
An Efficient Parallel Algorithm for Solving Unsteady Nonlinear Equations

Wilson Rivera
Department of Electrical and Computer Engineering

University of Puerto Rico
wrivera@ece.uprm.edu

Jianping Zhu, David H. Huddleston
Engineering Research Center for Computational Systems

Mississippi State University
�jzhu, hudd�@erc.msstate.edu

Abstract

This paper discusses the application of a new parallel
non-overlapping domain decomposition algorithm, based
on explicit predictors and implicit correctors, to the solution
of nonlinear equations. The results demonstrate significant
improvement in accuracy for calculating transient solutions
using the new approach. In addition, the parallel algorithm
scales well as the number of processors increases for large
scale problems.

1. Introduction

When solving time dependent PDEs with non-
overlapping subdomains, the domain decomposition
method could either be used as a preconditioner for Krylov
type algorithms [1], or as a means to decompose the
original domain into subdomains and solve the PDEs
defined in different subdomains concurrently [2]. When it
is used as a preconditioner, the relevant PDE is discretized
over the entire original domain to form a large system
of algebraic equations, which is then solved by Krylov
type iterative algorithms. The preconditioning step and
the inner products involved in the solution process often
incur a significant amount of communication overhead that
could significantly affect the scalability of the solution
algorithms.

On the other hand, if the original domain � is decom-
posed into a set of non-overlapping subdomains ��� � �
�� � � � �� , it would be ideal that the PDEs defined in dif-
ferent subdomains could be solved concurrently. This often
requires numerical boundary conditions at the boundaries
between subdomains.

One way to generate those numerical boundary condi-
tions is to use the solution values from the previous time
step �� to calculate the solutions at ���� [3]. This is of-
ten referred to as time lagging (TL). The other way to
generate numerical boundary conditions is to use an ex-
plicit algorithm to calculate the solutions at the boundaries
between subdomains, using the solutions from the previ-
ous time step, and then olve the PDEs defined on differ-
ent subdomains concurrently using an implicit method [4].
This is referred to as the explicit predictor (EP) method.

In a previous paper [5], the authors showed that the
stability and accuracy of the solution algorithm can be
significantly affected by the TL and EP methods. The
TL algorithm is stable, but in general reduces accuracy
for calculating unsteady (transient) solutions. On the
other hand, the EP method is accurate, but only con-
ditionally stable. In the referred paper, a new method
based on explicit predictor and implicit corrector (EPIC)
for generating numerical boundary conditions was dis-
cussed. The EPIC method combines the advantages of
both the TL (stability) and EP (accuracy) methods.

This paper discusses the application of the EPIC method
to the solution of the system of Euler equations in flow sim-
ulation of an airfoil and a converging-diverging nozzle. The
numerical solution of the Euler equations is discussed in
section 2. The implementation details of the new algorithm
applied to the solution of the Euler equations are presented
in section 3. The numerical results obtained are given in
section 4. Finally, the conclusions are listed in section 5.

2. Numerical Solution of the Euler Equations

The two-dimensional Euler equations expressed in
Curvilinear coordinates are given by

��

��
�
��

��
�
�	

�

� �� (1)

where

� � ��� ���

� � ������ �� � �� �	 �� (2)

	 � ����
� �� �
� �	 ��

with

�� �

�
��

�

��

��

�

�
�� � �� �

�
��

��

��� � �

���

���� ��

�
�� � �� �

�
��

��

���

��� � �

���� ��

�
�� �

and equation of state given by

� � � � ����� �

�
��� � ����� (3)

Here � is the mass density, � and � are the velocity com-
ponents in the � and � directions, respectively, � is the total
specific energy of the fluid, � is the pressure and is the
ratio of specific heats. The jacobian J, which physically
corresponds to the inverse of the cell volume, is given by

� � ��
� � ��
�� (4)

and the metric terms are

�� � ����
� � �����
�� � �����
� � ���� (5)

For flow fields which involve continuous variations of
the flow field variables, central difference schemes work
reasonably well. Explicit formulations of central differ-
ences are easy to implement. However, when discontinu-
ities exist in the flow, central difference schemes usually fail
because nonphysical oscillations around the discontinuities
appear in the numerical solutions. In addition, the inher-
ent conditional stability of these explicit schemes leads to
unreasonably long computation times for many problems.

For large scale applications an implicit finite volume for-
mulation is a more convenient choise. In the finite vol-
ume formulation, the computational domain is divided into
a large number of control volumes so that the partial differ-
ential equation representing a conservation law is then inte-
grated over these volumes. The direct discretization of the
integral form of the conservation laws ensures conservation
of mass, momentum and energy in the discrete level.

The implicit discretized integral form of the two-
dimensional Euler equations is given by

����
��� ���

���

�	
�

����

�� �

�
��
�����

�� �

�
��

�

�

����

���� �

�

� ����

���� �

�

��
� � �

or
	�� �	��Æ��

��� � Æ�	
���� � �� (6)

where 	�� � ���� � ��, and the central difference op-
erator notation indicates that the flux vectors are evaluated
at cell faces. The problem of computing the cell-face fluxes
for a control volume can be treated as a series of local Rie-
mann problems.

Roe [6] proposed a method of solving a linear prob-
lem approximating the original nonlinear Riemann prob-
lem. The Roe approximation is expressed as

��

��
�
����� ���

��

��
� �� (7)

where
����� ��� is a constant matrix whose components
are evaluated using averaged values of � at the interface
given by

� �
�
�����

� �

�
���� �

�
�����

�� �
�
��

�

� �

�
���� �

�
�����

�� �
�
��

� (8)

� �

�
���� �

�
�����

�� �
�
��

�

where � � ��	

is the total enthalpy per unit volume.
The calculation of the flux at cell interfaces can be split

into contributions across negative and positive wave speeds.
Thus, the required flux can be computed from either of the
following expressions

��� �

�

� �� �

��
��

��
���
 � �

��� �

�

� ���� �
��
��

��
���
 � � (9)

where the ��� and ��� superscripts indicate that the cal-
culations involve only negative or positive eigenvalues, re-
spectively. The Roe’s numerical flux is then either of the
expressions in (9) evaluated using the averages in (8).

The approach discussed previously is only first order ac-
curate due to the assumption of a constant variation of flow
properties across a grid cell. Second order (Third order) of
accuracy can be obtained by assuming a linear (quadratic)
variation of flow properties across a given cell. However,

numerical results obtained using these extensions of the nu-
merical flux to high order accuracy exhibit the oscillatory
behavior in the vicinity of discontinuities similar to that en-
countered with central differences.

In order to avoid oscillations it is necessary to introduce
nonlinear components, referred to as flux limiters, to restrict
the amplitude of the gradients appearing in the original high
order schemes. Osher and Chakravarthy [7] introduced a
family of high order accurate schemes using Roe averaging.

3. Domain Decomposition

The algorithm applied to the entire domain without do-
main decomposition is an implicit finite volume formula-
tion, first order accurate in time with an approximate Rie-
mann solver based on Roe flux approximation to achieve up
to third order spatial accuracy as reported by Whitfield et al.
[8], that is, the implicit cell-centered finite volume dis-
cretization of the Euler equations can be written as

������� �
����

��� ���
���

�	
�

����

�� �

�
��
�����

�� �

�
��

�

�
����

���� �

�

� ����

���� �

�

��
� �� (10)

where flux vectors at cell faces are calculated using the
Roe’s approximation defined in (8) and (9) with third-order
spatial accuracy as defined in [7].

The original code, provided by the Computational Sim-
ulation and Design Center at Mississippi State University,
has been modified to deal with domain decomposition. It
is important to point out that we are not attempting to im-
prove the original solver. Our focus is on providing fast
turn around time for CFD (Computational Fluid Dynamics)
simulations without degrading accuracy and convergence.

The scheme used to predict the boundary values between
subdomains is the two-step MacCormack scheme written as

�����
��� � �

�
��� ��	Æ����

����	Æ�� ��
���

�
���
��� �

�

�

�
�����
��� ��

�
��� ��	Æ����� ��

����

� �	Æ���� � ��
����

�
� (11)

The subdomain solutions are obtained using Newton’s
iterations [8] for the equation ������� � �, that is, for
� � �� �� � � �

� �

����������������� �������� � �����������
(12)

where � �

�������� is the Jacobian matrix of the vector
���������. As a consequence, the resulting formulation
for the equation in (10) is

�	 �

� �

�
���	�

�����
���� ��

�

�� �

�
����	�

�����
����

	
�

	�
��

�

�� �

�
��
� 	

�

� �

�
�
��

�

�� �

�
��
� 	

�

� �

�
�

	������

��

��
�

�� �

�
����	�

�����
���� � 	

�

� �

�
���	�

�����
����

� �
�
����
�� ���

��

	�
� Æ����

���� � Æ�	 ��
����

�
� (13)

where

	������ � �������� ��������

�
�

�� �

�
��

�
���� �

�
�

����

� (14)

	
�

� �

�
�

�
�	��� �

�

����

�

The Jacobian �
�

and 	
�

are calculated numerically by us-
ing difference quotients. The first subscript of �

�

and 	
�

refers to the location of the cell face and the second sub-
script refers to the location of the dependent variable vector
that the numerical flux vector is differentiated with respect
to.

Finally, the corrector step based on the Roe’s approxi-
mate Riemann solver is defined as

����
�� � ��

�� �	�Æ����
�����	�Æ�	 ��

����� (15)

The communication between processors is carried out
using the MPI standard library [9] to ensure maximum
portability. Communications are mostly implemented using
the MPI Sendrecv routine. Since this is a locally blocking
routine, high synchronization is achieved between proces-
sors.

4. Experimental Results

In this section, we presents numerical results obtained
for flow simulation of an airfoil and a converging-diverging
nozzle followed by a discussion regarding performance.

4.1. NACA 0012 Airfoil

In order to demonstrate performance, applicability and
accuracy of the EPIC approach for solving Euler equa-
tions, a series of computations for transonic flow about a
NACA0012 airfoil pitching about the quarter chourd point
are carried out.

The NACA0012 airfoil is prescribed to be pitching at
�� � �����, � � �����, �� � ����, and �� � ����.
The numerical results are compared with the experimental
data by Landon [10].

The unsteady calculations are started from a converged
steady state solution and afterward a CFL of ���� was kept
constant during the simulation. Figures 1 and 2 show the

pressure distribution for different angles of attack as one
pitching cycle advances. Eight subdomains are used in the
domain decomposition for this test case.

The pressure distribution obtained with the EPIC ap-
proach matches that obtained with the Roe’s approximate
solver without domain decomposition for each of the an-
gles of attack considered. The TL approach, on the other
hand, produces a considerable error in shock locations.

In order to evaluate the significance of the CFL con-
dition in the behavior of the different methods discussed
here, unsteady calculations also are carried out maintain-
ing a CFL of � constant during the simulation. Figures 3
and 4 show the pressure distribution for the different an-
gles of attack. The results indicate that the TL method is
more sensitive to variations of CFL conditions compared
to the EPIC method. The EPIC method demonstrates the
same high quality results for the two CFL numbers, while
the TL method demonstrates a reduction in quality as the
CFL number is increased.

4.2. Converging-Diverging Nozzle

As an additional example of temporal accuracy, we con-
sider the movement of unsteady normal shocks around the
boundaries between subdomains.

A converging-diverging nozzle is used for the experi-
ment. The dimensions of the nozzle are �� units of length,
� unit in the throat section, and � units in the exit section.
Flow conditions are determined by the ratio of the exit pres-
sure to the inlet stagnation pressure. If the inlet pressure is
fixed, the exit pressure can be adjusted to produce various
possible flow regimes. The first critical pressure ratio corre-
sponds to the mode of operation where the Mach number in-
creases in the converging part of the nozzle from nearly zero
far upstream to ��� at the throat, and then decreases again
in the diverging portion of the nozzle. For any pressure
ratio above the first critical, the nozzle has subsonic flow
throughout. As the pressure ratio is lowered bellow the first
critical, the flow becomes supersonic just downstream of the
throat in the diverging part of the nozzle. A normal shock
wave forms somewhere downstream of the throat, and the
flow jumps from supersonic to subsonic across this normal
shock. As the pressure ratio is lowered further, the shock
continues to move toward the exit. Thus, the location of
a normal shock in the diverging part of the nozzle can be
changed by regulating the exit pressure of the nozzle. This
fact is used to move the normal shock through a boundary
between subdomains in order to evaluate the behavior of the
methods before unsteady shocks.

The computational domain is divided into � subdomains.
The steady state solution is obtained after ���� local time
steps at a �	� � ��. The pressure ratio is equal to
�������, and the normal shock occurs at the nozzle axial

location where the area ratio is equal to ��� just before the
boundary between the third and fourth subdomains. At this
point the time is set up to the start time ��, and unsteady
calculations are initiated by regulating the pressure ratio.
Figure 5 shows the steady state solution at ��. Figures 6
and 7 show the distribution of the pressure ratio for differ-
ent time steps. The pressure ratio distribution obtained with
the EPIC approach matches that obtained with the Roe’s
approximate solver without domain decomposition. On the
other hand, the TL method exhibits an error in the pressure
ratio around the normal shock.

4.3. Scalability

The following couple of figures compare the perfor-
mance of the TL algorithm vs. the EPIC algorithm on an
SGI Power Challenge XL parallel computer with 16 pro-
cessors.

Figure 8 shows the speedup obtained using a coarse
���� �� C-grid for the computation of the steady state so-
lution at Mach number �� � ���� and angle of attack
� � ���.

Speedup is defined as the ratio between the sequential
execution time and the parallel execution time. For fixed
size problems, speedup is limited because of the overhead
which grows with increasing number of processors or be-
cause the number of processors exceeds the degree of con-
currence of the algorithm, that is, the maximum number of
tasks which can be executed simultaneously. As a conse-
quence the problem size should be increased in order to
achieve an improvement in performance. Efficiency, which
is the ratio between the sequential execution time and the
cost of the parallel system, may be maintained constant by
increasing the problem size as the number of processors in-
creases.

It is clear from the figures that the EPIC algorithm scales
well as the number of processors increases for large scale
problems. Even a slight superlinear speedup can be ob-
served from the Figure 9. This is mainly due to the nonuni-
form access latency for different levels of cache and mem-
ory on SGI Power Challenge. When more processors are
used, the array sizes of the code on each processor become
smaller, which preserves data locality better and results in
more efficient utilization of local cache and memory.

5. Conclusions

A series of computations for unsteady flow were carried
out to demonstrate performance, applicability and accuracy
of the EPIC approach for solving systems of nonlinear equa-
tions. The numerical results showed that for transient prob-
lems the boundary treatment developed here yields signif-
icant improvement in accuracy compared to the traditional

time-lagging method. The EPIC method showed better ac-
curacy than the TL method for detecting unsteady shocks.
Also, the EPIC method demonstrated high quality solutions
at high CFL conditions, while the TL method demonstrated
a reduction in quality as the CFL number was increased. In
addition, the results showed that the new parallel algorithm
is scalable as the number of processors increases.

References

[1] T. F. Chan and T. P. Mathew, “Domain decomposition
algorithms,” Acta Numerica, vol. 3, pp. 1–143, 1994.

[2] D. Drikakis and E. Schreck, “Development of par-
allel implicit Navier-Stokes solvers on MIMD multi-
processor systems,” AIAA, 93-0062.

[3] R. Pankajakshan and W. R. Briley, “Parallel solution
of viscous incompressible flow on multi-block struc-
tured grids using MPI,” in Parallel Computational Fluid
Dynamics: Implementation and Results Using Parallel
Computers, pp. 601–608, Elseiver Science, 1996.

[4] C. N. Dawson, Q. Du, and T. F. Dupont, “A finite dif-
ference domain decomposition algorithm for numerical
solution of the heat equation,” Mathematics of Computa-
tion, vol. 57, pp. 63–71, 1995.

[5] W. Rivera, J. Zhu, and D. Huddleston, “An Efficient
Parallel Algorithm with Application to Computational
Fluid Dynamics,” To appear in Computers and Mathe-
matics with Applications.

[6] P. L. Roe, “Approximate Riemann solvers, parameter
vector, and difference schemes,” Journal of Computa-
tional Physics, vol. 43, pp. 357–372, 1981.

[7] S. Osher and S. Chakravarthy, “Very high order accu-
rate TVD schemes,” Report 84-44, ICASE, 1984.

[8] D. L. Whitfield, J. M. Janus, and L. B. Simpson, “Im-
plicit finite volume high resolution wave split scheme
for solving the unsteady three-dimensional Euler and
Navier-Stokes equations on stationary or dynamic grids,”
Engineering and Industrial Research Report MSSU-
EIRS-ASE-88-2, Mississippi State University, 1988.

[9] W. Gropp, M. Snir, B. Nitzberg, and E. Lusk, MPI: The
Complete Reference. MIT Press, 1998.

[10] R. H. Landon, “NACA0012 oscillation and transient
pitching,” in Compendium of Unsteady Aerodynamic
Measurements, Advisory Report 702, AGARD, 1982.

0 0.2 0.4 0.6 0.8 1
Location along the chord (x/c)

−2

−1

0

1

2

P
re

ss
ur

e
C

oe
ffi

ci
en

t
(−

C
p)

Upper Surface (Experimental Data)
Lower Surface (Experimental Data)
Roe’s Approximate Solver
TL Method
EPIC Method

Figure 1. NACA 0012 unsteady pressure dis-
tribution: � � ����.

0 0.2 0.4 0.6 0.8 1
Location along the chord (x/c)

−2

−1

0

1

2

P
re

ss
ur

e
C

oe
ffi

ci
en

t (
−

C
p)

Upper Surface (Experimental Data)
Lower Surface (Experimental Data)
Roe’s Approximate Solver
TL Method
EPIC Method

Figure 2. NACA 0012 unsteady pressure dis-
tribution: � � �����.

0 0.2 0.4 0.6 0.8 1
Location along the chord (x/c)

−2

−1

0

1

2

P
re

ss
ur

e
C

oe
ffi

ci
en

t
(−

C
p)

Upper Surface (Experimental Data)
Lower Surface (Experimental Data)
Roe’s Approximate Solver
TL Method
EPIC Method

Figure 3. NACA 0012 unsteady pressure dis-
tribution: � � ����, �	� � �.

0 0.2 0.4 0.6 0.8 1
Location along the chord (x/c)

−2

−1

0

1

2

P
re

ss
ur

e
C

oe
ffi

ci
en

t (
−

C
p)

Figure 4. NACA 0012 unsteady pressure dis-
tribution: � � �����, �	� � �.

0 0.5 1
Nozzle Axis

0

0.5

1

P
re

ss
ur

e
ra

tio

Roe’s Approximate Solver
TL method
EPIC Method

Figure 5. Pressure ratio at � � ��.

0 0.5 1
Nozzle Axis

0

0.5

1

P
re

ss
ur

e
R

at
io

Roe’s Approximate Solver
TL Method
EPIC Method

Figure 6. Pressure ratio at � � �� � ������.

0 0.5 1
Nozzle Axis

0

0.5

1

P
re

ss
ur

e
R

at
io

Roe’s Approximate Solver
TL Method
EPIC Method

Figure 7. Pressure ratio at � � �� � ������.

0 4 8 12 16
Number of Processors

0

4

8

12

16

S
pe

ed
up

Ideal LInear Speedup
TL Speedup
EPIC Speedup

Figure 8. Speedup: ��� � �� grid for the
NACA0012 airfoil

0 4 8 12 16
Number of Processors

0

4

8

12

16

S
pe

ed
up

Ideal Linear Speedup
TL Speedup
EPIC Speedup

Figure 9. Speedup: ��� � �� grid for the
NACA0012 airfoil

