

Puerto Rico Student Test Bed

By Víctor Marrero-Fontánez Manuel A. Vega-Cartagena **CASA SLC Members UPRM Graduate Students**

University of

Massachusetts Amherst

University of Oklahoma

Puerto Rico Mayaguez

CASA is primarily supported by the Engineering Research Centers Program of the National Science Foundation under NSF award number 0313747

Overview

- What is CASA?
 - Student Test Bed (STB)
- Magnetron Radar
 - Quantitative Precipitation Estimation (QPE) Study
 - Data Validation
 - Radar Specifications
- Off-the-Grid Radar
 - Antenna

What is CASA?

- <u>Collaborative Adaptive Sensing of the Atmosphere</u>
- NSF Engineering Research Center Program
 - Established in 2003
- Objective
 - To create a new engineering paradigm in observing, detecting and predicting weather and other atmospheric phenomena.
- Partner Universities
 - University of Massachusetts
 - Colorado State University
 - University of Oklahoma
 - University of Puerto Rico at Mayaguez

Student Test Bed

- Objective
 - To establish a QPE sensing network starting in the western end of the island taking into consideration coverage gaps from NEXRAD.
- Radar Sites
 - Three sites were selected based on geographical data and sociological impact. These are located in Mayagüez, Aguadilla and Lajas.

Student Test Bed

QPE Study

- <u>Quantitative Precipitation Estimation</u>
 - One of main efforts of CASA
 - Studies using 2-D video disdrometer performed
 - QPE using attenuating wavelength
 - X-Band Radar

QPE Study

- Path-Integrated Attenuation (PIA)
 - Study performed by Delrieu et al. [1]
 - Grenoble, France
 - Surface Reference Technique
 - Ratio of mountain returns
 - Presence and absence of rain
 - Later used for rain rate calculations
 - Rain rate retrieval algorithm not yet selected

QPE Study

- Methodology
 - Low elevation angle
 - Identify mountain cluttered radar bins using apparent reflectivity
 - Calculate average Z_a over cluttered bins during dry period
 - Compare to average Z_a during rain event
 - Perform rain rate retrieval

Data Validation

Several Tipping-Bucket Rain Gauges

- Located along propagation path

- Joss Waldvogel Impact Disdrometer
 - Rain Drop Size Distribution (DSD)
 - Expected Reflectivity Calculations

- Raytheon Marine X-Band Radar
- Single Polarization
 - Magnetron
 - F = 9.41 GHz
 - P_{peak} = 25 kW
 - Duty Cycle_{max} = 0.001

- Modifications
 - Antenna
 - 1.22m Parabolic Dish
 - G = 38 dB
 - 2.0° HPBeamwidth
 - Spinner
 - Originally 25 RPM
 - Lowered to 3 RPM

- Modifications
 - Data System
 - Linux based Mini-ITX embedded system
 - 12 Bit ADC for sampling video signal
 - 802.11b data transport to data archive server
 - Control
 - FPGA on PCI bus for timing signals and antenna position encoder data

- Location
 - Roof of electrical engineering building at UPRM
 - Tower already installed

casa

OTG Antenna

- Physical size: 17" by 17"
- Material: TLY-3 from Taconic
 - Er = 2.2, h = 0.787mm
- Resonant Frequency = 9.38GHz[*]
- Antenna tested in RadLab.
- The antenna did not perform as expected.

[*] result given by Designer

Single polarization 16 x 16 antenna array

OTG Antenna

- BW of single-pol antenna: 9.25 - 9.6 GHz [VSWR < 2].
- Higher side-lobes in left side of the pattern due to undesired radiation in the corporate feed.

OTG Antenna

Port1

- A multi-layer antenna is under design for dual polarization.
- Both polarizations are fed by aperture coupling.
- The array antenna will have rows of these patches connected in series.
- Resonant Frequency: 9.5 GHz [*]
- Cross-polarization: Around 29 dB for a single patch for each polarization is expected.
- This patch exhibits linear polarization and/or circular polarization if desired.

Dual polarization patch antenna

Latest Achievements

• Radar antenna moved to Stefani building rooftop.

Questions

- [1] Delrieu, G. et al., "Rain Measurement in Hilly Terrain with X-Band Weather Radar Systems: Accuracy of Path-Integrated Attenuation Estimates Derived from Mountain Returns", *Journal of Atmospheric and Oceanic Technology*, Vol. 16, pp. 405-415, April 1999.
- [2] Rincón, R.F. et al. "Estimation of Path-Average Rain Drop Size Distribution using the NASA/TRMM Microwave Link", IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vol. 3, 9-13 July, 2001.

