
A Parallel Bit Reversal Algorithm and it's CILK Implementation

Dániza C. Morales Berrios
Advisor: Dr. Jaime Seguel

Mathematics Department

University of Puerto Rico, Mayagüez Campus
Mayagüez, Puerto Rico 00681-5000

danizam@cs.uprm.edu

Abstract

A wide variety of Fast Fourier Transform
(FFT) algorithms employ a bit reversal
method for the reordering of input or output
data. This article shows one of the most
frequently used algorithms for calculating
the bit reversal permutation. It also presents
a parallel implementation in CILK 5.2 and
some performance analysis.

1. Introduction

The N-point discrete Fourier transform of an
input vector x=[x(j)], is the
N-point vector

This computation involves order N2
operations. There are several different
methods for computing the Fast Fourier
Transform. The best know among them is
the Cooley-Tukey FFT, developed by J.
Cooley and T. Tukey in 1965 [1]. The
Cooley-Tukey FFt is preceded by a data
sorting called bit reversal permutation. For
example, if we are interested in computing
an 8-point FFT the procedure will consist of
two main steps:

Computing the bit reversal permutation
efficiently is a problem on its own. In
general, bit reversal methods are divided in
two main classes: in-place bit reversals, and
indirect addressing methods. The first ones
rearrange the input vector x into its bit
reversal order. This is normally achieved
through data swaps or nested sequences of
stride permutations. Indirect addressing
methods, in turn, do not reorder x but
compute instead a vector representation of
the bit reversal permutation. For example,
for N=8, the vector representation will be:

































=

7

3

5

1

6

2

4

0

B

][ˆ

][ˆ

][ˆ

][ˆ

][ˆ

][ˆ
][ˆ

][ˆ

][

][

][

][

][

][

][

][

][

][

][

][

][

][

][

][

7

6

5

4

3

2

1

0

7

3

5

1

6

2

4

0

7

6

5

4

3

2

1

0

FFT reversalbit

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

 → →

.1,...,1,0 ;)()(ˆ
1

0

2

∑
−

=

−

−==
N

j

N

ikj

Nkejxkx
π

Vector B
 * B[0]

B[8]
B[4]

 B[12]
 * B[2]

 B[10]
B[6]

 B[14]
 * B[1]

B[9]
B[5]

 B[13]
 * B[3]

 B[11]
B[7]

 B[15]
* head

In indirect addresing mode, the bit reversal
is realized through the calls:

x[B[j]] ; j=0,…,N-1

For example, for N=8:

One of the most efficient methods for
producing a vector representation of the bit
reversal is Elster's algorithm [2]. In this
article we introduce a modification of this
algorithm and it’s Cilk implementation.

2. Parallelizing Elster's Algorithm

The purpose of this algorithm, is to create a
vector B with the bit reversal permutation
values. Elster computes the N-point bit
reversal vector in log2(N) steps. For
example, for N=8

Pseudocode:
step 1: Let n=length of x (length of the

transform)

step 2: B[0]=0

step 3: For i=1; i < length ;i=2*i, n=n/2
 { For(j=0, j<i, j++){
 B[i+j] = B[j] + n; }
 }

step4: end.

One way to paralize Elster’s method consist
in dividing the the total length by the
number of parallel processes. For example if
we are interested in computing a bit reversal
of length 16, the B vector is then the
following:

 block 1

 block 2

 block 3

 block 4

Also, it is possible to calculate the head
(first element) of each block because with
the Elster’s method since it is a bit reversal
of the vector [0 1 2 3] this is [0 2 1 3] as
shown in the example. So the parallel
method will compute each block on a
different processor.

 2rst block
h +8 +4

out
2 2

10
2
10
6
14

 1rst block
h +

8
+4
out

0 0
8

0
8
4
12

]]7[[

]]6[[

]]5[[

]]4[[

]]3[[

]]2[[

]]1[[

]]0[[

]7[

]6[

]5[

]4[

]3[

]2[

]1[

]0[

Bx

Bx

Bx

Bx

Bx

Bx

Bx

Bx

x

x

x

x

x

x

x

x

→

 B
Initial +4

+2 +1

0 0

4

0
4
2
6

0
8
4

12

The CILK's code implement on Elster's
method receives as input the size of the bit
reversal permutation and the amount of
equally sized blocks into which the vector
representation is to be subdivided. The Cilk
implementation computes each block in
parallel after a suitable initialization.

3. Cilk 5.2 Implementation

We used Cilk.2 to implement the parallel
Elster’s Algorithm. Cilk is an extension of C
based on a multithreaded computing model.
Calling normal C functions under the spawn
directive generates cilk-threads. When a C
function “spawns” another function, it
continues to execute until a “sync”
instruction is reached. This is the main basis
for producing logical parallelism in Cilk.
Logical parallelism is implemented by
allocating parallel task on different
processors, and by using a work-stealing
mechanism whenever a processor runs out
of work. The “sync” directive synchronizes
all the outputs of the different tasks returned
by each parallel process.

The Cilk environment provide several
statistics for the measurement are:

The creator of Cilk (MIT Computer Science
Laboratory) have shown that the execution
time (Tp) on p processor is approximately:

And the parallelism:

From them we can also derived the speed-
up:

In fact, since

We run our experiment in a four-processor
machine. The above formula was used to
estimate speed-up and parallelism.

4. Some Performance Analysis

Some statistics returns by the Cilk’s
environment are:

length Parallelism Speed-up
222 6.25 2.4
223 7.11 2.6

 4rst block
h +8 +4

out
3 3

11
3
11
7
15

 3rst block
h +

8
+4
out

1 1
9

1
9
5
13

processoroneintimeexecutionT 1 =

processor of number

 unlimited withtime executionT =∞

p
p T

T
S 1=

Therefore,

11

 gsustitutinby

1

1
11

1

pp

pp

T

T
S

pp
T

p

T

p

T
T

T

T
p

p
p

p

+
==









+=+=

=
∞

∞+≅ T
p

T
T p

1

T

T
p

∞

= 1

These results gave us an idea about the
parameters that affect the computation of
vector B. One of them is the length of the
vector. We observe that parallelism is higher
when the length of the vector B is larger.
The same observation holds for the speed-
up. Also, when the number of blocks is
relatively small parallelism and speed-up it’s
higher too.

The speed-up takes values between 1 and
the number of physical processors, in our
case four, which is the optimal speed-up
value. Our results indicate speed-ups right in
the middle of this range.

5. Future Work

We will continue the study of the FFT's, and
it simplification. The computation of this
transform is a problem on its own.
 We want to design an easier and faster
method for calculating this kind of
transforms. Also, we are interest in applying
a quarter-wave bit reversal and it's
implementation in CILK 5.2.

References

1. Cooley J.W, Tukey J.W. “An Algorithm

for the Machine Calculation of Complex
Fourier Series”. 1965.

2. Elster A.C. “Fast Bit-Reversal
Algorithm”, ICASSP 89’
Proccedings.1989

