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Abstract

Fast Fourier Transform (FFT) agorithms
have been investigated since Cooley and
Tukey published the first one in 1965. Most
of them emphasize on the efficiency but not
on the accuracy. In image anayss
multiresolution representations are very
effective for anayzing the information
content of images. In the case of a function
in L2(R), these representations are given by
its projections on the subspaces of a
multiresolution analysis (MRA). And they
approximate the function a a given
resolution. In this work these multiresolution
approximations are used to compute the
discrete  Fourier transform of some
functions. By choosing the MRA associated
with spaces of polynomia splines, and
selecting the proper parameters, it is
possible to achieve any prescribed accuracy.
This method yields estimates of the
computation errors in the FFT which are not
available via any other approach.

1. INTRODUCTION

The Fast Fourier Transform (FFT) algorithm
requires sampling on an equally spaced grid.
In this work we study a ssmple approach,
due to Beylkin, for evaluation of the Fourier
transform of some functions based on
projecting such functions on a subspace of a
multiresolution analysis. In this way we
obtain the algorithm in [1], which consists of
three steps. The first step is the aforesaid

projection. The second step is the same asin
all agorithms of this type and involves the
usual FFT. The third step is a correction step
which involves multiplying values at each
frequency by a pre-computed factor. In the
construction presented in this work, it is
chosen the MRA associated with spaces of
polynomia splines. This alows us to use
properties of the Battle- Lemarié scaling
function, while computing projections only
with B-splines. These are probably the
simplest functions with small supports that
are most efficient for both software and
hardware implementation.

2. NOTATION

The Fourier transform of f1 L*(R) is
defined by

(1.2) f(x)= c‘i f (x)e *dx.

The convolution f*g of two functions
f,gT L*(R) isdefined by

¥
\

(12 frglx)=q, f(x- y)aly)y.

The trandation T,f, where al R, of a
function f , isdefined by

13) T, f(x)="f(x- a).

3. MULTIRESOLUTION ANALYSIS

A function f is sad to generate a
multiresolution analysis (MRA) of L*(R)
if it generates a nested sequence of closed



subspaces V; where
21 Vv, :clost(R)span{f g K1 z}
and

o
22 f,(x)=22f(27x- k)
such that

10..1 V1 V,1 VI ..

20 cIost(R)gzvj g: L2(R)

30 NV, ={0}

iz
4o f(x)T v, 0 f(2x)1 V,,
50 f(x)T V, 0 f(x-n)i V, fordl ni z
60 f{f,,:kl z}={Tf :k1 2} is an
orthonormal basis of V.
In this case the sequence {Vj}ﬁ ,
aMRA with scaling function f .
Because of 40 and 6o, for each |1 Z,
{f k1 z} is an orthonormal basis for V.

issaid to be

Furthermore, the orthonormality of the T,f
in 60 can be relaxed. Indeed, it is sufficient
that the set f{f ,:ki Z} congtitutes a
bounded unconditiona basis (or Riesz basis)
of V,. If thisis the case, the scaling function
| of the MRA is defined via its Fourier
transform by

ALY fA(x)
(2-3) J (X)_\/E()?)
where

@4  ak)=afk+1).

(4
In such a way, {Tj :kl 2z} is an
orthonormal basis for V,. It is also possible
to start the construction of an MRA from an
appropriate choice for the scaling function
f . Thisispossbleif
(2.5) f(x)=q cf (2x- k) where

Kz

alel <¥,

kl Z

26) {f(x-k):ki z} is a bounded
unconditional basis (or Riesz basis) of V, as
defined by (2.1) and (2.2), and

2.7) c‘if (x)dx 0.
In this case, if {f (x- k): k1 Z} is not an

orthonormal set, the scaling function is the
function ) defined by (2.3) and (2.4).

4. SPACESOF POLYNOMIAL SPLINES

For each positive integer m, the space S,
of cardinal splines of order m and knot
sequence Z is the collection of all functions
f suchthat f,f',.., f(™Y are continuous
everywhere and the restrictions of f to any
interval [k,k +1), ki Z, are polynomials of
degree at most m. Now we define V," as
the smallest closed subspace of L*(R) that
contains S, N L*(R), that is

(3.1) Vy" =clos, (R (Sm N LZ(R)).
The central B-spline of order m, denoted by
b™ is defined recursively by (integra)
convolution:

(3.2) b™(x)=b ™Y+ p0(x)

where b is the characteristic function of
the interval [- 1/2,1/2). The B-splines are
symmetric bell-shaped functions; they have
a number of attractive properties. First, they
are compactly supported. Second, they have
a simple analytical form in both the time and
the frequency domain. The values of the B-

splines may be obtained using recursion
over the spline order. If

(m+1), (m+1)
()=—2  p™IFLL0, 2  pmoF. 10
m e 2g m e 2g

then
B3)  b™(x)=(-) for m=12,...
The Fourier transform of a central B-spline



can be found from equation (3.2) and is
given by
s NpPx Qmﬂ

PX g
With a dightly different definition of
cardina B-splines, the proof of the
following proposition can be found in [2].

(3.4) b™(x)=

Proposition 1

(i) Suppb ™ =+ (m+1)/2,(m+1)/2]

(i) The two-scde difference: when m is
odd

b™(x)= & c™b™(2x- k) where
K™
+
CIE :im&;(:_nm]-;-lg
27 & o
(i) The set of trandations
{o™(x- k):kT z} is a bounded

unconditional basis (or Riesz basis) of V"
(iv)

a™x):= &[5 w)f = a b m2) (e
1=-¥%

The total positivity of the cardlnal splines
aong with Proposition 1 alow us to
construct an MRA with starting point the

centrd B-spline of order m, b,

According to (2.3) the scaling function -
caled a Battle-Lemarié scaling function- is
defined by

b (m)(x)

am (X) '

(3.5) ") =

5. MAIN RESULTS

The proof of the two propositions in this
section can be found in [1].
Proposition 2

Let vF

cardina B-spline of order m, let f1 L*(R)
and f, itsprojectionon V™, j <0, that is

be the MRA generated by the

(41 =g, Fx)b (x)ox.
Let F(x) bethe Fourier series given by
(42)  FKx)=§ f.e® . Then

(4;3) Kz

208§ ) ),
a(m)() (4

Remarks (4.4)

a) From (4.3) we can write
L I M TR

| x)= § f(z'i(x 1)) ™ +1).

I =+1,+2,.
b)j ) isalow- pass filter [4].
¢) From the precedent remarksiit is clear that

| _Fk)

a(m)(x)
f(27x) for vaues of x near the zero
frequency. For example, for m=23,

j'\(m)(x)))l and jA(m)(X il)»O for |X|£%

IS an approximation of

The values of j"™(x +1) are also very small
for | =+2,£3,... andthesame x .

Definition
Fora >0 and ji Z let usdefine
i af
supzzF(X) . f(zlx%

[x|£a

a™(x)
sup| fl2 "x]

[x|£a

(45 E, =

Proposition 3

() If £1 L’(R) and f is bounded, for
o<a <1 theerror E, in approximating the
Fourier transform f (2 7x) by a periodic

i
function 22& for

x|<a, is such
a™(x)



where
(4.7
.m+1
1 o) & a O
a)= Ia
k) Cf(o’a)|=ila12 §|| ag
and

(i) For e >0 we may choose m, the order
of the central B-spline, and the parameter
a >0 sothat

E,£e for [x|<a.
Remark (4.8)
From (4.7), since f is bounded, we may
choose m without any dependence on | .

6. APPLICATIONS

As an example let us consder a
function f T L*(R) with support in an
interval dtrictly contained in [0,1]; that is
Suppf =[a,b] with O<a<b<1. Indeed,

we can assume this for any function of
compact support, without loss of generality.

Furthermore, we assume that f is bounded.
According to Remark (4.8), given e >0 and

:%, we may choose m such that

Nl i
foix)=22Fb)

a(m)(x)
], with accuracy e. For convenience we
only consider splines of odd order. Then,
from (4.2) we may write

(5.1) f(2'jx)=2; =

for x| <a and any

— =3 f.e®* for
a(m)(x)?z ‘

X|<a and any j (with accuracy e). Since

f is zero outside [a,b], and 0O<a<hb<1,
we may aways choose j in such away that
f, =0for k<Oand k3 L,where L=2".

It is due to the fact that
(5.2

m _€ j(m ) i J( ) iu
Suppb 82 5 +k2! 2 5 +k2H
from part (i) of Proposition 1 and (2.2).
Thus, from (4.1)

(m+1)+k21

2!
(53 £ =0,k
2

f(x)o k(]_m) (x)dx .

+k2!

For such a j the series in (5.1) is a finite
sum and we obtain

~ 2 Ldl 2pik—
(5. fl)=—— & fe
a(m) I L k=0
L
L L , -
- Z£I EZ’ which may be evaluated using

the FFT. As a result we have a smple
algorithm. The algorithm consists of three
steps:

1. computing integralsin (5.3)

2. computing the sumin (5.4) viaFFT

3. multiplying by the factor ]/Ja(m)";l_) in

(5.4).
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