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Software quality

EXTERNAL AND INTERNAL FACTORS

External quality factors are properties such as speed or ease of use, whose presence or
absence in a software product may be detected by its users. Other qualities applicable to a
software product, such as being modular, or readable, are internal factors, perceptible
only to computer professionals who have access to the actual software text.

In the end, only external factors matter, but the key to achieving these external factors is
in the internal ones: for the users to enjoy the visible qualities, the designers and
implementers must have applied internal techniques that will ensure the hidden qualities.

EXTERNAL FACTORS

Correctness: The ability of software products to perform their tasks, as defined by
their specification.

Correctness is the prime quality. If a system does not do what it is supposed to do,
everything else about it —  whether it is fast, has a nice user interface…  —  matters little.
But this is easier said than done. Even the first step to correctness is already difficult: we
must be able to specify the system requirements in a precise form, by itself quite a
challenging task.

Robustness: The ability of software systems to react appropriately to abnormal
conditions.

Robustness complements correctness. Correctness addresses the behavior of a system in
cases covered by its specification; robustness characterizes what happens outside of that
specification. There will always be cases that the specification does not explicitly
address. The role of the robustness requirement is to make sure that if such cases do arise,
the system does not cause catastrophic events; it should produce appropriate error
messages, terminate its execution cleanly, or enter a so-called “graceful degradation”
mode.

Extendibility: The ease of adapting software products to changes of specification.

Traditional approaches to software engineering did not take enough account of change,
relying instead on an ideal view of the software lifecycle where an initial analysis stage
freezes the requirements, the rest of the process being devoted to designing and building
a solution.
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Change is pervasive in software development: change of requirements, of our
understanding of the requirements, of algorithms, of data representation, of
implementation techniques. Support for change is a basic goal of object technology.

Two principles are essential for improving extendibility:

• Design simplicity: a simple architecture will always be easier to adapt to changes than a
complex one.
• Decentralization: the more autonomous the modules, the higher the likelihood that a
simple change will affect just one module, or a small number of modules, rather than
triggering off a chain reaction of changes over the whole system.

The object-oriented method is, before anything else, a system architecture method which
helps designers produce systems whose structure remains both simple (even for large
systems) and decentralized.

Reusability: The ability of software elements to serve for the construction of many
different applications.

The need for reusability comes from the observation that software systems often follow
similar patterns; it should be possible to exploit this commonality and avoid reinventing
solutions to problems that have been encountered before. By capturing such a pattern, a
reusable software element will be applicable to many different developments.

Compatibility: The ease of combining software elements with others.

Compatibility is important because we do not develop software elements in a vacuum:
they need to interact with each other. But they too often have trouble interacting because
they make conflicting assumptions about the rest of the world. An example is the wide
variety of incompatible file formats supported by many operating systems. A program
can directly use another’s result as input only if the file formats are compatible. Lack of
compatibility can yield disaster

The key to compatibility lies in homogeneity of design, and in agreeing on
standardized conventions for inter-program communication. Approaches include:

• Standardized file formats, as in the Unix system, where every text file is simply a
sequence of characters.

• Standardized data structures, as in Lisp systems, where all data, and programs as well,
are represented by binary trees (called lists in Lisp).

• Standardized user interfaces, as on various versions of Windows, OS/2 and MacOS,
where all tools rely on a single paradigm for communication with the user, based on
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standard components such as windows, icons, menus etc.

More general solutions are obtained by defining standardized access protocols to all
important entities manipulated by the software. This is the idea behind abstract data types
and the object-oriented approach

Efficiency: The ability of a software system to place as few demands as
possible on hardware resources, such as processor time, space occupied in
internal and external memories, bandwidth used in communication devices.

The constant improvement in computer power, impressive as it is, is not an excuse for
overlooking efficiency.

Software construction is difficult precisely because it requires taking into account many
different requirements, some of which, such as correctness, are abstract and conceptual,
whereas others, such as efficiency, are concrete and bound to the properties of computer
hardware.

Efficiency is only one of the factors of quality; we should not (like some in the
profession) let it rule our engineering lives. But it is a factor, and must be taken into
consideration, whether in the construction of a software system or in the design of a
programming language. If you dismiss performance, performance will dismiss you.

Portability: The ease of transferring software products to various hardware and
software environments.

Ease of use: The ease with which people of various backgrounds and qualifications
can learn to use software products and apply them to solve problems. It also covers
the ease of installation, operation and monitoring.

Functionality: The extent of possibilities provided by a system.

One of the most difficult problems facing a project leader is to know how much
functionality is enough. The pressure for more facilities constantly there. Its
consequences are bad for internal projects, where the pressure comes from users within
the same company, and worse for commercial products, as the most prominent part of a
journalist’s comparative review is often the table listing side by side the features offered
by competing products.

Featurism is actually the combination of two problems, one more difficult than the other.
The easier problem is the loss of consistency that may result from the addition of new
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features, affecting its ease of use.  The more difficult problem is to avoid being so
focused on features as to forget the other qualities.

Timeliness: The ability of a software system to be released when or before its users
want it.

Other qualities
Other qualities beside the ones discussed so far affect users of software systems and the
people who purchase these systems or commission their development. In particular:
Verifiability,  Integrity,  Repairability, and  Economy.

ABOUT DOCUMENTATION

In a list of software quality factors, one might expect to find the presence of good
documentation as one of the requirements. But this is not a separate quality factor;
instead, the need for documentation is a consequence of the other quality factors seen
above. We may distinguish between three kinds of documentation:

• The need for external documentation, which enables users to understand the power of a
system and use it conveniently, is a consequence of the definition of ease of use.

• The need for internal documentation, which enables software developers to understand
the structure and implementation of a system, is a consequence of the extendibility
requirement.

• The need for module interface documentation, enabling software developers to
understand the functions provided by a module without having to understand its
implementation, is a consequence of the reusability requirement. It also follows from
extendibility, as module interface documentation makes it possible to determine whether
a certain change need affect a certain module.

TRADEOFFS

In this review of external software quality factors, we have encountered requirements that
may conflict with one another. How can one get integrity without introducing protections
of various kinds, which will inevitably hamper ease of use? Economy often seems to fight
with functionality. Optimal efficiency would require perfect adaptation to a particular
hardware and software environment, which is the opposite of portability, and perfect
adaptation to a specification, where reusability pushes towards solving problems more
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general than the one initially given. Timeliness pressures might tempt us to use “Rapid
Application Development” techniques whose results may not enjoy much extendibility.

Although it is in many cases possible to find a solution that reconciles apparently
conflicting factors, you will sometimes need to make tradeoffs. Too often, developers
make these tradeoffs implicitly, without taking the time to examine the issues involved
and the various choices available; efficiency tends to be the dominating factor in such
silent decisions. A true software engineering approach implies an effort to state the
criteria clearly and make the choices consciously.

Necessary as tradeoffs between quality factors may be, one factor stands out from the
rest: correctness. There is never any justification for compromising correctness for the
sake of other concerns such as efficiency. If the software does not perform its function,
the rest is useless.

KEY CONCERNS

All the qualities discussed above are important. But in the current state of the software
industry, four stand out:

• Correctness and robustness: it is still too difficult to produce software without defects
(bugs), and too hard to correct the defects once they are there. Techniques for improving
correctness and robustness are of the same general flavors: more systematic approaches
to software construction; more formal specifications; built-in checks throughout the
software construction process (not just after-the-fact testing and debugging); better
language mechanisms such as static typing, assertions, automatic memory management
and disciplined exception handling, enabling developers to state correctness and
robustness requirements, and enabling tools to detect inconsistencies before they lead to
defects. Because of this closeness of correctness and robustness issues, it is convenient to
use a more general term, reliability, to cover both factors.

• Extendibility and reusability: software should be easier to change; the software
elements we produce should be more generally applicable, and there should exist a larger
inventory of general-purpose components that we can reuse when developing a new
system. Here again, similar ideas are useful for improving both qualities: any idea that
helps produce more decentralized architectures, in which the components are self-
contained and only communicate through restricted and clearly defined channels, will
help. The term modularity will cover reusability and extendibility.

The object-oriented method can significantly improve these four quality factors —  which
is why it is so attractive. It also has significant contributions to make on other aspects, in
particular:
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• Compatibility: the method promotes a common design style and standardized module
and system interfaces, which help produce systems that will work together.

• Portability: with its emphasis on abstraction and information hiding, object technology
encourages designers to distinguish between specification and implementation properties,
facilitating porting efforts. The techniques of polymorphism and dynamic binding will
even make it possible to write systems that automatically adapt to various components of
the hardware-software machine, for example different window systems or different
database management systems.

• Ease of use: the contribution of O-O tools to modern interactive systems and especially
their user interfaces is well known, to the point that it sometimes obscures other aspects
(ad copy writers are not the only people who call “object-oriented” any system that uses
icons, windows and mouse-driven input).

• Efficiency: as noted above, although the extra power or object-oriented techniques at
first appears to carry a price, relying on professional-quality reusable components can
often yield considerable performance improvements.

• Timeliness, economy and functionality: O-O techniques enable those who master them
to produce software faster and at less cost; they facilitate addition of functions, and may
even of themselves suggest new functions to add.

KEY CONCEPTS

• The purpose of software engineering is to find ways of building quality software.

• Rather than a single factor, quality in software is best viewed as a tradeoff between a set
of different goals.

• External factors, perceptible to users and clients, should be distinguished from internal
factors, perceptible to designers and implementors.

• What matters is the external factors, but they can only be achieved through the internal
factors.

• A list of basic external quality factors was presented. Those for which current software
is most badly in need of better methods, and which the object-oriented method directly
addresses, are the safety-related factors correctness and robustness, together known as
reliability, and the factors requiring more decentralized software architectures: reusability
and extendibility, together known as modularity.
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• Software maintenance, which consumes a large portion of software costs, is penalized
by the difficulty of implementing changes in software products, and by the over-
dependence of programs on the physical structure of the data they manipulate.
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Modularity

From the goals of extendibility and reusability follows the need for flexible system
architectures, made of autonomous software components.

Modular programming was once taken to mean the construction of programs as
assemblies of small pieces, usually subroutines. But such a technique cannot bring real
extendibility and reusability benefits unless we have a better way of guaranteeing that the
resulting pieces —  the modules —  are self-contained and organized in stable
architectures. Any comprehensive definition of modularity must ensure these properties.

Five Criteria: A design method worthy of being called “modular” should satisfy five
fundamental requirements:

• Decomposability
• Composability
• Understandability.
• Continuity.
• Protection.

Modular decomposability

A software construction method satisfies Modular Decomposability
if it helps in the task of decomposing a software problem into a small
number of less complex subproblems, connected by a simple
structure, and independent enough to allow further work to proceed
separately on each of them

A corollary of the decomposability requirement is division of labor: once you have
decomposed a system into subsystems you should be able to distribute work on these
subsystems among different people or groups. This is a difficult goal since it limits the
dependencies that may exist between the subsystems:

• You must keep such dependencies to the bare minimum; otherwise the development of
each subsystem would be limited by the pace of the work on the other subsystems.

• The dependencies must be known: if you fail to list all the relations between
subsystems, you may at the end of the project get a set of software elements that appear
to work individually but cannot be put together to produce a complete system satisfying
the overall requirements of the original problem.
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The most obvious example of a method meant to satisfy the decomposability criterion is
top-down design. This method directs designers to start with a most abstract description
of the system’s function, and then to refine this view through successive steps,
decomposing each subsystem at each step into a small number of simpler subsystems,
until all the remaining elements are of a sufficiently low level of abstraction to allow
direct implementation.

A typical counter-example is any method encouraging you to include, in each software
system that you produce, a global initialization module. Many modules in a system will
need some kind of initialization —  actions such as the opening of certain files or the
initialization of certain variables, which the module must execute before it performs its
first directly useful tasks. It may seem a good idea to concentrate all such actions, for all
modules of the system, in a module that initializes everything for everybody.  However,
this method would endanger the autonomy of modules: you will have to grant the
initialization module authorization to access many separate data structures, belonging to
the various modules of the system and requiring specific initialization actions. This
means that the author of the initialization module will constantly have to peek into the
internal data structures of the other modules, and interact with their authors. This is
incompatible with the decomposability criterion.

In the object-oriented method, every module will be responsible for the initialization of
its own data structures.

Modular composability

A method satisfies Modular Composability if it favors the
production of software elements which may then be freely combined
with each other to produce new systems, possibly in an environment
quite different from the one in which they were initially developed.

Where decomposability was concerned with the derivation of subsystems from overall
systems, composability addresses the reverse process: extracting existing software
elements from the context for which they were originally designed, so as to use them
again in different contexts.

A modular design method should facilitate this process by yielding software elements
that will be sufficiently autonomous —  sufficiently independent from the immediate goal
that led to their existence —  as to make the extraction possible.

Composability is directly connected with the goal of reusability: the aim is to find ways
to design software elements performing well-defined tasks and usable in widely different
contexts. This criterion reflects an old dream: transforming the software design process
into a construction box activity, so that we would build programs by combining standard
prefabricated elements.
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• Example 1: subprogram libraries.
• Example 2: Unix Shell conventions.

Composability is independent of decomposability. In fact, these criteria are often at odds.
Top-down design, for example, which we saw as a technique favoring decomposability,
tends to produce modules that are not easy to combine with modules coming from other
sources. This is because the method suggests developing each module to fulfill a specific
requirement, corresponding to a subproblem obtained at some point in the refinement
process. Such modules tend to be closely linked to the immediate context that led to their
development, and unfit for adaptation to other contexts. The method provides neither
hints towards making modules more general than immediately required, nor any
incentives to do so; it helps neither avoid nor even just detect commonalities or
redundancies between modules obtained in different parts of the hierarchy. That
composability and decomposability are both part of the requirements for a modular
method reflects the inevitable mix of top-down and bottom-up reasoning

Modular understandability

A method favors Modular Understandability if it helps produce
software in which a human reader can understand each module
without having to know the others, or, at worst, by having to
examine only a few of the others

The importance of this criterion follows from its influence on the maintenance process.
Most maintenance activities, whether of the noble or not-so-noble category, involve
having to dig into existing software elements. A method can hardly be called modular if a
reader of the software is unable to understand its elements separately.

This criterion, like the others, applies to the modules of a system description at any level:
analysis, design, implementation.

• Counter-example: sequential dependencies.

Modular continuity

A method satisfies Modular Continuity if, in the software
architectures that it yields, a small change in a problem
specification will trigger a change of just one module, or a small
number of modules
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This criterion is directly connected to the general goal of extendibility. Continuity means
that small changes should affect individual modules in the structure of the system, rather
than the structure itself.

• Example 1: symbolic constants.
• Example 2: the Uniform Access principle. Another rule states that a single notation
should be available to obtain the features of an object, whether they are represented as
data fields or computed on demand. This property is sufficiently important to warrant a
separate discussion later in this chapter.
• Counter-example 1: using  physical representations.
• Counter-example 2: static arrays.

Modular protection

A method satisfies Modular Protection if it yields architectures in
which the effect of an abnormal condition occurring at run time in
a module will remain confined to that module, or at worst will only
propagate to a few neighboring modules.

The underlying issue, that of failures and errors, is central to software engineering. The
errors considered here are run-time errors, resulting from hardware failures, erroneous
input or exhaustion of needed resources (for example memory storage). The criterion
does not address the avoidance or correction of errors, but the aspect that is directly
relevant to modularity: their propagation.

• Example: validating input at the source.
• Counter-example: undisciplined exceptions.

FIVE RULES

From the preceding criteria, five rules follow which we must observe to ensure
modularity:

• Direct Mapping.
• Few Interfaces.
• Small interfaces (weak coupling).
• Explicit Interfaces.
• Information Hiding.

The first rule addresses the connection between a software system and the externals
systems with which it is connected; the next four all address a common issue —  how
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modules will communicate. Obtaining good modular architectures requires that
communication occur in a controlled and disciplined way.

Direct Mapping

Any software system attempts to address the needs of some problem domain. If you have
a good model for describing that domain, you will find it desirable to keep a clear
correspondence (mapping) between the structure of the solution, as provided by the
software, and the structure of the problem, as described by the model. Hence the first
rule:

The modular structure devised in the process of building a software
system should remain compatible with any modular structure
devised in the process of modeling the problem domain.

This advice follows in particular from two of the modularity criteria:

• Continuity: keeping a trace of the problem’s modular structure in the solution’s
structure will make it easier to assess and limit the impact of changes.

• Decomposability: if some work has already been done to analyze the modular structure
of the problem domain, it may provide a good starting point for the modular
decomposition of the software.

Few Interfaces

The Few Interfaces rule restricts the overall number of communication channels between
modules in a software architecture:

Every module should communicate with as few others as possible.

Communication may occur between modules in a variety of ways. Modules may call
each other (if they are procedures), share data structures etc. The Few Interfaces rule
limits the number of such connections.

Small Interfaces

The Small Interfaces or “Weak Coupling” rule relates to the size of intermodule
connections rather than to their number:
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If two modules communicate, they should exchange as little
information as Possible

Explicit Interfaces

With the fourth rule, we go one step further in enforcing a totalitarian regime upon the
society of modules: not only do we demand that any conversation be limited to few
participants and consist of just a few words; we also require that such conversations must
be held in public and loudly!

Whenever two modules A and B communicate, this must be
obvious from the text of A or B or both.

Behind this rule stand the criteria of decomposability and composability (if you need to
decompose a module into several submodules or compose it with other modules, any
outside connection should be clearly visible), continuity (it should be easy to find out
what elements a potential change may affect) and understandability (how can you
understand A by itself if B can influence its behavior in some devious way?).

One of the problems in applying the Explicit Interfaces rule is that there is more to
intermodule coupling than procedure call; data sharing, in particular, is a source of
indirect coupling: Assume that module A modifies and module B uses the same data item
x. Then A and B are in fact strongly coupled through x even though there may be no
apparent connection, such as a procedure call, between them.

Information Hiding

The rule of Information Hiding may be stated as follows:

The designer of every module must select a subset of the module’s
properties as the official information about the module, to be made
available to authors of client modules.

The fundamental reason behind the rule of Information Hiding is the continuity criterion.
Assume a module changes, but the changes apply only to its secret elements, leaving the
public ones untouched; then other modules who use it, called its clients, will not be
affected. The smaller the public part, the higher the chances that changes to the module
will indeed be in the secret part. We may picture a module supporting Information Hiding
as an iceberg; only the tip —  the interface —  is visible to the clients.
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Information hiding implies that users of a procedure should be independent of the
particular implementation chosen. That way client modules will not suffer from any
change in implementation. Information hiding emphasizes separation of function from
implementation. Besides continuity, this rule is also related to the criteria of
decomposability, composability and understandability. You cannot develop the modules
of a system separately, combine various existing modules, or understand individual
modules, unless you know precisely what each of them may and may not expect from the
others.

More precisely, it should be impossible to write client modules whose correct functioning
depends on secret information

FIVE PRINCIPLES

From the preceding rules, and indirectly from the criteria, five principles of software
construction follow:
• The Linguistic Modular Units principle.
• The Self-Documentation principle.
• The Uniform Access principle.
• The Open-Closed principle.
• The Single Choice principle.

Linguistic Modular Units: Modules must correspond to syntactic units in the
language used

The Linguistic Modular Units principle expresses that the formalism used to describe
software at various levels (specifications, designs, implementations) must support the
view of modularity retained: The language mentioned may be a programming language, a
design language, a specification language etc. In the case of programming languages,
modules should be separately compilable.

Self-Documentation principle: The designer of a module should strive to make all
information about the module part of the module itself.

Uniform Access: All services offered by a module should be available through a
uniform notation, which does not betray whether they are implemented through
storage or through computation.
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Although it may at first appear just to address a notational issue, the Uniform Access
principle is in fact a design rule which influences many aspects of object-oriented design
and the supporting notation. It follows from the Continuity criterion; you may also view
it as a special case of Information Hiding.

The Open-Closed principle: Modules should be both open and closed

The contradiction between the two terms is only apparent as they correspond to goals
of a different nature:
• A module is said to be open if it is still available for extension..
• A module is said to be closed if it is available for use by other modules.

Single Choice: Whenever a software system must support a set of alternatives, one
and only one module in the system should know their exhaustive list.

By requiring that knowledge of the list of choices be confined to just one module, we
prepare the scene for later changes: if variants are added, we will only have to update the
module which has the information —  the point of single choice. All others, in particular
its clients, will be able to continue their business as usual.

Once again, traditional methods do not provide a solution; once again, object technology
will show the way, here thanks to two techniques connected with inheritance:
polymorphism and dynamic binding. No sneak preview in this case, however; these
techniques must be understood in the context of the full method.

The Single Choice principle prompts a few more comments:

• The number of modules that know the list of choices should be, according to the
principle, exactly one. The modularity goals suggest that we want at most one module to
have this knowledge; but then it is also clear that at least one module must possess it.
You cannot write an editor unless at least one component of the system has the list of all
supported commands, or a graphics system unless at least one component has the list of
all supported figure types, or a Pascal compiler unless at least one component “knows”
the list of Pascal constructs.

• Like many of the other rules and principles studied in this chapter, the principle is about
distribution of knowledge in a software system. This question is indeed crucial to the
search for extendible, reusable software. To obtain solid, durable system architectures
you must take stringent steps to limit the amount of information available to each
module. By analogy with the methods employed by certain human organizations, we may
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call this a need-to-know policy: barring every module from accessing any information
that is not strictly required for its proper functioning.

KEY CONCEPTS

• The choice of a proper module structure is the key to achieving the aims of reusability
and extendibility.

• Modules serve for both software decomposition (the top-down view) and software
composition (bottom-up).

• Modular concepts apply to specification and design as well as implementation.

• A comprehensive definition of modularity must combine several perspectives; the
various requirements may sometimes appear at odds with each other, as with
decomposability (which encourages top-down methods) and composability (which favors
a bottom-up approach).

• Controlling the amount and form of communication between modules is a fundamental
step in producing a good modular architecture.

• The long-term integrity of modular system structures requires information hiding,
which enforces a rigorous separation of interface and implementation.

• Uniform access frees clients from internal representation choices in their suppliers.

• A closed module is one that may be used, through its interface, by client modules.

• An open module is one that is still subject to extension.

• Effective project management requires support for modules that are both open and
closed. But traditional approaches to design and programming do not permit this.

• The principle of Single Choice directs us to limit the dissemination of exhaustive
knowledge about variants of a certain notion.


