

No. 3-2

Boolean Algebra	
Commutative Laws:	
a + b = b + a	a • b = b • a
Associative Laws:	
(a+b)+c = a+(b+c)	(ab)c = a(bc)
Identities:	
a + 0 = a	a•0=0
a• 1=a	a + 1 = 1
Distributive Laws:	
$a + (b \bullet c) = (a+b) \bullet (b+c)$	$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$

Boolean Algebra			
Complement:			
a + a = 1	a • a = 0		
a + a = a	a • a = a		
Theorems:			
a + ab = a	ab + ab = b		
DeMorgan's Theorem:			
a • b = a + b	a + b = a • b		
		No. 3-4	

Elements of a Data Sheet

A data sheet contains all the relevant documentation that you need to use the component:

- 1. Description of Function
- 2. A function/truth table
- 3. A logic schematic with labeled I/Os
- 4. Boolean expression of function in terms of I/Os
- 5. Alternative package pint-outs
- 6. Internal transistor shcematics
- 7. Operating specifications
- 8. Recommended operating conditions
- 9. Electrical characteristics.
- 10. Switching characteristics.

<u>Operating Specifications</u>: the absolute worst-case conditions under which the component can operate or be stored. Max input volt: 7v, Temp: 0 to 70 C.

<u>Recommended Operating Conditions</u>: the normal operating conditions for the supply voltage, input voltages, output currents, and temperature.

 V_{HI} : min input volt recognized as a logic 1 (2v)

 V_{IL} : max input volt recognized as a logic 0 (0.8v)

I_{OH}: max current gate can supply to maintain volt of logic 1 (-0.4 mA)

I_{OL}: min current gate can supply to maintain volt of logic 0 (8 mA)

Electrical Characteristics: voltages and currents that can be observed at the inputs and outputs.

 V_{OH} : min output high volt (2.7v min, 3.4v typical) V_{OL} : max output low volt (0.4v max, 0.25v typical)

 I_{IH} : max current into input when high (20uA) I_{IL} : max current into input when low (-0.4 mA)

The voltages determine the **noise margin**: 0.7v margin on logic 1, and 0.4v on logic 0.

<u>Switching Characteristics</u>: the typical and maximum gatdelays under specified test conditions.

t_{PLH}: delay from low to high (9ns typical, 15ns worst) **t**_{PHL}: delay from high to low (10ns typical, 15ns worst)

<u>Fan-Out</u>: a given output can drive only a finite number of inputs before the output signal levels become degraded and are no longer recognized as good logic 1/0s.

To determine the **fan-out** examine the I_{OH} of the driving gate. This value must exceed the sum of the I_{IH} values of the inputs that the gate is driving.

Similarly, the I_{OL} of the gate must exceed the sum of the I_{IL} values of the inputs to which it is connected.

Example: $I_{IH:}$ 20uA, $I_{OH:}$ -0.4mA $I_{IL:}$ -0.4mA, $I_{OL:}$ 8mA

It can drive **20** gates to logic **1** and to logic **0**.

Technology Metrics

There are differences in the underlying technologies that may make one technology more attractive than another. The main technology metrics are:

1. Gate Delay: the time delay between the changes. Om general, bipolar techs are faster than MOS (ECL the fastest).

2. Degree of Integration: the area required to implement a given function in the underlying tech. MOS pack much more densely than bipolar.

SSI: up to 10 gates

MSI: up to 100 gates (not important)

LSI / VLSI: up to 1000 gates (MOS has advantage)

3. Power Dissipation: the power consumption and heat generated that must be dissipated.
Bipolar generate more heat and consume more power
ECL consume the most power
MOS, especially CMOS, consume very little power **4. Noise Margin**: the max volt that can be added to or subtracted from the login voltages and still have the ckt interpret the voltage as the correct logic value.
Modern TTL / CMOS have good noise margins
ECL has tighter noise margin **5. Component Cost:** TTL, MOS, ECL