
RDL: A Rule Definition Language for
Specifying the Behavior of Distributed Systems

Edwin Moulier-Santiago and Jaime Yeckle-Sánchez

Advisor: Javier Arroyo-Figueroa

Electrical and Computer Engineering Department
University of Puerto Rico, Mayagüez Campus

Mayagüez, Puerto Rico 00681-5000
emoulier@yahoo.com

Abstract

This paper presents RDL, a Rule Definition Language to
specify the behavior of distributed systems. RDL
allows to specify such behavior in terms of how
distributed components react to the occurrence of
events. The computational model and syntax of RDL
are presented. The use of RDL in preliminary tests
shows that it takes 1/6 of the number of lines in a Java
program to capture the same semantics.

1. Introduction

A distributed system (DS) consists of a set of processes
or services executing in dissimilar platforms that
communicate via message passing. Architectures like
CORBA and RMI provide mechanisms to develop DS,
but lack of enough abstractions to specify the behavior
of the system. Instead, the behavior is defined by
means of methods or functions that contain some
algorithm whose behavior is hidden from the clients.
The only way to know about behavior is examining the
program code or documentation. The understanding of
the behavior turns complicated, while the amount of
code increases; especially when more than one person
develops the application. One alternative to this
problem is to specify the behavior of the system in
terms of how is components react due the occurrence of
events within. Events are occurrences of interest that
contain relevant information about changes in
components of the system. Such events trigger
behavioral changes in one or more components of the
entire system. Event-Condition-Action-
AlternativeAction (ECEA A) rules [Arroyo99] can be
used to specify such behavior.

This paper presents RDL, a Rule Definition Language to
specify the behavior of DS in terms of how distributed
components react to the occurrence of events in a
system.

In RDL, a rule can be viewed as an algorithm that is
executed due to the occurrence of events. The rule
specifies the actions or alternative actions to be taken if
the necessary events occur. How and when a rule is
evaluated are issues of the computational model of the
RDL, which will be presented in this paper.

The rest of this paper is organized as follows. In the next
section, a comparison with related works is made. in
Section 3, we present the computational model of RDL.
Section 4 presents an example of the use of RDL to
specify the behavior of a distributed system. Our
conclusions are presented in Section 5.

2. Related Works

In Bates’ work [Bates95], an event description language
(EDL) is used to define simple and composite events,
and behavioral models of different scenarios of a
distributed system. Contrary to RDL, it does not have
an object-oriented model.

Mansouri and Sloman [Mansouri96] present a language
called GEM that is used to define events and rules for
event handling. Many of different types of composite
events are supported by a set of predefined operators.
Temporal constraints are also supported. Contrary to
RD, events and rules are not treated uniformly as
objects.

3. Computational Model

The computational model of RDL has the following
elements: (i) an event model, which describes what are
events and their types; (ii) a rule model, which describes
the role and structure of rules; and (iii) a behavioral
model, which describes how rules react to the
occurrence of events. In the following subsections, we
shall describe these elements.

public class Event
{
 / ***** Event attributes ******/
 // event identifier
 public String eid;
 // when event was produced
 public Timevalue daytime;
 // time-to-live in set
 public TimeValue ttl;
 // who produced the event
 public DistributedObject producer;

 /****** Event Methods ******/
 // return the time the event was
produced
 public Timevalue t() { … }
 // return the amount of time in the set
 public TimeValue ts() { … }
 // get name of class of event producer
 public String getProducerClassName() {
… }
 // get the producer object of the event
 public DistributedObject
getProducer(){…}
// return true if event is dead
 public boolean isDead() { … }
}

Figure 1.
Java definition of the class Event

// Class GageLevelReport definition
package aaa;

public class GageLevelReport extends
Event
{
 double level; //gage water level
 int loc; //gage location}
}

Figure 2.
Example of an event type specification

3.1 Event Model

In RDL, all events are treated as objects. Events of the
same type are defined by an event type and are
represented by an event class. The class Event is the
base class of all the event classes and defines the
common structures of all events type. A Java
specification of the class Event is presented in Figure 1.
This class defines attributes such as eid, which
represents a unique identifier for each event object; the
daytime attribute, which defines the time, relative to the
day, when the event is produced; ttl, which defines how

much time the event object will be alive; and producer,
which identifies the distributed object that produced the
event. It also defines methods such as: t(), which
returns the value of the attribute daytime mentioned
above; ts(),m which returns the time the event have in
the event set; getProducerClassName(), which returns
the name of the distributed object that produce the
event,; getProducer(), which returns the distributed
object that produce the event; and isDead() , which
returns true if the event has past its own ttl value.

In this event model, only simple events are supported.
The definition of composite event expressions is part of
the rule model of RDL described in the next section.

Figure 2 shows the specification of an event type class
named GageLevelReport. In addition to the attributed
inherited from the Event class, this class defines
attributes like loc that identify the location of the event
produced and level that represents a measure of some
type of measure instrument like water gages. Events of
this class will be used to illustrate some examples of rule
evaluation.

3.2 Rule Model

A rule can be viewed as an algorithm that is executed
due to the occurrence of one or more events . When
such algorithm is executed, it is said that the rule is
evaluated. A rule is evaluated when it is triggered by
the occurrence of one or more events. A rule can be in
one of two possible states: active or inactive. Active
rules can be triggered, while inactive ones cannot be
triggered. The number of times a rule is triggered is
defined by the behavioral model, which will be
presented in the following section.

A priority number can be assigned to each rule to
specify the order of triggering with respect to the
others.
Rules are triggered with the same priority can be
triggered in parallel; rules with lower priority have to
wait for the end of the evaluation of rules with higher
priority before they can be triggered.

The event pattern of a rule defines the types of events
whose occurrence may trigger the rule. When there
exists a set of events that satisfies the event pattern, the
rule is triggered. The semantics of an event pattern are
explained by the behavioral model, which is described in
the next section.

When evaluated, a set of actions are performed in an
execution path. An action can be an invocation of a
method on a distributed object or the posting of a new

event. Three possible execution paths can be defined
for each rule. A conditional path is defined when a
condition is given, which must be satisfied in order to
execution a given set of actions. An alternative
conditional path is defined when a set of actions is
specified and are to be executed if a given condition is
not satis fied. An unconditional path is defined if a set
of actions are specified to be performed unconditionally.
Conditional and alternative conditional paths take
precedence over unconditional paths.

In RDL, rules can be grouped into packages. A package
in RDL is similar to a Java package, used to group
together a set of logically related elements; in RDL,
packages are used to group together a set of logically
related events and rules.

3.3 Behavioral Model

The behavioral model of RDL defines how rules are
triggered and evaluated upon the occurrence of events,
and how many times they are triggered with respect to
the number of events.

An event is said to be alive if it has been created
(posted) and its time-to-live (ttl) has not been reached.
The time-to-live of an event can be specified for each
event; otherwise a default value is given to this
attribute. Events that are alive are kept into an event set;
events that are dead (not alive) are removed from the set
as soon as they reach their time-to-live.

A rule evaluation cycle occurs when all the rules that
are active have been considered for triggering. The rule
evaluation cycle interval is a system-defined time
between evaluation cycles. Its value depends on the
type of applications to be supported by the distributed
system. For real-time systems, the interval might be in
the order of milliseconds.

The order of triggering is determined by each rule’s
priority, as explained in the previous section. A rule is
triggered if there exists a set of events that satisfy its
event pattern. An event pattern can be formally defined
by an n-tuple < X1, X2, …, Xn >, where each Xi is an
event type expression, and n is the number of event
types specified in the pattern. An event type expression
can be one of the following: (i) the name of an event
type, or Ei; (ii) a negation operator (!) preceding the
event type, or !(Ei); or (iii) an event set constructor
operation, or {Ei [c] }, where c is a Boolean condition
that must be satisfied by an event of type Ei to belong
to the set.

An events combination is defined by an n-tuple <e1,e2,
…, en>, where each ei is an event in the event set and is
of the same type of the corresponding Ei in the pattern.

A special event is the null event (∅) which can be of
any type.

An event combination satisfies an event pattern if, for
each ei, one of the following two conditions is met: (i) Xi
=Ei or Xi={ Ei }; or (ii) ei = ∅ and Xi = !(Ei).

A rule is said to have consumed an event combination if
any action has been taken after being triggered by the
combination.

With these definitions done, we are ready to define the
number of times a rule is triggered in each evaluation
cycle. In each evaluation cycle, each rule is evaluated
once for each event combination satisfied by its event
pattern, if it has not consumed the event combination.

4. Rule Syntax

The components of the rule language syntax, presented
in Figure 3, are the following:

The package_specification clause is used to specify the
package to which the rule belongs. A package clause
can be followed by many rule specifications, and it
assumed that all the following rules belong to the same
package.

The rule_id clause is the unique identifier of the rule
(unique within the package).

The priority_no clause is used for the execution
paradigm of rules, such that semantics are captured
correctly by executing rules in the appropriate order.
Can be zero (the default) or a positive number. The
lower the number, the highest the priority.

The trigger_events clause is an expression composed y
a single event (simple event expression) or set of events
(composite event expression) that will trigger the
execution of the rule. A simple event triggers the rule
upon its occurrence. Composite events trigger the rule
depending on the relationships specified among events
(e.g., one event along with others, one event but not
others, time-related). Complex event patterns are
specified by operators, such as “&&” (and), “||” (or), “!”
(not, or absence of an event of a given type) and “>>”
(causality, an event occurs after the other). A special
type of operator is the set constructor ({}) which
creates a subset of all the events of a given type that
satisfy a condition.

The usage_specification clause is used by rules that
need to make use of services of an existing DS
component. The usage clause of a rule specifies which

[package <package_specification>]
rule <rule_id>
[priority <priority_no>]
on <trigger_events>
[use <usage_specification>]
[if <condition>
then <actions>
[else <alternative_actions>]]
[do <actions>]

Figure 3. Syntax of the rule language

package aaa;

rule eip1
on GageLevelReport glr1 >>
 GageLevelReport glr2
if (glr2.t() - glr1.t() <= 15:00) &&
 (glr2.level - glr1.level >= 0.75)
&&
 (glr2.loc == glr1.loc)
then
 post EventInProcess {loc=glr1.loc};
end;

rule eip2
on GageLevelReport glr1 &&
{GageLevelReport [(ts() <= 15:00) &&

(level >= 12.0) &&
(level <= 15.0) &&
(loc == glr1.loc] } S1

&&
 {GageLevelReport [(ts() <= 15:00) &&
 (loc == glr.loc } S2
if (S1.size() / S2.size() > 0.5)
then
 post EventInProcess {loc=glr1.loc};
end;

package aee;
import aaa;
rule aeenotify
use AEENotification aeen
on EventInProcess eip
if eip.loc=CARRAIZO
do
 aeen.notify(“CARRAIZO alert”);
end;

Figure 4.
Examples of rule definitions in RDL

services are to be used in evaluating a condition or
performing an action.

The condition clause specified in a rule, must be
satisfied (“true”) to execute the rule upon the
occurrence of events. Rule conditions may include time
relationships among events (e.g., one event before
another, one event 5 minutes after the other).
The action clause consist of a list of operations to be
performed if the trigger events occur and the condition
is satisfied.

The list of actions or alternative actions can be either an
invocation of a service, an invocation of a method of an
event or the posting of a new event (with the post
operator).

The alternative_actions clause consist of a list of
operations can be specified to be performed when the
rule is triggered but the rule condition is not satisfied.

In an experiment realized, a comparison between RDL
and Java was performed. The results of the experiment
shows that the implementation of a set of algorithms
using Java produce almost 6 times the code produced
using RDL to implement the same set of algorithms.

5. Examples

Figure 4 shows three different levels of complexity for
rule definition. The first statement is the package
declaration that state that the subsequent rules belongs
to this package. In rule eip1, the rule is triggered when
an event of type GageLevelReport occurs after another
event of the same type. If this occur, the if condition is
evaluated and if the time difference between the two
events is equal or less 15 minutes, the level difference
between the two events is greater or equal than 0.75
inches, and the events come from the same location; an
event of the class type EventInProcess is posted, with
its location (“loc”) with the same value as the location
of the gages.

The rule eip2 use the event-set constructor {}, to
define a set of events. In this example, two sets, S1 and
S2, are created. A set is constructed of events that
satisfy the condition placed between square brackets.
The set S1 has events of the type GageLevelReport that
has been in the set in the last 15 minutes, whose level is
between 12 and 15 inches, and whose location is the
same as in the event “glr1”. The set S2 contains all the
events that have occurred in the last 15 minutes and are
in the same location as event “glr1”. Upon such
occurrences, the “if” clause checks if more than 50% of
the events in S2 are in event S1; if this condition is true,
then a new EventInProcess event for the same location
is posted.

In the rule aeenotify, a rule is defined in a different
package called “aee”. This rule uses the “use” clause to
use the AEENotification distributed service. Upon the
occurrence of an EventInProcess event called “eip”, if
the location of the event is CARRAIZO, then the
“notify” method of the AEENotification service is

invoked.

An experiment was made to compare a set of rules in
RDL with an equivalent Java implementation. The
results of the experiment show that the Java
implementation required almost 6 times the number of
lines of code required in RDL.

5. Conclusions

In this paper, we have presented RDL, a Rule Definition
Language to specify the behavior of distributed
systems. RDL has the capability of constructing
complex statements with a high-level of abstraction.
The results preliminary tests show that RDL requires
less lines of code to express the same semantics as an
equivalent Java implementation.

6. References

[Arroyo99] Arroyo-Figueroa, J.A., Borges, J.A.,

Rodriguez, N.J., "ERF: An Event-Rule Framework
for Supporting Heterogeneous Distributed
Systems ", A proposal submitted to the National
Science Foundation, 1999. Department of Electrical
and Computer Engineering, University of Puerto
Rico, Mayagüez Campus.

[Bates95] Bates, P. "Debugging Heterogeneous

Distributed Systems Using Event-Based Models of
Behavior", ACM Transactions on Computer
Systems , vol. 13, no. 1, 1995, pp. 1 – 31.

 [Mansouri96] Mansouri, S. and Sloman, M., “A

Configurable Event Service for Distributed
Systems”, Proc. of the 3rd Int’l. Conference on
Configurable Distributed Systems, Annapolis, MD,
1996 pp. 210-217

[Moulier01] Moulier, Edwin, Arroyo, J., "A Rule-

Based Intelligent Event Service
(RUBIES)", Proceedings of the Computing
Research Conference 2001, University of Puerto
Rico, Mayagüez Campus, March 2001.

