
An Object-Oriented Framework for Parallel
Incompressible Flow Simulations

Freddy Perez Ramirez1

Raul Perez Acosta2
Advisor: Dr. Wilson Rivera3

Electrical and Computer Engineering Department

University of Puerto Rico, Mayagüez Campus
Mayagüez, Puerto Rico 00681

1 Graduate student (freddy_peru@hotmail.com)
2 Undergraduate student (ptta@yahho.com)
3 Assistant Professor (wrivera@ece.uprm.edu)

Abstract

The coupling and domain decomposition
techniques combined with extensive use of
object-oriented programming techniques will
result in an efficient, flexible, and systematic
process for producing parallel partial
differential equations codes. This paper
discusses important issues regarding the
implementation of an object-oriented
framework for simulating incompressible
flow using parallel computers.

1. Introduction

Computational fluid dynamics (CFD) is
increasingly becoming an integral part of the
engineering development process.
Consequently, CFD must be capable to
satisfy real world requirements in a timely
manner. Parallel processing on scalable
distributed systems is the current trend to
provide fast turn around time for CFD
simulations. However, the software design in
parallel environments is particularly
complicated.

Hammond and Barth [1] were one of the
first authors to present a parallel two-

dimensional solver, which was implemented
on a Connection-Machine CM-2. Drikakis
and Schreck [2] presented parallel implicit
numerical methods for compressible flows.
Pankajakshan and Briley [3], on the other
hand, presented a parallel multiblock
incompressible flow solver. The common
features of these representative works is the
addressing of parallel processing at the level
of lineal algebra and their implementations
using procedural programming languages.

We propose a high-level parallelization of
simulation codes through an extensive use of
object-oriented programming techniques.
The possibility of a modular implementation
of mathematical abstractions, which is a
direct advantage of object-oriented
programming, gives rise to the generalization
of computational kernels, which are reusable
in many simulation applications from
different disciplines of scientific computing.
This approach makes it possible to hide
computational details when needed as well as
produce sequential simulators with unified
generic interfaces, which easily allow
modification and extension.
This paper, which is an early stage of our
research, focuses on the practical issues

encountered in the analysis and design of a
parallel incompressible flow simulator. Next
session describes the governing equations of
incompressible flows. Session 3 discusses the
parallel processing requirements. Finally,
session 4 depicts the object-oriented
framework.

2. Incompressible Flow

The unsteady incompressible Navier-Stokes
equations are widely used for modeling
incompressible flow in biomedicine,
hydrodynamics and computational
oceanography. An artificial time derivative of
pressure is added to the continuity equation
to cast the complete set of governing
equations into a time-marching form. The
resulting set of equations in integral form
represents a system of conservation laws,
which can be written as

The algorithm applied for solving the Navier-
Stokes equations is an implicit finite volume
formulation, second order in time with an
approximate Riemann solver based on Roe
flux approximation to achieve up to third
order spatial accuracy [4]. We will modify a
public code referred to as MOUSE [5] to
deal with domain decomposition and parallel
processing.

3. Parallel Processing

Due to enormous computational
requirements of many challenges in
computational fluids dynamics, the use of
parallel processing is fundamental. Parallel
processing has a potential for not only
reducing the computational time, but also
concentrating memories belonging to
different processors to carry out larger

calculations. Thus, the migration of
sequential partial differential equations
(PDE) simulators to multiprocessor
platforms is well justified.

In general, the parallelization of flow solvers
should satisfy several constraints. First, the
accuracy of the overall numerical scheme
must no be compromised; meaning the
solution computed in parallel must have a
one-to-one correspondence with the solution
computed in serial mode.

When solving PDEs using non-overlapping
domain decomposition methods, one often
needs numerical boundary conditions on the
boundaries between subdomains. These
numerical boundary conditions can
significantly affect the stability and accuracy
of the final algorithm. A new approach based
on explicit predictor and implicit correctors
has been proposed [6]. This method, which
has demonstrated a significant improvement
in accuracy when calculating transient
solutions, will be used in our parallel
implementation. Second, the consequences
of the inevitable domain decomposition
should not seriously compromise the
convergence rate of the iterative algorithm.
It is necessary to investigate the effect of a
variety of algorithms on convergence, so that
one can choose the best combination of
options for a specific problem type. Finally,
the implementations should use efficiently
computational resources. Scalability metrics
will be integrated into our parallel
implementation [7].

The problem of numerical boundary
conditions is more complicated if
intercomponents and multidisciplinary
computational simulations are considered. As
a consequence, further research is needed to
develop numerical coupling algorithms for
interchange boundary information between

codes at different levels of complexity. Our
long-term goal is to produce a family of
multidisciplinary solvers.

The current trend in high performance
computing hardware is towards clusters of
symmetric multiprocessors (SMP). In
principle, we will use OpenMP for the
parallel implementation but further research
will address the effect of having
MPI/OpenMP implementations. In fact, the
object-oriented framework will help to this
hybrid approach.

4. Object-Oriented Framework

Three hierarchical classes compose the
object-oriented framework (see Figure 1).
The base class SubdomainSolver is a generic
representation of any subdomain solver. This
class consists mainly of a group of pure
virtual member functions implementing
different algorithms and formulations for
solving subdomain problems. These virtual
members need to be overridden in derived
subclasses so that the user can either take
ready-built class objects or incorporate new
methods. The Communicator class controls
the exchange of information between
processors. Subclasses of Communicator
implement different methods for dealing with
boundary conditions between subdomains
and communication protocols. Finally, the
GlobalAdministrator class governs
parallelization features such as partitioning,
load balancing, and synchronization as well
as a set of user options including numerical
algorithms selection and level of accuracy
and convergence. At run-time on each
processor, instances of the subclasses
PDESolver and PDEComm are created
according a set of selected parameters
defined in the RunTime subclass. These
subclasses are the interfaces among the
different hierarchies.

With this object-oriented approach we
expect to produce, reliable, flexible, and
extensible multidisciplinary. The practical
issues that we have to deal with in this work
include programming abstractions,
portability, numerical accuracy, and
computational efficiency.

Figure 1: Object-Oriented Framework

References

[1]. S. W. Hammond and T. J. Barth,

“Efficient massively parallel Euler solver
for two-dimensional unstructured
grids.” AIAA Journal, 30(4): 947-952,
1992.

[2]. D. Drikakis and E. Schreck,

“Development of parallel implicit
Navier-Stokes solverson MIMD multi-
processor systems.” AIAA 93-0062.

[3]. R. Pankajakshan and W. R. Briley,

“Parallel solutions of viscous
incompressible flow on multiblock
structured grids using MPI.” In Parallel
Computational Fluid Dynamics, pp.
601-608, Elsevier Science, 1996.

[4]. W. R. Briley, S. S. Neerarambam, and
D. L. Whitfield, “Implicit lower-
upper/approximate factorization
schemes for incompressible flow.”
Journal of Computational Physics, 128:
32-42, 1996.

[5]. The Institute of Combustion and

Gasdynamic at the University of
Duisburg.
http://fire8.vug.uni-duisburg.de/Mouse

[6]. W. Rivera, J. Zhu, and D. Huddleston,

“An efficient parallel algorithm with
application to computational fluid
dynamics.” To appear in Computers &
Mathematics with Applications, 2001.

[7]. W. Rivera, “Scalable parallel genetic

algorithms.” To appear in Artificial
Intelligence Review, 2001.

