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Abstract 
 
A wide variety of Fast Fourier Transform 
(FFT) algorithms employ a bit reversal 
method for the reordering of input or output 
data. This article shows one of the most 
frequently used algorithms for calculating 
the bit reversal permutation. It also presents 
a parallel implementation in CILK 5.2 and 
some performance analysis.        
 
 
1. Introduction 
 
The N-point discrete Fourier transform of an 
input vector x=[x(j)], is the  
N-point vector  

 
This computation involves order N2 
operations. There are several different 
methods for computing the Fast Fourier 
Transform. The best know among them is 
the Cooley-Tukey FFT, developed by J. 
Cooley and T. Tukey in 1965 [1]. The 
Cooley-Tukey FFt is preceded by a data 
sorting called bit reversal permutation. For 
example, if we are interested in computing 
an 8-point FFT the procedure will consist of 
two main steps: 
 
 
                                                                                                 

 
Computing the bit reversal permutation 
efficiently is a problem on its own. In 
general, bit reversal methods are divided in 
two main classes: in-place bit reversals, and 
indirect addressing methods. The first ones 
rearrange the input vector x into its bit 
reversal order. This is normally achieved 
through data swaps or nested sequences of 
stride permutations. Indirect addressing 
methods, in turn, do not reorder x but 
compute instead a vector representation of 
the bit reversal permutation. For example, 
for N=8, the vector representation will be: 
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Vector B 
      * B[0]   

B[8] 
B[4] 

  B[12] 
      * B[2] 

  B[10] 
B[6] 

  B[14] 
      * B[1] 

B[9] 
B[5] 

  B[13] 
      * B[3] 

  B[11] 
B[7] 

  B[15] 
* head 

In indirect addresing mode, the bit reversal 
is realized through the calls: 
 
x[B[j]]  ;  j=0,…,N-1 
 
For example, for N=8: 

 
One of the most efficient methods for 
producing a vector representation of the bit 
reversal is Elster's algorithm [2]. In this 
article we introduce a modification of this 
algorithm and it’s Cilk implementation.  
 
 
2. Parallelizing Elster's Algorithm 
 
The purpose of this algorithm, is to create a 
vector B with the bit reversal permutation 
values. Elster computes the N-point bit 
reversal vector in log2(N) steps. For 
example, for N=8 
 
 
 
 
 
 
 
 
 
  
Pseudocode:  
step 1: Let n=length of x (length of the                                   

transform) 
 
step 2: B[0]=0 
 

step 3: For i=1; i < length ;i=2*i, n=n/2             
            { For( j=0, j<i, j++){  
               B[i+j] = B[j] + n; } 
 } 
 
step4: end. 
 
One way to paralize Elster’s method consist 
in dividing the the total length by the 
number of parallel processes. For example if 
we are interested in computing a bit reversal 
of length 16, the B vector is then the 
following:  
         
          
 
       block 1 
 
 
 
       block 2 
 
 
       block 3 
 
 
       block 4 
 
 
 
 
Also, it is possible to calculate the head 
(first element) of each block because with 
the Elster’s method since it is a bit reversal 
of the vector [0 1 2 3] this is    [0 2 1 3] as 
shown in the example. So the parallel 
method will compute each block on a 
different processor.             
 
 
 
 
 
 
 
 
 

    2rst block 
h +8 +4 

out 
2 2 

10 
2 
10 
6 
14 
 

 

   1rst block 
h +

8 
+4 
out 

0 0 
8 

0 
8 
4 
12 
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The CILK's code implement on Elster's 
method receives as input the size of the bit 
reversal permutation and the amount of 
equally sized blocks into which the vector 
representation is to be subdivided. The Cilk 
implementation computes each block in 
parallel after a suitable initialization.  
 
 
3. Cilk 5.2 Implementation  
 
We used Cilk.2 to implement the parallel 
Elster’s Algorithm. Cilk is an extension of C 
based on a multithreaded computing model. 
Calling normal C functions under the spawn 
directive generates cilk-threads. When a C 
function “spawns” another function, it 
continues to execute until a “sync” 
instruction is reached. This is the main basis 
for producing logical parallelism in Cilk. 
Logical parallelism is implemented by 
allocating parallel task on different 
processors, and by using a work-stealing 
mechanism whenever a processor runs out 
of work. The “sync” directive synchronizes 
all the outputs of the different tasks returned 
by each parallel process.  
  
The Cilk environment provide several 
statistics for the measurement are: 
 

 
 

The creator of Cilk (MIT Computer Science 
Laboratory) have shown that the execution 
time (Tp) on p processor is approximately: 

 
And the parallelism:  

 
From them we can also derived the speed-
up: 

In fact, since 
 

 
We run our experiment in a four-processor 
machine. The above formula was used to 
estimate speed-up and parallelism. 
 
 
4. Some Performance Analysis 
 
Some statistics returns by the Cilk’s 
environment are: 
 

length Parallelism Speed-up 
222 6.25 2.4 
223 7.11 2.6 

 
 

     4rst block 
h +8 +4 

out 
3 3 

11 
3 
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7 
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    3rst block 
h +

8 
+4 
out 

1 1 
9 

1 
9 
5 
13 
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These results gave us an idea about the 
parameters that affect the computation of 
vector B. One of them is the length of the 
vector. We observe that parallelism is higher 
when the length of the vector B is larger.  
The same observation holds for the speed-
up. Also, when the number of blocks is 
relatively small parallelism and speed-up it’s 
higher too.  
 
The speed-up takes values between 1 and 
the number of physical processors, in our 
case four, which is the optimal speed-up 
value. Our results indicate speed-ups right in 
the middle of this range.   
 
 
5. Future Work 
 
We will continue the study of the FFT's, and 
it simplification. The computation of this 
transform is a problem on its own.  
 We want to design an easier and faster 
method for calculating this kind of 
transforms. Also, we are interest in applying 
a quarter-wave bit reversal and it's 
implementation in CILK 5.2.  
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