
University of Puerto Rico – Mayagüez
School of Engineering

Department of Electrical and Computer Engineering

INEL 4206 – Microprocessors – Fall 2002

Problem Set 4– Simulator for Extended Easy I Architecture
Due Monday December 2, 2002 (via electronic submit)

Important: Start working on this problem set early. Do not leave this to the last minute or you will
not be able to complete the work.

In this problem set you will implement a simulator for a modified version of the Easy I architecture
discussed in class. The simulator will run on SPIM. It must be able to interpret a sequence of Easy I
instructions stored in memory and should accomplish the same functionality as if the Easy I program was
run natively on an Easy I processor.

You should structure your simulator using procedures. In general you should implement one procedure
to simulate each Easy I instruction. Also you should add procedures to fetch and decode instructions as
well as to fetch the operands. You may add more procedures as you see fit to achieve a well structured
design. You will be provided a template assembly language file to start from.

You must remember that the Easy I is a byte addressable accumulator architecture with 16-bit
instructions and 16-bit word size. Other important details about the Easy I architecture are provided in
the following pages.

Description of the main simulator procedures

Procedure name Description

reset Initializes Easy I registers

run Performs Easy I simulation. Should call reset and then
loop through each Easy I instruction performing the full
fetch-decode-execute cycle.

fetch Fills instruction register with next instruction

decode Decides which execute procedure to call based on the
opcode

execute Executes each instruction according to opcode

fetchop Fills data buffer register with indirect operand. Only
called for indirect mode instructions.

fcomp One-Complements the accumulator

fshr Shift right accumulator one bit

fbrn Branch if accumulator is negative. Target address refers
to Easy I data segment

fjump Unconditional jump to target address within Easy I text
segment

fjal Same as jump, but saves PC+2 in accumulator. NEW
EASY I INSTRUCTION.

fjac Unconditional jump to address contained in accumulator.
NEW EASY I INSTRUCTION.

fstore Stores accumulator in memory data segment

fload Load accumulator from memory data segment

fand Bitwise AND accumulator with operand. Put result in
accumulator.

fadd Add accumulator with operand. Put result in
accumulator.

floadsp Move stack pointer to accumulator. NEW EASY I
INSTRUCTION.

fstoresp Move accumulator to stack pointer. NEW EASY I
INSTRUCTION.

Easy I Memory Model

To keep the project as simple as possible you may assume that the Easy I text, data and stack segments
will be stored at fixed locations within the MIPS data segment as follows:

Easy I segment MIPS data segment address - All 64K long

Text segment 0x10000000 - 0x1000FFFF

Data Segment 0x10010000 - 0x1001FFFF

Stack segment 0x10020000 - 0x1002FFFF

You may also assume that the Easy I will run on a 16-bit address space. That is, it may access memory
locations 0 through 65535. Therefore, address 0 of the Easy I data segment would map to the first
memory location inside the MIPS data segment where the Easy I data segment begins.

Register Allocation

You must use the following register allocation in order to keep all projects as uniform as possible. This
will facilitate discussion among students as well as grading. Notice that the modified Easy I architecture
has a stack pointer (SP). Also notice that the simulator will need to simulate both the programmer-visible
registers, like the AC, as well as the hidden ones like the PC. The instruction register holds the
instruction currently being executed (i.e. simulated).

Easy I Register MIPS register

Instruction register $s0

Program counter $s1

Accumulator $s3

Address Buffer Register $s4

Data Buffer Register $s5

Stack pointer $s6

Extended Easy I Instruction Format

The format of an easy one instruction will be identical to the one discussed in class. Please refer to the Easy I Quick
Reference Sheet for details.

http://www.ece.uprm.edu/~bvelez/courses/Fall2002/INEL4206/lecturas/easy1-sheet.pdf

Extended Easy I Instruction Set

The following table describes the full set of instructions that your simulator should be able to execute.

Name Opcode Action

I= 0

Action

I = 1

Comp 00 000 AC ← not AC Same as I = 0

shR 00 001 AC ← AC / 2 Same as I = 0

BrN 00 010 If (AC < 0): PC ← X If (AC < 0): PC ← MEM[X]

Jump 00 011 PC ← X PC ← MEM[X]

Store 00 100 MEM[X] ← AC MEM[MEM[X]] ← AC

Load 00 101 AC ← MEM[X] AC ← MEM[MEM[X]]

And 00 110 AC ← AC and X AC ← AC and MEM[X]

Add 00 111 AC ← AC + X AC ← AC + MEM[X]

Jal 01 000 AC ← PC+2; PC ← X AC ← PC+2; PC ←
MEM[X]

Jac 01 001 PC ← AC PC ← MEM[AC]

loadSp 01 010 AC ← SP AC ← MEM[SP]

storeSp 01 011 SP ← AC MEM[SP] ← AC

Testing your program and Grading

A set of test programs will be provided to you within the next few days. The tests will consist of sample
program segments in Easy I machine code that your simulator should be able to execute correctly to
completion. The state of the Easy I processor at the end of each segment should emulate that of a real
Easy I processor running the same set of instructions.

Your program must pass some minimal tests in order to qualify for grading and
will be graded based on correctness, quality and efficiency as described in the
“prontuario” of the course.

