Chapter Objectives

Upon completion of this chapter, you will be able to:

• Describe a DMA transfer.
• Explain the operation of the HOLD and HLDA direct memory access control signals.
• Explain the function of the 8237 DMA controller when used for DMA transfers.
• Program the 8237 to accomplish DMA transfers.

13–1 BASIC DMA OPERATION

• Two control signals are used to request and acknowledge a direct memory access (DMA) transfer in the microprocessor-based system.
 – the HOLD pin is an input used to request a DMA action
 – the HLDA pin is an output that acknowledges the DMA action
• Figure 13–1 shows the timing that is typically found on these two DMA control pins.

Introduction

• The DMA I/O technique provides direct access to the memory while the microprocessor is temporarily disabled.
• This chapter also explains the operation of disk memory systems and video systems that are often DMA-processed.
• Disk memory includes floppy, fixed, and optical disk storage. Video systems include digital and analog monitors.

Chapter Objectives (cont.)

Upon completion of this chapter, you will be able to:

• Describe the disk standards found in personal computer systems.
• Describe the various video interface standards found in the personal computer.

Figure 13–1 HOLD and HLDA timing for the microprocessor.

GLK
HOLD
HLDA

– HOLD is sampled in any clocking cycle
– when the processor recognizes the hold, it stops executing software and enters hold cycles
– HOLD input has higher priority than INTR or NMI
– the only microprocessor pin that has a higher priority than a HOLD is the RESET pin

13/19/2013
• HLDA becomes active to indicate the processor has placed its buses at high-impedance state.
 – as can be seen in the timing diagram, there are a few clock cycles between the time that HOLD changes and until HLDA changes
• HLDA output is a signal to the requesting device that the processor has relinquished control of its memory and I/O space.
 – one could call HOLD input a DMA request input and HLDA output a DMA grant signal

Basic DMA Definitions
• Direct memory accesses normally occur between an I/O device and memory without the use of the microprocessor.
 – a DMA read transfers data from the memory to the I/O device
 – A DMA write transfers data from an I/O device to memory
• Memory & I/O are controlled simultaneously.
 – which is why the system contains separate memory and I/O control signals

• A DMA read causes the MRDC and IOWC signals to activate simultaneously.
 – transferring data from memory to the I/O device
• A DMA write causes the MWTC and IORC signals to both activate.

• Data transfer speed is determined by speed of the memory device or a DMA controller.
 – if memory speed is 50 ns, DMA transfers occur at rates up to 1/50 ns or 20 M bytes per second
 – if the DMA controller functions at a maximum rate of 15 MHz with 50 ns memory, maximum transfer rate is 15 MHz because the DMA controller is slower than the memory
• In many cases, the DMA controller slows the speed of the system when transfers occur.

• The switch to serial data transfers in modern systems has made DMA is less important.
• The serial PCI Express bus transfers data at rates exceeding DMA transfers.
 – The SATA (serial ATA) interface for disk drives uses serial transfers at the rate of 300 Mbps
 – and has replaced DMA transfers for hard disks
• Serial transfers on main-boards between components using can approach 20 Gbps for the PCI Express connection.
13–2 THE 8237 DMA CONTROLLER

- The 8237 supplies memory & I/O with control signals and memory address information during the DMA transfer.
 - actually a special-purpose microprocessor whose job is high-speed data transfer between memory and I/O
- Figure 13–3 shows the pin-out and block diagram of the 8237 programmable DMA controller.

- 8237 is not a discrete component in modern microprocessor-based systems.
 - it appears within many system controller chip sets
- 8237 is a four-channel device compatible with 8086/8088, adequate for small systems.
 - expandable to any number of DMA channel inputs
- 8237 is capable of DMA transfers at rates up to 1.6M bytes per second.
 - each channel is capable of addressing a full 64K-byte section of memory and transfer up to 64K bytes with a single programming

8237 Pin Definitions

CS

- Chip select enables 8237 for programming.
- The CS pin is normally connected to the output of a decoder.
- The decoder does not use the 8086/8088 control signal IO/M(M/IO) because it contains the new memory and I/O control signals (MEMR, MEMW, IOR and IOW).

RESET

- The reset pin clears the command, status, request, and temporary registers.
- It also clears the first/last flip-flop and sets the mask register.
 - this input primes the 8237 so it is disabled until programmed otherwise

8237 Pin Definitions

CLK

- Clock input is connected to the system clock signal as long as that signal is 5 MHz or less.
 - in the 8086/8088 system, the clock must be inverted for the proper operation of the 8237
8237 Pin Definitions

READY
- A logic 0 on the ready input causes the 8237 to enter wait states for slower memory components.

HLDA
- A hold acknowledge signals 8237 that the microprocessor has relinquished control of the address, data, and control buses.

DREQ₀–DREQ₃
- DMA request inputs are used to request a transfer for each of the four DMA channels.
 - the polarity of these inputs is programmable, so they are either active-high or active-low inputs

DB₀–DB₇
- Data bus pins are connected to the processor data bus connections and used during the programming of the DMA controller.

IOR
- I/O read is a bidirectional pin used during programming and during a DMA write cycle.

IOW
- I/O write is a bidirectional pin used during programming and during a DMA read cycle.

EOP
- End-of-process is a bidirectional signal used as an input to terminate a DMA process or as an output to signal the end of the DMA transfer.
 - often used to interrupt a DMA transfer at the end of a DMA cycle

A₀–A₃
- These address pins select an internal register during programming and provide part of the DMA transfer address during a DMA action.
 - address pins are outputs that provide part of the DMA transfer address during a DMA action

HRQ
- Hold request is an output that connects to the HOLD input of the microprocessor in order to request a DMA transfer.
8237 Pin Definitions

DACK₀–DACK₃
- DMA channel acknowledge outputs acknowledge a channel DMA request.
- These outputs are programmable as either active-high or active-low signals.
 - DACK outputs are often used to select the DMA-controlled I/O device during the DMA transfer.

AEN
- Address enable signal enables the DMA address latch connected to the A₇–A₀ pins on the 8237.
 - Also used to disable any buffers in the system connected to the microprocessor.

ADSTB
- Address strobe functions as AEN, except it is used by the DMA controller to latch address bits A₁₅–A₈ during the DMA transfer.

MEMR
- Memory read is an output that causes memory to read data during a DMA read cycle.

MEMW
- Memory write is an output that causes memory to write data during a DMA write cycle.

8237 Internal Registers

CAR
- The current address register holds a 16-bit memory address used for the DMA transfer.
 - Each channel has its own current address register for this purpose.
- When a byte of data is transferred during a DMA operation, CAR is either incremented or decremented.
 - Depending on how it is programmed.

CWCR
- The current word count register programs a channel for the number of bytes (up to 64K) transferred during a DMA action.
 - The number loaded into this register is one less than the number of bytes transferred.
 - For example, if a 10 is loaded to CWCR, then 11 bytes are transferred during the DMA action.
8237 Internal Registers

BA and BWC

- The base address (BA) and base word count (BWC) registers are used when auto-initialization is selected for a channel.
- In auto-initialization mode, these registers are used to reload the CAR and CWCR after the DMA action is completed.
 - allows the same count and address to be used to transfer data from the same memory area

CR

- The command register programs the operation of the 8237 DMA controller.
- The register uses bit position 0 to select the memory-to-memory DMA transfer mode.
 - memory-to-memory DMA transfers use DMA channel 0 to hold the source address
 - DMA channel 1 holds the destination address
- Similar to operation of a MOVSB instruction.

BR

- The bus request register is used to request a DMA transfer via software.
 - very useful in memory-to-memory transfers, where an external signal is not available to begin the DMA transfer

Figure 13-4 8237A-5 command register. (Courtesy of Intel Corporation.)

Figure 13-5 8237A-5 mode register. (Courtesy of Intel Corporation.)
8237 Internal Registers

MRSR
- The mask register set/reset sets or clears the channel mask.
 - if the mask is set, the channel is disabled
 - the RESET signal sets all channel masks to disable them

MSR
- The mask register clears or sets all of the masks with one command instead of individual channels, as with the MRSR.

SR
- The status register shows status of each DMA channel. The TC bits indicate if the channel has reached its terminal count (transferred all its bytes).
- When the terminal count is reached, the DMA transfer is terminated for most modes of operation.
 - the request bits indicate whether the DREQ input for a given channel is active
Software Commands

- Three software commands are used to control the operation of the 8237.
- These commands do not have a binary bit pattern, as do various control registers within the 8237.
 - a simple output to the correct port number enables the software command
- Fig 13–10 shows I/O port assignments that access all registers and the software commands.

8237 Software Commands

Master clear

- Acts exactly the same as the RESET signal to the 8237.
- as with the RESET signal, this command disables all channels

Clear mask register

- Enables all four DMA channels.

Programming the Address and Count Registers

- Figure 13–11 shows I/O port locations for programming the count and address registers for each channel.
- The state of the F/L flip-flop determines whether the LSB or MSB is programmed.
 - if the state is unknown, count and address could be programmed incorrectly
- It is important to disable the DMA channel before address and count are programmed.
Four steps are required to program the 8237:
- (1) The F/L flip-flop is cleared using a clear F/L command
- (2) the channel is disabled
- (3) LSB & MSB of the address are programmed
- (4) LSB & MSB of the count are programmed

Once these four operations are performed, the channel is programmed and ready to use.
- additional programming is required to select the mode of operation before the channel is enabled and started.

The 8237 Connected to the 80X86

- The address enable (AEN) output of 8237 controls the output pins of the latches and outputs of the 74LS257 (E).
 - during normal operation (AEN=0), latches A & C and the multiplexer (E) provide address bits \(A_{19} - A_{16} \) and \(A_{7} - A_{0} \)
- See Figure 13-12.

- The multiplexer provides the system control signals as long as the 80X86 is in control of the system.
 - during a DMA action (AEN=1), latches A & C are disabled along with the multiplexer (E)
 - latches D and B now provide address bits \(A_{19} - A_{16} \) and \(A_{7} - A_{3} \)

- Address bus bits \(A_{7} - A_{0} \) are provided directly by the 8237 and contain part of the DMA transfer address.
- The DMA controller provides control signals.

Memory-to-Memory Transfer with the 8237

- Memory-to-memory transfer is much more powerful than the automatically repeated MOVSB instruction.
 - most modern chip sets do not support the memory-to-memory feature
- 8237 requires only 2.0 \(\mu \)s per byte, which is over twice as fast as a software data transfer.
- This is not true if an 80386, 80846, or Pentium is in use in the system.
Sample Memory-to-Memory DMA Transfer

- Suppose contents of memory locations 10000H–13FFFH are to be transferred to locations 14000H–17FFFH.
 - accomplished with a repeated string move instruction or with the DMA controller
- Example 13–1 shows the software required to initialize the 8237 and program latch B in Figure 13–12 for this DMA transfer.

Sample Memory Fill Using the 8237

- To fill an area of memory with the same data, the channel 0 source register is programmed to point to the same address throughout the transfer.
 - accomplished with the channel 0 hold mode
- The controller copies the contents of this single memory location to an entire block of memory addressed by channel 1.
- This has many useful applications.

DMA-Processed Printer Interface

- Fig 13–13 illustrates the hardware added to Fig13–12 for a DMA-controlled printer interface.
 - software to control this interface is simple as only the address of the data and number of characters to be printed are programmed
- Once programmed, the channel is enabled, and the DMA action transfers a byte at a time to the printer interface.
 - each time a printer ACK signal is received

Figure 13–13 DMA-processed printer interface.