

Challenges for Satellite (Scientific) Use of the Spectrum

Jeffry Piepmeier

NASA Goddard Space Flight Center

Instrument Systems and Technology Division

Greenbelt, MD

Radio Frequency Spectrum Management Workshop May 24, 2016 UPR Mayaguez

- One person's noise is another person's signal
- One person's signal is another person's noise

Junk into Art

Sound Wave Jean Shin

TADLE I.I DURING DELVICES	TA	BLE	1.1	Science	Services
---------------------------	----	-----	-----	---------	----------

Service	Abbreviation	Description of Service
Earth Exploration-Satellite Service	EESS	Remote sensing from orbit, both active and passive, and the data downlinks from these satellites
International Global Navigation Satellite System (GNSS) Service	IGS	Accurate position and timing data
Meteorological Aids Service	MetAids	Radio communications for meteorology, e.g., weather balloons
Meteorological Satellite Service	MetSat	Weather satellites
Radio Astronomy Service	RAS	Passive ground-based observations for the reception of radio waves of cosmic origin
Space Operations Service	SOS	Radio communications concerned exclusively with the operation of spacecraft—in particular, space tracking, space telemetry, and space telecommand
Space Research Service	SRS	Science satellite telemetry and data downlinks, space-based radio astronomy, and other services

- WARC-71: EESS(communications) established
- WARC-79: EESS(passive) and EESS(active)
- WRC-97: 50-60 GHz (passive) realigned
- WRC-2000
 - >71 GHz realigned
 - >275-1000 GHz stated in footnote
 - 18.7 GHz gained passive allocation
- WRC-07: mandatory out-of-band emission limits
- WRC-11,15 >275 GHz allocations

FIGURE 2.11 Relative sensitivity of brightness temperature to geophysical parameters as a function of frequency (over ocean surface).

FIGURE 2.10 Relative sensitivity of brightness temperature to geophysical parameters as a function of frequency (over land surfaces).

May 24, 2016

Major U.S. Passive Sensor Milestones

- 1972: NASA Nimbus-5 (NEMS and ESMR)
- 1973: NASA Skylab (S-194)
- 1975: NASA Nimbus-6 (SCAMS)
- 1978: NASA Nimbus-7 (SMMR)
- 1978: NOAA TIROS-N (MSU & SSU)
- 1987: USAF DMSP F8 (SSM/I)
- 1991: NASA UARS (MLS)
- 1997: NASA TRMM (TMI)
- 1998: NOAA-15 (AMSU)
- 2002: NASA EOS Aqua (JAXA AMSR-E)
- 2003: NRL Coriolis (WindSat)
- 2003: USAF DMSP F16 (SSMIS)
- 2004: NASA EOS Aura (MLS)
- 2010: NASA Aquarius/SAC-D (CONAE)
- 2011: NASA/NOAA NPP (ATMS)
- 2014: NASA GPM (GMI)
- 2015: NASA SMAP

EESS Organizations

FIGURE 1.2 The diagram depicts the complex relationship among the national and international radio regulatory bodies for the Earth Exploration-Satellite Service.

- Soil Moisture (light vegetation)
- Sea Surface Temperature

Wentz, FJ, CL Gentemann, DK Smith and others, 2000, Satellite measurements of sea surface temperature through clouds, Science, 288, 847-850.

- Snow, sea ice, precipitation, clouds
- Ocean winds
 Water vapor

18-40 GHz (K andKa bands)

- Snow water equivalent, sea ice, precipitation, clouds
- Ocean winds

V Band Allocation

10.7	101	20.4		11	÷10	26.42	51 X		56.9		0./0	02	7.00	N.4C	C. (C. 17)		0.22	0.00
FIXED	FIXED	(ATION- ssive)	FIX Moe	ed Bile		RCH (passive)	I-SATELUTE (passive)	I-SATELUTE (passive) ARCH (passive)	INTER-	ATELLITE	-SATELUTE (passive)	ARCH (passive)	KPLORATION- TE (passive)	INTER- SATELLITE	INTER- SATELLITE	INTER- SATELLITE	INTER- SATELLITE	INTER-
MOBILE	MOBILE	EARTH EXPLOR SATELLITE (pe	-to-space)	to-space)	FIXED	SPACE RESEA	EARTHEXPLORATION	EARTH EXPLORATION SPACE RESE	LITE (passive)	passive)	EARTHEXPLORATION	SPACE RESE	EARTHE	SATELUTE (passive) RCH (passive)	ATION	Ē	ON-SATELLITE SEARCH	RADIO
rth-to-space)	rth-to-space)		LITE (Earth	ITE (Earth-t		ELLITE (passive)	TER-SATELUTE	INTER- ATELLITE	TH EOPLORATION-SATEL	SPACE RESEARCH (INTER-	ATELLITE	SPACE RESEARCH (passive)	EARTH EOPLORATION	RADIOLOC	Ϋ́Ε.	EARTH EXPLORATI	RADIO
SATELUTE (Ea	SATELLITE (Ea	E RESEARCH (passive)	LE-SATEL	D-SATELL	MOBILE	LORATION-SAT	SEARCH IN	FIXE	සි FL	XED	FIX	ED	FIXED	RADIO- LOCATION	FIXED)BILE**	FIXED	MOBILE-
FIXED-	FIXED-	SPAC	MOBI	FIXE		EARTH EXF	SPACE RE (pass	MOBILE	M	BILE	MOE	BILE	MOBILE	FIXED MOBILE	MOBILE	W	MOBILE	

• Atmospheric temperature

MSU/AMSU Channel TLT Brightness Temperature Trend (1979-2015)

070		0.10			0.00	102.0	105.0	0.001	5, CL	0.111	62.411 116.0	20011	123.0	
XED- ELLITE to-space)	Earth Exploration-	RADIO IRONOMY	EARTH EXPLORATION- SATELLITE	RADIO RONOMY	FIXED	ARTH ORATION- ELLITE assive)	KED	FIXED	ARTH ORATION- FELLITE essive)	RONOMY	ARTH DRATION- ELLITE assive)	RTH RATION- ELLITE ssive)	Amateur	(s
XED	SATELLITE (passive)	N AS	(active)	N AST	MOBILE	EXPLC SAT (pi	Ľ	BILE	EXPL SAT	AST	EXPLC SAT SAT	EXPLO SATE SATE		(:
		ADIO- CATION	RESEARCH (active)	ADIO- CATION	RADIO	OMY	Щ	MOE	MY	CE ARCH sive)	OMY	ک _	Щ	
BILE	SPACE RESEARCH	"9		ЧŐ		STRON	MOBI	00 NOMY	RADIC	SPA RESE	RADI	SPACE SEAR(bassive	R-SATEL	N
	(passive)	BILE	RADIO- LOCATION	OBILE	LOCATION	Ā		RAI	AS	alle	Ä	т. Ш.Э	INTE	N
M		W		×	RADIO- NAVIGATION	۳ <u>۲</u> @	OMY		() () () () () () () () () () () () () (MOE		ш	BILE	`
ASTRONO	RADIO ASTRONOMY	FIXED	RADIO ASTRONOMY	FIXED	Radio- Navigation- Satellite	SPACE RESEAR (passiw	ASTRON	SPACE RESEAR((passive	SPACE RESEAR (passive	FIXED	SPACE RESEAR((passive	INTER- SATELLIT	FIXED MO	a
ľ														

• Precipitation, hurricane intensity, clouds

- Precipitation, clouds
- Atmospheric Temperature
- Water vapor
- Atmospheric chemistry

Data from NASA's Earth-observing Aura satellite show that the ozone hole peaked in size on Sept. 13, reaching a maximum area extent of 9.7 million square miles – just larger than the size of North America. That's "pretty average," says Paul Newman, an atmospheric scientist at NASA Goddard Space Fight Center, when compared to the area of ozone holes measured over the last 15 years. Still, the extent this year was "very big," he says, compared to 1970s when the hole did not yet exist.

http://www.nasa.gov/vision/earth/environment/ozone_resource_page.html

• Basic Total Power Radiometer

What happens when anthropogenic signals enter the passband?

David LeVine http://www.globalspec.com/reference/70770/203279/chapter-4-radiometer-principles

First Spaceborne Radiometer RFI

NRL Memorandum Report 4200

Survey of Potential Radio Frequency Interference Sources

C. DAVID CRANDALL

Space and Communications Technology Directorate

- SMMR: 1978-1987
- 6.5-6.7 GHz passband
- Fixed & mobile services
- West coast of N. America

May 13, 1980

the SEASAT SMMR RFI problem was observed when even satellite sub-satellite point was within 500 nautical miles of the coast.

NAVAL RESEARCH LABORATORY Washington, D.C.

Approved for public release; distribution unlimited.

Evolution of C- and X-band Global RFI

1979 - 06

Evolution of C- and X-band Global RFI

1987 - 06

1987

Evolution of C- and X-band Global RFI

2007 - 06

May 24, 2016

- NTIA Spectral Allocations are shown below
 - 10.6 to 10.7 GHz band is shared with "FIXED" (i.e. ground) transmitters
 - 10.7 GHz neighbors "Fixed Satellite" (space to earth)
 - 18.6 to 18.8 GHz band is shared with "Fixed Satellite" (space to earth)
- These allocations suggest that the 10 and 18 GHz channels should expect corruption in the earth and cold views

10H 6-mo Max 30 60 25 40 20 20 15 0 10 -20 5 -40 0 -60 -5 100 -100 0 Longitude

GMI - 18 GHz RFI Maps

18H 6-mo Max

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

SMAP Mission Concept

- L-band Unfocused SAR and Radiometer System, Offset-Fed 6 m Light-Weight Deployable Mesh Reflector. Shared Feed For
 - 1.26 GHz <u>Radar</u> at 1-3 km (HH, VV, HV) (30% Nadir Gap)
 - 1.4 GHz Polarimetric <u>Radiometer</u> at 40 km (H, V, 3rd & 4th Stokes)
- Conical Scan at Fixed Look Angle
- Wide 1000 km Swath With 2-3 Days Revisit
- Sun-Synchronous 6am/6pm Orbit (680 km)
- Launch 2014
- Mission Duration 3 Years

Mission Context

SMAP is one of four Tier-1 missions recommended by the U.S. NRC Earth Science Decadal Survey

"Earth Science and Applications from Space: National Imperatives for the next Decade and Beyond"

(National Research Council, 2007) http://www.nap.edu

- SMAP was initiated by NASA as a new start mission in February 2008
- SMAP leverages work done under Hydros & Aquarius
- SMAP about to enter Phase C/D CDR scheduled for May 2012
- Target launch date for SMAP is October 2014

T	ier 1:								
	Soil Moisture Active Passive (SMAP)								
	ICESAT II								
	DESDynl								
	CLARREO								
Т	er 2:								
	SWOT								
	HYSPIRI								
	ASCENDS								
	GEO-CAFE								
	ACE								
Т	ier 3:								
	LIST								
	РАТН								
	GRACE-II								
	SCLP								
	GACM								
	3D-WINDS								

SMAP Radiometer Block Diagram

RDE Architecture: DSP Data Flow

SMAP Radiometer "Detector" Counts

- Full-band high-rate, every PRI (300 us)
 - V, H
 - 1st, 2nd, 3rd, 4th moments, I, Q
 - 3rd and 4th Stokes
 - PRF (3.5 kHz) rate

- Sub-banded data, 16 subbands, every 4 PRIs, (1200 us)
 - V, H
 - 1st, 2nd, 3rd, 4th moments, I, Q

Time/Frequency diversity: 360 words every ~1ms (packet)

SMAP Launch: January 31, 2015

Peak hold data for the period June 3 - 9, 2015, before and after RFI detection and mitigation

Color scale limited to 300 K to better show RFI events

RFI Level

- June 3-9, 2015
- RFI looks different with time of day and azimuth angle
- Color scale limited to 10 K to better show RFI events

TA H-pol Asia

TA H-pol Europe

- Spectrum Management works very well to enable scientific use from satellites
- Regulations, however, do not guarantee exclusive access
- Technical solutions offer improvements but are not perfect
- Technology innovation and cooperation with other services are on the path to maintaining and improving the EM environment for scientific passive use

