
No. 3-1

Chapter # 3: Multi-Level Combinational Logic

Contemporary Logic Design

Randy H. Katz
University of California, Berkeley

June 1993

No. 3-2

Chapter Overview

• Multi-Level Logic

 Conversion to NAND-NAND and NOR-NOR Networks

 DeMorgan's Law and Pushing Bubbles

 AND-OR-Invert Building Blocks

 CAD Tools for Multi-Level Optimization

• Time Response in Combinational Networks

 Gate Delays and Timing Waveforms

 Hazards/Glitches and How To Avoid Them

No. 3-3

Boolean Algebra

Commutative Laws:

a + b = b + a a • b = b • a

Associative Laws:

(a+b)+c = a+(b+c) (ab)c = a(bc)

Identities:

a + 0 = a a • 0 = 0
a • 1 = a a + 1 = 1

Distributive Laws:
a + (b • c) = (a+b) • (b+c) a • (b+c) = (a • b) + (a • c)

No. 3-4

Boolean Algebra

Complement:

a + a = 1 a • a = 0

a + a = a a • a = a

Theorems:

a + ab = a ab + ab = b

DeMorgan’s Theorem:

a • b = a + b a + b = a • b

No. 3-5

Multi-Level Logic: Advantages

Reduced sum of products form:

 x = A D F + A E F + B D F + B E F + C D F + C E F + G
 6 x 3-input AND gates + 1 x 7-input OR gate (may not exist!)
 25 wires (19 literals plus 6 internal wires)

1

2

3

4

5

6

7

1

2 3 4

A

A

A

B

B

B

C

C

C

D

D

D

D

E

E

E

E

F

F

F

F

F

F

F

G

G

x x

Factored form:

 x = (A + B + C) (D + E) F + G
 1 x 3-input OR gate, 2 x 2-input OR gates,
 1 x 3-input AND gate
 10 wires (7 literals plus 3 internal wires)

No. 3-6

Multi-Level Logic: Conversion of Forms

NAND-NAND and NOR-NOR Networks

DeMorgan's Law: (A + B)' = A' • B'; (A • B)' = A' + B'

 A + B = (A' • B')'; (A • B) = (A' + B')'
In other words,
 OR is the same as NAND with complemented inputs
 AND is the same as NOR with complemented inputs
 NAND is the same as OR with complemented inputs
 NOR is the same as AND with complemented inputs

OR/NAND
Equivalence

A A
B B

A
0
0
1
1

A
1
1
0
0

B
0
1
0
1

B
1
0
1
0

A + B
0
1
1
1

A • B
0
1
1
1 A A

B B

A + B
1
1
1
0

A • B
1
1
1
0

≡

≡

OR OR

Nand Nand

No. 3-7

Mult-Level Logic: Conversion Between Forms

AND/NOR
Equivalence

It is possible to convert from networks with ANDs and ORs
 to networks with NANDs and NORs by introducing the
 appropriate inversions ("bubbles")

To preserve logic levels, each introduced "bubble" must be
 matched with a corresponding "bubble"

It is possible to convert from networks with ANDs and ORs
 to networks with NANDs and NORs by introducing the
 appropriate inversions ("bubbles")

To preserve logic levels, each introduced "bubble" must be
 matched with a corresponding "bubble"

A A
B B

A
0
0
1
1

A
1
1
0
0

B
0
1
0
1

B
1
0
1
0

A • B
0
0
0
1

A + B
0
0
0
1 A A

B B

A • B
1
0
0
0

A + B
1
0
0
0

≡

≡

AND AND

NOR NOR

No. 3-8

A A
B B

C C
D D

A
B

C
D

A
B

C
D

Multi-Level Logic: Conversion of Forms

Example: Map AND/OR network to NAND/NAND network

NAND
NAND

AND

AND

OR

NAND
NAND

(A)

(C)

(B)

(D)

No. 3-9

Example: Map AND/OR network to NAND/NAND network

Z = [(A•B)' (C•D)']'

 = [(A' + B') (C' + D')]'

 = [(A' + B')' • (C' + D')']

 = (A • B) + (C • D) ¦
This is the easy conversion!

NAND

NAND

NAND

AA

BB

CC

DD

ZZ

No. 3-10

Example: Map AND/OR network to NOR/NOR network

Step 1 Step 2

NOR

Conserve
"Bubbles"

NOR

NOR

Conserve
"Bubbles"

Z =

A \A

B
\B

C

\C
D

\D

ZZ

No. 3-11

Example: Map AND/OR network to NOR/NOR network

Step 1 Step 2
Conserve
"Bubbles"

Conserve
"Bubbles"

Z = {[(A' + B')' + (C' + D')']'}'

 = {(A' + B') • (C' + D')}'

 = (A' + B')' + (C' + D')'

 = (A • B) + (C • D)

This is the hard conversion! AND/OR to NAND/NAND more naturalAND/OR to NAND/NAND more natural

NOR NOR

NOR

A \A

B
\B

C

\C
D

\D

ZZ

No. 3-12

Example: Map OR/AND network to NOR/NOR network

NOR

NOR

NOR

Conserve
Bubbles

Verify equivalence
of the two forms Z =

No. 3-13

Example: Map OR/AND network to NOR/NOR network

NOR

NOR

NOR

Conserve
Bubbles

Z = [(A + B)' + (C + D)']'

 = {(A + B)'}' • {(C + D)'}'

 = (A + B) • (C + D)

This is the easy conversion!

No. 3-14

Example: Map OR/AND network to NAND/NAND network

Step 1 Step 2

Nand

Nand

Nand

Conserve
Bubbles!

Conserve
Bubbles!

No. 3-15

Example: Map OR/AND network to NAND/NAND network

This is the hard conversion! OR/AND to NOR/NOR more naturalOR/AND to NOR/NOR more natural

Step 1 Step 2

Nand

Nand

Nand

Conserve
Bubbles!

Conserve
Bubbles!

Z = {[(A' • B')' • (C' • D')']'}'

 = {(A' • B') + (C' • D')}'

 = (A' • B')' • (C' • D')'

 = (A + B) • (C + D)

No. 3-16

Multi-Level Logic: More than Two Levels

ƒ = A (B + C D) + B C'

Original
AND-OR Network

Introduction and
Conservation of Bubbles

Redrawn in terms
of conventional

NAND Gates

C

Level 1 Level 2 Level 3 Level 4

G1
D
B

A F G5 G4

G3

B G2
\ C

C G1 D

B
A

F G5 G4 G3

B G2
\ C

C G1 D

\B
A

F G5 G4
G3

B
G2 \ C

No. 3-17

Multi-Level Logic: More than Two Levels

Same beginning network
after introduction of

bubbles

Final network, redrawn
in NOR-only form

C

Level 1 Level 2 Level 3 Level 4

G1
D

B
A

F G5 G4 G3

\B

C
G2

\ C G1 \ D

B
\ A

F G5 G4 G3

B
\ C

G2

No. 3-18

A

B
C

D

F

A

B
C

\D

F

X

\ X

(a) (b)

A

B
C

D

F
X

(d)

A

B
C

\ D

F

(c)

\ X

X

Conversion Example

Original circuit Add double bubbles at inputs

Distribute bubbles
some mismatches

Insert inverters to fix mismatches

No. 3-19

Multi-Level Logic: AND-OR-Invert Block (AOI)

AOI Function: Three stage logic — AND, OR, Invert
 Multiple gates "packaged" as a single circuit block

AND OR Invert

logical concept

two-input two-stack

A
B

C
D

Z

T rue
A C

B D Z

False

A B

C D

No. 3-20

&

&

+
2x2 AOI Schematic

Symbol

&

&

+3x2 AOI Schematic
Symbol

Multi-Level Logic: AND-OR-Invert Block (AOI)

No. 3-21

Example: XOR implementation

A xor B = A' B + A B'

 = (?)'

(A' B + A B')'

(A + B') (A' + B)

(A B + A' B')

AOI form

General procedure to place in AOI form:
 Compute the complement in Sum of Products form by
 circling the 0's in the K-map!

ƒ = (A' B' + A B)'

No. 3-22

F = B C' + A C' + A B

F' = A' B' + A' C + B' C

2-input 3-stack AOI gate

F = (A + B) (A + C') (B + C')

F' = (B' + C) (A' + C) (A' + B')

2-input 3-stack OAI gate

Example:

10
1

1

0 0 0

0 1 1

B

11 01 00
AB A

C
0

1

F K-map

No. 3-23

Example: 4-bit Equality Function

Z = (A0 B0 + A0' B0') (A1 B1 + A1' B1')
(A2 B2 + A2' B2') (A3 B3 + A3' B3')

Each implemented in single 2x2 AOI gate

No. 3-24

Example: AOI Implementation of a 4-Bit Equality Tester

High if A0 ° B0, Low if A0 = B0
A = B active low

NOR

If all inputs are low
 (asserted in negative logic)
 then Ai = Bi, i=0,...,3
Output Z asserted

Conservation of bubbles

No. 3-25

Multi-Level Logic: CAD Tools for Simplification

Multi-Level Optimization:
1. Factor out common sublogic (reduce fan-in, increase gate levels),
 subject to timing constraints

2. Map factored form onto library of gates

3. Minimize number of literals (correlates with number of wires)

Factored Form:
sum of products of sum of products . . .

X = (A B + B' C) (C + D (E + A C')) + (D + E)(F G)

A

B
B

C C
D

E

A

C

F

G
D

E

F 1

F 2

F 5
F 4

F 3

X

+

+

+

+

+

•

• •
•

•

• •

No. 3-26

Multi-Level Logic: CAD Tools for Simplification

Operations on Factored Forms:
• Decompostion

• Extraction

• Factoring

• Substitution

• Collapsing

Manipulate network by interactively
issuing the appropriate instructions

There exists no algorithm that guarantees
"optimal" multi-level network will be
obtained

No. 3-27

Time Response in Combinational Networks
• emphasis on timing behavior of circuits

• waveforms to visualize what is happening

• simulation to create these waveforms

• momentary change of signals at the outputs: hazards
 - can be useful— pulse shaping circuits
 - can be a problem — glitches: incorrect circuit operation

Terms:

gate delay - time for change at input to cause change at output
 minimum delay vs. typical/nominal delay vs. maximum delay
 careful designers design for the worst case!

rise time - time for output to transition from low to high voltage

fall time - time for output to transition from high to low voltage

No. 3-28

Pulse Shaping Circuit

A' • A = 0

F is not always 0!

3 gate delays

D remains high for
three gate delays after

A changes from low to high

No. 3-29

Another Pulse Shaping Circuit

Initially undefined

Close Switch Open Switch

+

A B

C DOpen
Switch

Resistor

No. 3-30

Hazards/Glitches and How to Avoid Them

Unwanting switching at the outputs

Occur because delay paths through the circuit experience
 different propagation delays

Danger if logic "makes a decision" while output is unstable
 OR hazard output controls an asynchronous input (these
 respond immediately to changes rather than waiting for a
 synchronizing signal called a clock)

Usual solutions:
 - wait until signals are stable (by using a clock)
 - never, never, never use circuits with asynchronous inputs
 - design hazard-free circuits

Suggest that first two approaches be used, but we'll tell you
about hazard-free design anyway!

No. 3-31

Hazards/Glitches and How to Avoid Them

Kinds of Hazards

Input change causes output to
go from 1 to 0 to 1

Input change causes output to
go from 0 to 1 to 0

Input change causes a double change
 from 0 to 1 to 0 to 1 OR
 from 1 to 0 to 1 to 0

Static
0-hazard

Dynamic
hazards

Static
1-hazard

1 1

0

1

0 0

1

0 0

1

1 1

0 0

No. 3-32

Glitch Example

F = A' D + A C'

input change within product term

input change that spans product terms
output changes from 1 to 0 to 1

G1

G2

G3

A
\C

\A
D

F

G1

G2

G3

A
\C

\A
D

F

1

1

1
1

0

0

0

1

1

1
1

0

0

0

ABCD = 1100 ABCD = 1101

G1

G2

G3

A
\C

\A
D

F

G1

G2

G3

A
\C

\A
D

F

0

1

0
0

1

0

0

1

1

1
1

1

0

0

ABCD = 1101 ABCD = 0101 (A is still 0)

G1

G2

G3

A
\C

\A
D

F

0

1

0
1

1

1

1

ABCD = 0101 (A is 1)

A
AB

00 01 11 10

0 0 1 1

1 1 1 1

1 1 0 0

0 0 0 0

00

01

11

10
C

CD

D

B

No. 3-33

Glitch Example

General Strategy: add redundant terms

F = A' D + A C' becomes A' D + A C' + C' D

This eliminates 1-hazard? How about 0-hazard?

Re-express F in PoS form:

 F = (A' + C')(A + D)

Glitch present!

 Add term: (C' + D)

This expression is equivalent
to the hazard-free SoP form of F

A AB
00 01 11 10

0 0 1 1

1 1 1 1

1 1 0 0

0 0 0 0

00

01

11

10
C

CD

D

B

No. 3-34

Glitch Example

Start with expression that is free of static 1-hazards
F = A C' + A' D + C' D

F' = (A C' + A' D + C' D)'

 = (A' + D) (A + D') (C + D')

 = A C + A C D' + C D' + A' C D' + A' D'

 = A C + C D' + A' D’

covers all the adjacent 0's in the K-map

free of static-1 and static-0 hazards!

Work with complement:

No. 3-35

Detecting Static Hazards in Multi-Level Circuits
Calculate transient output function

variables and complements are treated as independent variables

cannot use X + X' = 1 or X • X' = 0 for simplifications

F = A B C + (A + D) (A' + C')

F1 = A B C + A A' + A C' + A' D + C' D

Example:

2-level form

ABCD: 1111 to 1110, covered by term
 ABC, so no 1-hazard present

ABCD: 1110 to 1100, term ABC goes low
 while term AC' goes high

some static hazards are present!

A AB
00 01 11 10

0 0 1 1

1 1 1 1

1 1 1 0

0 0 1 0

00

01

11

10
C

CD

D

B

No. 3-36

100

A
B
C
D
F
F 2

Static 1-hazards

Solution:
Add redundant terms to insure all adjacent
transitions are covered by terms

F2 = A C' + A' D + C' D + A B + B D

1's hazards in F
corrected in F2

No. 3-37

Static 0-Hazards

Similar to previous case, but work with the complement of F

If terms of the transient output function cover all 0 transitions, then
 no 0-hazards are present

F = [A B C + (A + D) (A' + C')]'

= (A' + B' + C') (A' D' + A C)

= A' D' + A' B D' + A' C D' + A B' C

= A' D' + A B' C

0-hazard on transition from
1010 to 0010

+ B' C D'

F = (A + D) (A' + B + C') (B + C' + D)

0-hazard free

equivalent to F2 on last slide

A AB
00 01 11 10

0 0 1 1

1 1 1 1

1 1 1 0

0 0 1 0

00

01

11

10
C

CD

D

B

No. 3-38

100

A
B
C
D
F
F 3

Static 0-Hazards

0-Hazard
Corrected in F3

No. 3-39

Designing Networks for Hazard-free operation

Simply place transient output function in a form that
guarantees that all adjacent ones are covered by a term

 no term of the transient output function contains
 both a variable and its complement

F(A,B,C,D) = •m(1,3,5,7,8,9,12,13,14,15)

F = A B + A' D + B D + A C' + C' D

 = (A' + B + C') D + A (B + C')

(factored by distributive law, which does not
introduce hazards since it does not depend on
the complementarity laws for its validity)

A AB
00 01 11 10

0 0 1 1

1 1 1 1

1 1 1 0

0 0 1 0

00

01

11

10
C

CD

D

B

No. 3-40

Dynamic Hazards

Three different paths from B or B' to output

ABC = 000, F = 1 to ABC = 010, F = 0

different delays along the paths:
 G1 slow, G4 very slow

Handling dynamic hazards very complex

Beyond our scope

G1

G2

G3

G5

G4

\A
B

\B

\B
\C F

A

0 1

1

1 0

1

0 1

1 0

1 0 1

1 0
0

1 0

1 0 1 0

Slow

V ery slow

No. 3-41

Elements of a Data Sheet

A data sheet contains all the relevant documentation that
you need to use the component:

1. Description of Function
2. A function/truth table
3. A logic schematic with labeled I/Os
4. Boolean expression of function in terms of I/Os
5. Alternative package pint-outs
6. Internal transistor shcematics
7. Operating specifications
8. Recommended operating conditions
9. Electrical characteristics.
10. Switching characteristics.

No. 3-42

Operating Specifications: the absolute worst-case conditions
under which the component can operate or be stored. Max
input volt: 7v, Temp: 0 to 70 C.

Recommended Operating Conditions: the normal operating
conditions for the supply voltage, input voltages, output
currents, and temperature.

 VHI: min input volt recognized as a logic 1 (2v)

 V IL: max input volt recognized as a logic 0 (0.8v)

 IOH: max current gate can supply to maintain volt of logic 1 (-0.4 mA)

 IOL: min current gate can supply to maintain volt of logic 0 (8 mA)

No. 3-43

Electrical Characteristics: voltages and currents that can
be observed at the inputs and outputs.

 VOH: min output high volt (2.7v min, 3.4v typical)
 VOL: max output low volt (0.4v max, 0.25v typical)

 IIH: max current into input when high (20uA)
 IIL: max current into input when low (-0.4 mA)

The voltages determine the noise margin: 0.7v margin
on logic 1, and 0.4v on logic 0.

Switching Characteristics: the typical and maximum
gatdelays under specified test conditions.

 tPLH: delay from low to high (9ns typical, 15ns worst)
 tPHL: delay from high to low (10ns typical, 15ns worst)

No. 3-44

Fan-Out: a given output can drive only a finite number of
inputs before the output signal levels become degraded
and are no longer recognized as good logic 1/0s.

To determine the fan-out examine the IOH of the driving
gate. This value must exceed the sum of the IIH values of
the inputs that the gate is driving.

Similarly, the IOL of the gate must exceed the sum of the
IIL values of the inputs to which it is connected.

 Example: IIH: 20uA, IOH: -0.4mA
IIL: -0.4mA, IOL: 8mA

 It can drive 20 gates to logic 1 and to logic 0.

No. 3-45

Technology Metrics

There are differences in the underlying technologies that
may make one technology more attractive than another.
The main technology metrics are:

1. Gate Delay: the time delay between the changes. Om
general, bipolar techs are faster than MOS (ECL the
fastest).

2. Degree of Integration: the area required to implement a
given function in the underlying tech. MOS pack much more
densely than bipolar.

 SSI: up to 10 gates
 MSI: up to 100 gates (not important)

 LSI / VLSI: up to 1000 gates (MOS has advantage)

No. 3-46

3. Power Dissipation: the power consumption and heat
generated that must be dissipated.

 - Bipolar generate more heat and consume more power
 - ECL consume the most power
 - MOS, especially CMOS, consume very little power

4. Noise Margin: the max volt that can be added to or
subtracted from the login voltages and still have the ckt
interpret the voltage as the correct logic value.

 - Modern TTL / CMOS have good noise margins
 - ECL has tighter noise margin

5. Component Cost: TTL, MOS, ECL

