

Boolean Algebra

Commutative Laws:

$$
a+b=b+a \quad a \cdot b=b \cdot a
$$

Associative Laws:

$$
(a+b)+c=a+(b+c) \quad(a b) c=a(b c)
$$

Identities:

$$
\begin{array}{ll}
a+0=a & a \cdot 0=0 \\
a \cdot 1=a & a+1=1
\end{array}
$$

Distributive Laws:

$$
a+(b \cdot c)=(a+b) \cdot(b+c) \quad a \cdot(b+c)=(a \cdot b)+(a \cdot c)
$$

Boolean Algebra

Complement:

$$
\begin{array}{ll}
a+a=1 & a \cdot a=0 \\
a+a=a & a \cdot a=a
\end{array}
$$

Theorems:

$$
a+a b=a \quad a b+a b=b
$$

DeMorgan's Theorem:

$$
a \cdot b=a+b \quad a+b=a \cdot b
$$

Example: XOR implementation

$A \operatorname{xor} B=A^{\prime} B+A B^{\prime}$

AOI form

$$
\begin{gathered}
=(?)^{\prime} \\
\left(A^{\prime} B+A B^{\prime}\right)^{\prime} \\
\left(A+B^{\prime}\right)\left(A^{\prime}+B\right) \\
\left(A B+A^{\prime} B^{\prime}\right)
\end{gathered}
$$

General procedure to place in AOI form:
Compute the complement in Sum of Products form by circling the 0 's in the K-map!

$$
f=\left(A^{\prime} B^{\prime}+A B\right)^{\prime}
$$

Example:

$F=B C^{\prime}+A C^{\prime}+A B$
$F^{\prime}=A^{\prime} B^{\prime}+A^{\prime} C+B^{\prime} C$
2-input 3-stack AOI gate

F K-map

$$
\begin{aligned}
& F=(A+B)\left(A+C^{\prime}\right)\left(B+C^{\prime}\right) \\
& F^{\prime}=\left(B^{\prime}+C\right)\left(A^{\prime}+C\right)\left(A^{\prime}+B^{\prime}\right) \\
& \text { 2-input 3-stack OAI gate }
\end{aligned}
$$

Example: 4-bit Equality Function

$Z=\left(A 0 B 0+A 0^{\prime} B 0^{\prime}\right)(A 1 B 1+A 1 ' B 1 ')$
(A2 B2 + A2' B2') (A3 B3 + A3' B3')

Each implemented in single 2×2 AOI gate

Time Response in Combinational Networks

- emphasis on timing behavior of circuits
- waveforms to visualize what is happening
- simulation to create these waveforms
- momentary change of signals at the outputs: hazards
- can be useful- pulse shaping circuits
- can be a problem - glitches: incorrect circuit operation

Terms:

gate delay - time for change at input to cause change at output minimum delay vs. typical/nominal delay vs. maximum delay careful designers design for the worst case!
rise time - time for output to transition from low to high voltage
fall time - time for output to transition from high to low voltage

Hazards/Glitches and How to Avoid Them

Unwanting switching at the outputs
Occur because delay paths through the circuit experience different propagation delays

Danger if logic "makes a decision" while output is unstable OR hazard output controls an asynchronous input (these respond immediately to changes rather than waiting for a synchronizing signal called a clock)

Usual solutions:

- wait until signals are stable (by using a clock)
- never, never, never use circuits with asynchronous inputs
- design hazard-free circuits

Suggest that first two approaches be used, but we'll tell you about hazard-free design anyway!

Glitch Example

General Strategy: add redundant terms
$F=A^{\prime} D+A C^{\prime}$ becomes $A^{\prime} D+A C^{\prime}+C^{\prime} D$
This eliminates 1-hazard? How about 0-hazard?

Re-express F in PoS form:

$$
F=\left(A^{\prime}+C^{\prime}\right)(A+D)
$$

Glitch present!
Add term: (C' + D)
This expression is equivalent to the hazard-free SoP form of F

Glitch Example

Start with expression that is free of static 1-hazards

$$
F=A C^{\prime}+A^{\prime} D+C^{\prime} D
$$

Work with complement:

$$
\begin{aligned}
F^{\prime} & =\left(A C^{\prime}+A^{\prime} D+C^{\prime} D\right)^{\prime} \\
& =\left(A^{\prime}+D\right)\left(A+D^{\prime}\right)\left(C+D^{\prime}\right) \\
& =A C+A C D^{\prime}+C D^{\prime}+A^{\prime} C D^{\prime}+A^{\prime} D^{\prime} \\
& =A C+C D^{\prime}+A^{\prime} D^{\prime}
\end{aligned}
$$

covers all the adjacent 0's in the K-map free of static-1 and static-0 hazards!

Dynamic Hazards

Three different paths from B or B' to output

$$
A B C=000, F=1 \text { to } A B C=010, F=0
$$

different delays along the paths:
G1 slow, G4 very slow

Handling dynamic hazards very complex

Elements of a Data Sheet

A data sheet contains all the relevant documentation that you need to use the component:

1. Description of Function
2. A function/truth table
3. A logic schematic with labeled I/Os
4. Boolean expression of function in terms of I/Os
5. Alternative package pint-outs
6. Internal transistor shcematics
7. Operating specifications
8. Recommended operating conditions
9. Electrical characteristics.
10. Switching characteristics.

Operating Specifications: the absolute worst-case conditions under which the component can operate or be stored. Max input volt: 7 v , Temp: 0 to 70 C .

Recommended Operating Conditions: the normal operating conditions for the supply voltage, input voltages, output currents, and temperature.
$\mathbf{V}_{\text {HI }}$: min input volt recognized as a logic $1(2 \mathrm{v})$
\mathbf{V}_{IL} : max input volt recognized as a logic $0(0.8 \mathrm{v})$
$I_{\text {OH: }}$: max current gate can supply to maintain volt of logic $1(-0.4 \mathrm{~mA})$
$I_{\text {OL: }}$ min current gate can supply to maintain volt of logic $0(8 \mathrm{~mA})$

Electrical Characteristics: voltages and currents that can be observed at the inputs and outputs.
V_{OH} : min output high volt (2.7 v min, 3.4 v typical)
V_{OL} : max output low volt (0.4 v max, 0.25 v typical)
$I_{I_{H}}:$ max current into input when high (20uA)
$\mathbf{I}_{\mathrm{IL}}:$ max current into input when low (-0.4 mA)
The voltages determine the noise margin: 0.7 v margin on logic 1 , and 0.4 v on logic 0 .

Switching Characteristics: the typical and maximum gatdelays under specified test conditions.
$\mathbf{t}_{\text {PLh: }}$ delay from low to high (9ns typical, 15ns worst)
$\mathbf{t}_{\text {PHL }}$: delay from high to low (10ns typical, 15ns worst)

Fan-Out: a given output can drive only a finite number of inputs before the output signal levels become degraded and are no longer recognized as good logic 1/0s.

To determine the fan-out examine the $\mathbf{I}_{\mathbf{O H}}$ of the driving gate. This value must exceed the sum of the $\boldsymbol{l}_{\mathbf{I}}$ values of the inputs that the gate is driving.

Similarly, the lol of the gate must exceed the sum of the $I_{\text {IL }}$ values of the inputs to which it is connected.

Example: $\mathrm{I}_{\mathrm{IH}}: 20 \mathrm{uA}, \mathrm{l}_{\mathrm{OH}}:-0.4 \mathrm{~mA}$
$I_{L L}:-0.4 m A, I_{O L}: 8 m A$

It can drive $\mathbf{2 0}$ gates to logic $\mathbf{1}$ and to logic $\mathbf{0}$.

Technology Metrics

There are differences in the underlying technologies that may make one technology more attractive than another. The main technology metrics are:

1. Gate Delay: the time delay between the changes. Om general, bipolar techs are faster than MOS (ECL the fastest).
2. Degree of Integration: the area required to implement a given function in the underlying tech. MOS pack much more densely than bipolar.

SSI: up to 10 gates
MSI: up to 100 gates (not important)
LSI / VLSI: up to 1000 gates (MOS has advantage)
3. Power Dissipation: the power consumption and heat generated that must be dissipated.

- Bipolar generate more heat and consume more power
- ECL consume the most power
- MOS, especially CMOS, consume very little power

4. Noise Margin: the max volt that can be added to or subtracted from the login voltages and still have the ckt interpret the voltage as the correct logic value.

- Modern TTL / CMOS have good noise margins
- ECL has tighter noise margin

5. Component Cost: TTL, MOS, ECL
