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Abstract 
Fast Fourier Transform (FFT) algorithms 
have been investigated since Cooley and 
Tukey published the first one in 1965. Most 
of them emphasize on the efficiency but not 
on the accuracy. In image analysis 
multiresolution representations are very 
effective for analyzing the information 
content of images. In the case of a function 
in ( )RL2 , these representations are given by 
its projections on the subspaces of a 
multiresolution analysis (MRA). And they 
approximate the function at a given 
resolution. In this work these multiresolution 
approximations are used to compute the 
discrete Fourier transform of some 
functions. By choosing the MRA associated 
with spaces of polynomial splines, and 
selecting the proper parameters, it is 
possible to achieve any prescribed accuracy. 
This method yields estimates of the 
computation errors in the FFT which are not 
available via any other approach. 
 
1. INTRODUCTION 

 
The Fast Fourier Transform (FFT) algorithm 
requires sampling on an equally spaced grid. 
In this work we study a simple approach, 
due to Beylkin, for evaluation of the Fourier 
transform of some functions based on 
projecting such functions on a subspace of a 
multiresolution analysis. In this way we 
obtain the algorithm in [1], which consists of 
three steps. The first step is the aforesaid 

projection. The second step is the same as in 
all algorithms of this type and involves the 
usual FFT. The third step is a correction step 
which involves multiplying values at each 
frequency by a pre-computed factor. In the 
construction presented in this work, it is 
chosen the MRA associated with spaces of 
polynomial splines. This allows us to use 
properties of the Battle- Lemarié scaling 
function, while computing projections only 
with B-splines. These are probably the 
simplest functions with small supports that 
are most efficient for both software and 
hardware implementation. 
 
2. NOTATION 
 
The Fourier transform of ( )RLf 2∈  is 
defined by  

(1.1)        ( ) ( )∫
∞

∞−

−= dxexff xiξπξ 2ˆ . 

The convolution  gf ∗  of two functions 

( )RLgf 1, ∈  is defined by  

(1.2)     ( ) ( ) ( )∫
∞

∞−
−=∗ dyygyxfxgf . 

The translation fTa , where Ra ∈ , of a 

function f , is defined by 

(1.3)      ( ) ( )axfxfTa −= . 

 
3. MULTIRESOLUTION ANALYSIS 
 
A function φ  is said to generate a 

multiresolution analysis (MRA) of ( )RL2  
if it generates a nested sequence of closed 



subspaces jV  where  

(2.1)       ( ) { }ZkspanclosV kjRLj ∈= :2 φ  

and 
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j
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22 2 φφ  
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4o ( ) ( ) 12 −∈⇔∈ jj VxfVxf  

5o ( ) ( ) 00 VnxfVxf ∈−⇔∈  for all Zn ∈  

6o { } { }ZkTZk kk ∈=∈ ::0 φφ  is an 

orthonormal basis of 0V . 

In this case the sequence { }
ZjjV

∈
 is said to be 

a MRA with scaling function φ . 
Because of 4o and 6o, for each Zj ∈ , 

{ }Zkkj ∈:φ  is an orthonormal basis for jV . 

Furthermore, the orthonormality of the φkT  

in 6o can be relaxed. Indeed, it is sufficient 
that the set { }Zkk ∈:0φ  constitutes a 

bounded unconditional basis (or Riesz basis)  
of 0V . If this is the case, the scaling function 

ϕ  of the MRA is defined via its Fourier 
transform by 
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ξϕ
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ˆ
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where 
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2ˆ∑

∈

+=
Zl
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In such a way, { }ZkTk ∈:ϕ  is an 

orthonormal basis for 0V . It is also possible 

to start the construction of an MRA from an 
appropriate choice for the scaling function 
φ . This is possible if 

(2.5) ( ) ( )∑
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kc
2 , 

(2.6) ( ){ }Zkkx ∈− :φ  is a bounded 

unconditional basis (or Riesz basis) of 0V  as 

defined by (2.1) and (2.2), and 

(2.7) ( ) 0≠∫
∞

∞−
dxxφ . 

In this case, if ( ){ }Zkkx ∈− :φ  is not an 
orthonormal set, the scaling function is the 
function ϕ  defined by (2.3) and (2.4). 
 
4. SPACES OF POLYNOMIAL SPLINES 
 
For each positive integer m , the space mS  

of cardinal splines of order m  and knot 
sequence Z  is the collection of all functions 
f  such that ( )1,...,', −mfff  are continuous 

everywhere and the restrictions of f  to any 

interval [ )1, +kk , Zk ∈ , are polynomials of 

degree at most m . Now we define mV0  as 

the smallest closed subspace of ( )RL2  that 

contains ( )RLSm
2I , that is 

(3.1)                ( ) ( )( )RLSclosV mRL

m 2
0 2 I= . 

The central B-spline of order m , denoted by 
( )mβ , is defined recursively by (integral) 

convolution: 
(3.2)           ( )( ) ( ) ( )( )xx mm 01 βββ ∗= −  

where ( )0β  is the characteristic function of 

the interval [ )21,21− . The B-splines are 
symmetric bell-shaped functions; they have 
a number of attractive properties. First, they 
are compactly supported. Second, they have 
a simple analytical form in both the time and 
the frequency domain. The values of the B-
splines may be obtained using recursion 
over the spline order. If 
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then 
(3.3)       ( ) ( ) ( )•=xmβ   for ,...2,1=m  
The Fourier transform of a central B-spline 



can be found from equation (3.2) and is 
given by 
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With a slightly different definition of 
cardinal B-splines, the proof of the 
following proposition can be found in [2]. 
 
Proposition 1 
(i) ( ) ( ) ( )[ ]21,21 ++−= mmSupp mβ  
(ii) The two-scale difference: when m  is 
odd 
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(iii) The set of translations 
( )( ){ }Zkkxm ∈− :β  is a bounded 

unconditional basis (or Riesz basis) of mV0 . 

(iv) 
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The total positivity of the cardinal splines 
along with Proposition 1 allow us to 
construct an MRA with starting point the 
central B-spline of order m , ( )mβ .  
According to (2.3) the scaling function -
called a Battle-Lemarié scaling function- is 
defined by 
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( )( )
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m
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5. MAIN RESULTS 
 
The proof of the two propositions in this 
section can be found in [1]. 
Proposition 2 

Let ( ){ }∞

−∞=j
m

jV  be the MRA generated by the 

cardinal B-spline of order m , let ( )RLf 2∈  

and kf  its projection on ( )m
jV , 0<j , that is  

(4.1)        ( ) ( ) ( )∫
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∞−
= dxxxff m

kjk β . 

Let ( )ξF  be the Fourier series given by 
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Remarks (4.4) 
a) From (4.3) we can write 

( )
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b) ( )mϕ̂  is a low-pass filter [4]. 
c) From the precedent remarks it is clear that 

( )
( )( )ξ

ξ
m

j

a

F22  is an approximation of 

( )ξjf −2ˆ  for values of ξ  near the zero 
frequency. For example, for 23=m , 

( )( ) 1ˆ ≈ξϕ m  and  ( )( ) 01ˆ ≈±ξϕ m  for 
4

1
≤ξ . 

The values of ( ) ( )lm +ξϕ̂  are also very small 
for ,...3,2 ±±=l  and the same ξ . 
 
Definition 
For 0>α  and Zj ∈  let us define 
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Proposition 3 
(i) If ( )RLf 2∈  and f̂  is bounded, for 

1<< αo  the error ∞E  in approximating the 

Fourier transform ( )ξjf −2ˆ  by a periodic 

function 
( )

( )( )ξ

ξ
m

j

a

F22  for  αξ < , is such 



that 
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(ii) For 0>ε  we may choose m , the order 
of the central B-spline, and the parameter 

0>α  so that  
              ε≤∞E        for       αξ < . 

Remark (4.8) 

From (4.7), since f̂  is bounded, we may 
choose m  without any dependence on j . 
 
6. APPLICATIONS 
 
As an example let us consider a 
function ( )RLf 2∈  with support in an 

interval strictly contained in [ ]1,0 ; that is 

[ ]baSuppf ,=  with 10 <<< ba . Indeed, 
we can assume this for any function of 
compact support, without loss of generality. 

Furthermore, we assume that f̂  is bounded. 
According to Remark (4.8), given 0>ε  and 
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F
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j , with accuracy ε . For convenience we 
only consider splines of odd order. Then, 
from (4.2) we may write 
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It is due to the fact that  
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For such a j  the series in (5.1) is a finite 
sum and we obtain 

(5.4) ( )
( ) ( ) ∑
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L
l

L
≤≤− , which may be evaluated using 

the FFT. As a result we have a simple 
algorithm. The algorithm consists of three 
steps: 
1. computing integrals in (5.3) 
2. computing the sum in (5.4) via FFT 

3. multiplying by the factor ( ) ( )L
la m1  in 

(5.4). 
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