.
In the majority of the cases, most of the work was
done by only one of the processors. The
approximations using the Cilk where much much
quicker than those done by MPI.

 Both languages use very different methods
to produce parallelism. The different
implementations that can be accomplished with one
of the languages doesn’t necessarily can be
implemented in the other. In our case we could

Experimental Values

0

5

10

15

20

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Taylor-Euler Taylor Euler Exact

implement both methods in both MPI and Cilk, and
we did get good results from them.

7. References

[1] “The CILK Project”

http://supertech.lcs.mit.edu/cilk/

[2] “The Cilk RunTime System”

Charlie Patel, JavaNauts Research Project
Department of Electrical & Computer
Engineering, University of Alabama in
Huntsville

[3] “Differential Equations with Boundary-
Value Problems”, 4th edition. Dennis G. Zill
& Michael R. Cullen. 1997 Brooks/Cole
Publishing Company.

 [4] “Numerical Analysis”, 6th edition. Richard

L. Burden & J. Douglas Faires. 1997
Brooks/Cole Publishing Company.

