
1-1

ICOM 4036

Structure and Properties of
Programming Languages

Lecture 1

Prof. Bienvenido Velez
Fall 2005

Some slides adapted from Sebesta’s Concepts of Programming Languages

1-2

Outline

• Motivation
• Programming Domains
• Language Evaluation Criteria
• Influences on Language Design
• Language Categories
• Language Design Trade-Offs
• Implementation Methods
• Milestones on PL Design

1-3

What is a Programming Language?

• A Programming Language …
– ... provides an encoding for algorithms
– …should express all possible algorithms
– ... must be decodable by an algorithm
– ... should support complex software
– …should be easy to read and understand
– ... should support efficient algorithms
– …should support complex software
– …should support rapid software development

1-4

Motivation:
Why Study Programming Languages?

• Increased ability to express ideas
• Improved background for choosing appropriate

languages
• Greater ability to learn new languages
• Understand significance of implementation
• Ability to design new languages
• Overall advancement of computing

1-5

Programming Domains

• Scientific applications
– Large number of floating point computations

• Business applications
– Produce reports, use decimal numbers and characters

• Artificial intelligence
– Symbols rather than numbers manipulated. Code = Data.

• Systems programming
– Need efficiency because of continuous use. Low-level control.

• Scripting languages
– Put a list of commands in a file to be executed. Glue apps.

• Special-purpose languages
– Simplest/fastest solution for a particular task.

1-6

• Readability
• Writability
• Reliability
• Cost
• Others

Language Evaluation Criteria

The key to good language design consists of crafting
the best possible compromise among these criteria

1-7

Language Evaluation Criteria
Readability

• Overall simplicity
– Too many features is bad
– Multiplicity of features is bad

• Orthogonality
– Makes the language easy to learn and read
– Meaning is context independent
– A relatively small set of primitive constructs can be combined in a

relatively small number of ways
– Every possible combination is legal
– Lack of orthogonality leads to exceptions to rules

1-8

Language Evaluation Criteria
Writability

• Simplicity and orthogonality
• Support for abstraction
• Support for alternative paradigms
• Expressiveness

1-9

Language Evaluation Criteria
Reliability

Some PL features that impact reliability:
• Type checking
• Exception handling
• Aliasing

1-10

Language Evaluation Criteria
Cost

What is the cost involved in:
• Training programmers to use language
• Writing programs
• Compiling programs
• Executing programs
• Using the language implementation system
• Risk involved in using unreliable language
• Maintaining programs

1-11

Language Evaluation Criteria
Other

• Portability
• Generality
• Well-definedness
• Elegance
• Availability
• …

1-12

Some Language Design Trade-Offs

• Reliability vs. cost of execution
• Readability vs. writability
• Flexibility vs. safety

1-13

Influences on Language Design
Through the Years

• Programming methodologies thru time:
– 1950s and early 1960s:

• Simple applications; worry about machine efficiency
– Late 1960s:

• People efficiency became important;
• readability, better control structures
• Structured programming
• Top-down design and step-wise refinement

– Late 1970s: Process-oriented to data-oriented
• data abstraction

– Middle 1980s: Re-use, Moudularity
• Object-oriented programming

– Late 1990s: Portability, reliability, security
• Java,C#

1-14

Programming Paradigms
• Imperative

– Central features are variables, assignment statements, and iteration
– Examples: FORTRAN, C, Pascal

• Functional
– Main means of making computations is by applying functions to

given parameters
– Examples: LISP, Scheme

• Logic
– Rule-based
– Rules are specified in no special order
– Examples: Prolog

• Object-oriented
– Encapsulate data objects with processing
– Inheritance and dynamic type binding
– Grew out of imperative languages
– Examples: C++, Java

Languages typically support more than one paradigm although not equally well

1-15

Layered View of Computer

Each Layer Implements a Virtual Machine
with its own Programming Language

1-16

Virtual Machines (VM’s)

Numeric, Binary
Difficult for Humans

bits, binary addressesload, store, add, branchMIPS, Intel
80x86

Machine-Level
(ISA)

registers, labelled
memory cells

arrays, structures

cells, paragraphs,
sections

Data Elements

directives, pseudo-
instructions, macros

if-then-else, procedures,
loops

Drag & Drop, GUI ops,
macros

Instruction Elements

Assembly-Level

High-Level
Language

Application
Programs

Type of Virtual
Machine

Symbolic Instructions/Data
Hides some machine details like alignment,

address calculations
Exposes Machine ISA

SPIM, MASM

Modular, Structured, Model Human
Language/Thought

General Purpose Abstractions
Hides Lower Levels

C, C++, Java,
FORTRAN,

Pascal

Visual, Graphical, Interactive
Application Specific Abstractions

Easy for Humans
Hides HLL Level

Spreadsheet,
Word Processor

CommentsExamples

1-17

Computing in Perspective

Machine
Language

(ISA)

Assembly
Language

High-Level
Language

Application
Programs

CS1/CS2, Programming, Data Structures

Programming Languages, Compilers

Computer Architecture

Computer Human Interaction, User Interfaces

People

People computers

Each layer implements an
INTERPRETER

for some programming language

ICOM

4036

1-18

Implementation Methods
Compilation

• Translate high-level
program to machine code

• Slow translation

• Fast execution

Trivia: Who developed the first compiler?

1-19

Answer: Computing Pioneer Grace Murray Hopper
developed the first compiler ever

Learn more about Grace Murray Hopper @ wikipedia.org

1984 picture

1-20

Implementation Methods
Interpretation

• No translation
• Slow execution
• Common in Scripting

Languages

1-21

Implementation Methods
Hybrid Approaches

• Small translation cost
• Medium execution speed
• Portability

Examples of Intermediate Languages:
• Java Bytecodes
• .NET MSIL

Java VM

1-22

Software Development Environments
(SDE’s)

• The collection of tools used in software development
• GNU/FSF Tools

– Emacs, GCC, GDB, Make

• Eclipse
– An integrated development environment for Java

• Microsoft Visual Studio.NET
– A large, complex visual environment
– Used to program in C#, Visual BASIC.NET, Jscript, J#, or C++

• IBM WebSphere Studio
– Specialized with many wizards to support webapp development

1-23

Genealogy of High-Level Languages

1-24

Machine Code – Computer’s Native Language

2600 011044

100800 100042

100 111040

100800 101038

100000 100036

100 111034

unused00 000032

100400 101030

4600 010028

100000 101026

4600 010024

100000 111122

100 111020

unused00 000018

100400 101016

100800 100014

000 110012

100400 100010

400 11108

000 11006

100000 10004

1200 11102

000 11000

X
(base 10)

Opcode
(binary)

I BitAddress

• Binary encoded
instruction sequence

• Architecture specific

• Interpreted by the
processor

• Hard to read and debug

int a = 12;
int b = 4;
int result = 0;
main () {

if (a >= b) {
while (a > 0) {
a = a - b;
result ++;

}
}

}

Machine Code Instruction:
00011100000011002

1C0C16

1-25

Assembly Language
Improvements

• Symbolic names for each
machine instruction

• Symbolic addresses

• Macros

But

• Requires translation step

• Still architecture specific

0: andi 0 # AC = 0
addi 12
storei 1000 # a = 12 (a stored @ 1000)
andi 0 # AC = 0
addi 4
storei 1004 # b = 4 (b stored @ 1004)
andi 0 # AC = 0
storei 1008 # result = 0 (result @ 1008)

main: loadi 1004 # compute a – b in AC
comp # using 2’s complement add
addi 1
add 1000
brni exit # exit if AC negative

loop: loadi 1000
brni endloop
loadi 1004 # compute a – b in AC
comp # using 2’s complement add
addi 1
add 1000 # Uses indirect bit I = 1
storei 1000
loadi 1008 # result = result + 1
addi 1
storei 1008
jumpi loop

endloop:
exit:

int a = 12;
int b = 4;
int result = 0;
main () {

if (a >= b) {
while (a > 0) {
a = a - b;
result ++;

}
}

}

1-26

Genealogy of High-Level Languages

1-27

IBM 704 and the
FORmula TRANslation Language

• State of computing technology at the time
– Computers were resource limited and unreliable
– Applications were scientific
– No programming methodology or tools
– Machine efficiency was most important
– Programs written in key-punched cards

• As a consequence
– Little need for dynamic storage
– Need good array handling and counting loops
– No string handling, decimal arithmetic, or powerful

input/output (commercial stuff)
– Inflexible lexical/syntactic structure

1-28

FORTRAN
Example

subroutine checksum(buffer,length,sum32)

C Calculate a 32-bit 1's complement checksum of the input buffer, adding
C it to the value of sum32. This algorithm assumes that the buffer
C length is a multiple of 4 bytes.

C a double precision value (which has at least 48 bits of precision)
C is used to accumulate the checksum because standard Fortran does not
C support an unsigned integer datatype.

C buffer - integer buffer to be summed
C length - number of bytes in the buffer (must be multiple of 4)
C sum32 - double precision checksum value (The calculated checksum
C is added to the input value of sum32 to produce the
C output value of sum32)

integer buffer(*),length,i,hibits
double precision sum32,word32
parameter (word32=4.294967296D+09)

C (word32 is equal to 2**32)

C LENGTH must be less than 2**15, otherwise precision may be lost
C in the sum

if (length .gt. 32768)then
print *, 'Error: size of block to sum is too large'
return

end if

do i=1,length/4
if (buffer(i) .ge. 0)then

sum32=sum32+buffer(i)
else

C sign bit is set, so add the equivalent unsigned value
sum32=sum32+(word32+buffer(i))

end if
end do

C fold any overflow bits beyond 32 back into the word
10 hibits=sum32/word32

if (hibits .gt. 0)then
sum32=sum32-(hibits*word32)+hibits
go to 10

end if

end

Some Improvements:
• Architecture independence
• Static Checking
• Algebraic syntax
• Functions/Procedures
• Arrays
• Better support for Structured

Programming
• Device Independent I/O
• Formatted I/O

1-29

FORTRAN I (1957)
• First implemented version of FORTRAN
• Compiler released in April 1957 (18 worker-years

of effort)
• Language Highlights

– Names could have up to six characters
– Post-test counting loop (DO)
– Formatted I/O
– User-defined subprograms
– Three-way selection statement (arithmetic IF)
– No data typing statements
– No separate compilation
– Code was very fast
– Quickly became widely used

Many of these features are still dominant in current PLs

John W. Backus

1-30

Languages
Evolve

• FORTRAN 0 (1954)
• FORTRAN I (1957)
• FORTRAN II (1958)

– Independent or separate compilation
– Fixed compiler bugs

• FORTRAN IV (1960-62)
– Explicit type declarations
– Logical selection statement
– Subprogram names could be parameters
– ANSI standard in 1966

• FORTRAN 77 (1978)
– Character string handling
– Logical loop control statement
– IF-THEN-ELSE statement
– Still no recursion

• FORTRAN 90 (1990)
– Modules
– Dynamic arrays
– Pointers
– Recursion
– CASE statement
– Parameter type checking

Fifty years and still one of
the most widely used

languages in the planet!

1-31

Genealogy of High-Level Languages

1-32

LISP - 1959
• LISt Processing language

(Designed at MIT by McCarthy)
• AI research needed a language that:

– Process data in lists (rather than arrays)
– Symbolic computation (rather than numeric)

• Only two data types: atoms and lists
• Syntax is based on lambda calculus
• Pioneered functional programming

– No need for variables or assignment
– Control via recursion and conditional expressions

• Same syntax for data and code

The original LISP paper is here

1-33

Representation of Two LISP Lists

(A B C D)

(A (B C) D (E (F G)))

1-34

Scheme Example
;;; From: Structure and Interpretation of Computer Programs
;;; (Harold Abelson and Gerald Jay Sussman with Julie Sussman)

;;; Added by Bjoern Hoefling (for usage with MIT-Scheme)

(define (atom? x)
(or (number? x)

(string? x)
(symbol? x)
(null? x)
(eq? x #t)))

;;; Section 2.2.4 -- Symbolic differentiation

(define (deriv exp var)
(cond ((constant? exp) 0)

((variable? exp)
(if (same-variable? exp var) 1 0))
((sum? exp)
(make-sum (deriv (addend exp) var)

(deriv (augend exp) var)))
((product? exp)
(make-sum

(make-product (multiplier exp)
(deriv (multiplicand exp) var))

(make-product (deriv (multiplier exp) var)
(multiplicand exp))))))

(define (constant? x) (number? x))

(define (variable? x) (symbol? x))

(define (same-variable? v1 v2)
(and (variable? v1) (variable? v2) (eq? v1 v2)))

(define (make-sum a1 a2) (list '+ a1 a2))

(define (make-product m1 m2) (list '* m1 m2))

(define (sum? x)
(if (not (atom? x)) (eq? (car x) '+) nil))

(define (addend s) (cadr s))

(define (augend s) (caddr s))

(define (product? x)
(if (not (atom? x)) (eq? (car x) '*) nil))

(define (multiplier p) (cadr p))

(define (multiplicand p) (caddr p))

;;; examples from the textbook

(deriv '(+ x 3) 'x)
;Value 1: (+ 1 0)
(deriv '(* x y) 'y)
;Value 2: (+ (* x 1) (* 0 y))
(deriv '(* (* x y) (+ x 3)) 'x)
;Value 3: (+ (* (* x y) (+ 1 0)) (* (+ (* x 0) (* 1 y)) (+ x 3)))

;;; Better versions of make-sum and make-product

(define (make-sum a1 a2)
(cond ((and (number? a1) (number? a2)) (+ a1 a2))

((number? a1) (if (= a1 0) a2 (list '+ a1 a2)))
((number? a2) (if (= a2 0) a1 (list '+ a1 a2)))
(else (list '+ a1 a2))))

(define (make-product m1 m2)
(cond ((and (number? m1) (number? m2)) (* m1 m2))

((number? m1)
(cond ((= m1 0) 0)

((= m1 1) m2)
(else (list '* m1 m2))))

((number? m2)
(cond ((= m2 0) 0)

((= m2 1) m1)
(else (list '* m1 m2))))

(else (list '* m1 m2))))

;;; same examples as above

(deriv '(+ x 3) 'x)
;Value: 1
(deriv '(* x y) 'y)
;Value: x
(deriv '(* (* x y) (+ x 3)) 'x)
;Value 4: (+ (* x y) (* y (+ x 3)))

1-35

Genealogy of High-Level Languages

1-36

ALGOL 58 and 60

• State of Affairs
– FORTRAN had (barely) arrived for IBM 70x
– Many other languages were being developed, all for specific

machines
– No portable language; all were machine-dependent
– No universal language for communicating algorithms

• ACM and GAMM met for four days for design
• Goals of the language:

– Close to mathematical notation
– Good for describing algorithms
– Must be translatable to machine code

1-37

ALGOL 58
• New language features:

– Concept of type was formalized
– Names could have any length
– Arrays could have any number of subscripts
– Parameters were separated by mode (in & out)
– Subscripts were placed in brackets
– Compound statements (begin ... end)
– Semicolon as a statement separator. Free format syntax.
– Assignment operator was :=
– if had an else-if clause
– No I/O - “would make it machine dependent”

1-38

ALGOL 60
• Modified ALGOL 58 at 6-day meeting in Paris
• New language features:

– Block structure (local scope)
– Two parameter passing methods
– Subprogram recursion
– Stack-dynamic arrays
– Still no I/O and no string handling

• Successes:
– It was the standard way to publish algorithms for over 20

years
– All subsequent imperative languages are based on it
– First machine-independent language
– First language whose syntax was formally defined (BNF)

1-39

ALGOL 60

• Failure:
– Never widely used, especially in U.S.

• Possible Reasons:
– No I/O and the character set made programs non-

portable
– Too flexible--hard to implement
– Entrenchment of FORTRAN
– Formal syntax description
– Lack of support of IBM

Good isn’t always popular

1-40

Algol 60 Example
'begin'

'comment'
create some random numbers, print them and
print the average.

;

'integer' NN;

NN := 20;

'begin'
'integer' i;
'real' sum;

vprint ("random numbers:");

sum := 0;
'for' i := 1 'step' 1 'until' NN 'do' 'begin'

'real' x;
x := rand;
sum := sum + x;
vprint (i, x)

'end';

vprint ("average is:", sum / NN)
'end'

'end'

1-41

Genealogy of High-Level Languages

1-42

COBOL
• Contributions:

– First macro facility in a high-level language
– Hierarchical data structures (records)
– Nested selection statements
– Long names (up to 30 characters), with hyphens
– Separate data division

• Comments:
– First language required by DoD
– Still (2004) the most widely used business

applications language

1-43

Cobol
Example

$ SET SOURCEFORMAT"FREE"

IDENTIFICATION DIVISION.

PROGRAM-ID. Iteration-If.

AUTHOR. Michael Coughlan.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Num1 PIC 9 VALUE ZEROS.

01 Num2 PIC 9 VALUE ZEROS.

01 Result PIC 99 VALUE ZEROS.

01 Operator PIC X VALUE SPACE.

PROCEDURE DIVISION.

Calculator.

PERFORM 3 TIMES

DISPLAY "Enter First Number : " WITH NO ADVANCING

ACCEPT Num1

DISPLAY "Enter Second Number : " WITH NO ADVANCING

ACCEPT Num2

DISPLAY "Enter operator (+ or *) : " WITH NO ADVANCING

ACCEPT Operator

IF Operator = "+" THEN

ADD Num1, Num2 GIVING Result

END-IF

IF Operator = "*" THEN

MULTIPLY Num1 BY Num2 GIVING Result

END-IF

DISPLAY "Result is = ", Result

END-PERFORM.

STOP RUN.

http://www.csis.ul.ie/COBOL/examples/

1-44

Genealogy of High-Level Languages

1-45

BASIC - 1964

• Designed by Kemeny & Kurtz at Dartmouth
• Design Goals:

– Easy to learn and use for non-science students
– Must be “pleasant and friendly”
– Fast turnaround for homework
– Free and private access
– User time is more important than computer time

• Current popular dialect: Visual BASIC
• First widely used language with time sharing

1-46

Basic
Example

1 DIM A(9)
10 PRINT " TIC-TAC-TOE"
20 PRINT
30 PRINT "WE NUMBER THE SQUARES LIKE THIS:"
40 PRINT
50 PRINT 1,2,3
55 PRINT: PRINT
60 PRINT 4,5,6
70 PRINT 7,8,9
75 PRINT
80 FOR I=1 TO 9
90 A(I)=0
95 NEXT I
97 C=0
100 IF RND (2)=1 THEN 150 (flip a coin for first move)
110 PRINT "I'LL GO FIRST THIS TIME"
120 C=1
125 A(5)=1 (computer always takes
130 PRINT the center)
135 GOSUB 1000
140 goto 170
150 print "YOU MOVE FIRST"
160 PRINT
170 INPUT "WHICH SPACE DO YOU WANT",B
180 IF A(B)=0 THEN 195
185 PRINT "ILLEGAL MOVE"
190 GOTO 170
195 C=C+1 (C is the move counter)
200 A(B)=1
205 GOSUB 1700
209 IF G=0 THEN 270 (G is the flag signaling
211 IF C=9 THEN 260 a win)
213 GOSUB 1500
215 C=C+1
220 GOSUB 1000
230 GOSUB 1700
235 IF G=0 THEN 270
250 IF C<9 THEN 170
260 PRINT "TIE GAME!!!!"
265 PRINT
270 INPUT "PLAY GAIN (Y OR N)",A$
275 IF A$="Y" THEN 80 (No need to Dimension a string
280 PRINT "SO LONG" with lengh of one)
285 END
995 REM *PRINT THE BOARD*
1000 FOR J=1 TO 3
1010 TAB 6
1020 PRINT "*";
1030 TAB 12

1-47

Genealogy of High-Level Languages

1-48

PL/I - 1965
• Designed by IBM and SHARE
• Computing situation in 1964 (IBM's point of view)

– Scientific computing
• IBM 1620 and 7090 computers
• FORTRAN
• SHARE user group

– Business computing
• IBM 1401, 7080 computers
• COBOL
• GUIDE user group

– Compilers expensive and hard to maintain

1-49

PL/I
• By 1963, however,

– Scientific users began to need more elaborate I/O,
like COBOL had; Business users began to need
floating point and arrays (MIS)

– It looked like many shops would begin to need two
kinds of computers, languages, and support staff--
too costly

• The obvious solution:
– Build a new computer to do both kinds of

applications
– Design a new language to do both kinds of

applications

1-50

PL/I

• Designed in five months by the 3 X 3 Committee
• PL/I contributions:

– First unit-level concurrency
– First exception handling
– Switch-selectable recursion
– First pointer data type
– First array cross sections

• Comments:
– Many new features were poorly designed
– Too large and too complex
– Was (and still is) actually used for both scientific and

business applications

1-51

Genealogy of High-Level Languages

1-52

APL (1962)

• Characterized by dynamic typing and dynamic
storage allocation

• APL (A Programming Language) 1962
– Designed as a hardware description language (at

IBM by Ken Iverson)
– Highly expressive (many operators, for both

scalars and arrays of various dimensions)
– Programs are very difficult to read

1-53

Genealogy of High-Level Languages

1-54

SNOBOL (1964)

• A string manipulation special purpose
language

• Designed as language at Bell Labs by Farber,
Griswold, and Polensky

• Powerful operators for string pattern matching

1-55

Genealogy of High-Level Languages

1-56

SIMULA 67 (1967)

• Designed primarily for system simulation
(in Norway by Nygaard and Dahl)

• Based on ALGOL 60 and SIMULA I
• Primary Contribution:

– Co-routines - a kind of subprogram
– Implemented in a structure called a class
– Classes are the basis for data abstraction
– Classes are structures that include both local data and

functionality
– Supported objects and inheritance

1-57

Genealogy of High-Level Languages

1-58

ALGOL 68 (1968)

• Derived from, but not a superset of Algol 60
• Design goal is orthogonality
• Contributions:

– User-defined data structures
– Reference types
– Dynamic arrays (called flex arrays)

• Comments:
– Had even less usage than ALGOL 60
– Had strong influence on subsequent languages, especially

Pascal, C, and Ada

1-59

Important ALGOL Descendants I

• Pascal - 1971 (Wirth)
– Designed by Wirth, who quit the ALGOL 68

committee (didn't like the direction of that work)
– Designed for teaching structured programming
– Small, simple, nothing really new
– From mid-1970s until the late 1990s, it was the most

widely used language for teaching programming in
colleges

• C – 1972 (Dennis Richie)
– Designed for systems programming
– Evolved primarily from B, but also ALGOL 68
– Powerful set of operators, but poor type checking
– Initially spread through UNIX

1-60

Important ALGOL Descendants II

• Modula-2 - mid-1970s (Wirth)
– Pascal plus modules and some low-level features designed

for systems programming

• Modula-3 - late 1980s (Digital & Olivetti)
– Modula-2 plus classes, exception handling, garbage

collection, and concurrency

• Oberon - late 1980s (Wirth)
– Adds support for OOP to Modula-2
– Many Modula-2 features were deleted (e.g., for statement,

enumeration types, with statement, noninteger array
indices)

1-61

Prolog - 1972

• Developed at the University of Aix-Marseille,
by Comerauer and Roussel, with some help
from Kowalski at the University of Edinburgh

• Based on formal logic
• Non-procedural
• Can be summarized as being an intelligent

database system that uses an inference
process to infer the truth of given queries

1-62

Prolog Examples

fac1(0,1).
fac1(M,N) :- M1 is M-1, fac1(M1,N1), N is M*N1.

fac2(M,1) :- M =<0.
fac2(M,N) :- M1 is M-1, fac2(M1,N1), N is M*N1.

fac3(M,1) :- M =<0, !.
fac3(M,N) :- M1 is M-1, fac3(M1,N1), N is M*N1.

1-63

Genealogy of High-Level Languages

1-64

Smalltalk - 1972-1980

• Developed at Xerox PARC, initially by Alan
Kay, later by Adele Goldberg

• First full implementation of an object-oriented
language (data abstraction, inheritance, and
dynamic type binding)

• Pioneered the graphical user interface
everyone now uses

1-65

Scheme (1970’s)

• MIT’s dear programming language
• Designed by Gerald J. Sussman and Guy Steele Jr
• LISP with static scoping and closures
• Compiled code coexists with interpreted code
• Garbage collection
• Tail recursion
• Explicit Continuations

Sussman Steele

1-66

Genealogy of High-Level Languages

1-67

Ada - 1983 (began in mid-1970s)

• Huge design effort, involving hundreds of people, much money, and
about eight years

• Environment: More than 450 different languages being used for DOD
embedded systems (no software reuse and no development tools)

• Contributions:
– Packages - support for data abstraction
– Exception handling - elaborate
– Generic program units
– Concurrency - through the tasking model

• Comments:
– Competitive design
– Included all that was then known about software engineering and language

design
– First compilers were very difficult; the first really usable compiler came

nearly five years after the language design was completed

1-68

Genealogy of High-Level Languages

1-69

C++ (1985)

• Developed at Bell Labs by Bjarne Stroustrup
• Evolved from C and SIMULA 67
• Facilities for object-oriented programming, taken

partially from SIMULA 67, were added to C
• Also has exception handling
• A large and complex language, in part because it

supports both procedural and OO programming
• Rapidly grew in popularity, along with OOP
• ANSI standard approved in November, 1997

1-70

C++ Related Languages

• Eiffel - a related language that supports OOP
– (Designed by Bertrand Meyer - 1992)
– Not directly derived from any other language
– Smaller and simpler than C++, but still has most of the

power

• Delphi (Borland)
– Pascal plus features to support OOP
– More elegant and safer than C++

1-71

Genealogy of High-Level Languages

1-72

Java (1995)

• Developed at Sun in the early 1990s
• Based on C++

– Significantly simplified (does not include struct,
union, enum, pointer arithmetic, and half of the
assignment coercions of C++)

– Supports only OOP
– No multiple inheritance
– Has references, but not pointers
– Includes support for applets and a form of concurrency
– Portability was “Job #1”

1-73

Scripting Languages for the Web

• JavaScript
– Used in Web programming (client-side) to create

dynamic HTML documents
– Related to Java only through similar syntax

• PHP
– Used for Web applications (server-side); produces

HTML code as output

• Perl
• JSP

1-74

C#

• Part of the .NET development platform
• Based on C++ and Java
• Provides a language for component-based

software development
• All .NET languages (C#, Visual BASIC.NET,

Managed C++, J#.NET, and Jscript.NET) use
Common Type System (CTS), which provides
a common class library

• Likely to become widely used

1-75

Some Important
Special Purpose Languages

• SQL
– Relational Databases

• LaTeX
– Document processing and typesetting

• HTML
– Web page

• XML
– Platform independent data representation

• UML
– Software system specification

• VHDL
– Hardware description language

1-76

Website with lots of examples in
different programming languages old
and new

http://www.ntecs.de/old-hp/uu9r/lang/html/lang.en.html#_link_sather

Strongly
recommended

for the curious mind!

1-77

END OF LECTURE 1

1-78

EXTRA SLIDES

1-79

Influences on Language Design

• Computer architecture: Von Neumann
• We use imperative languages, at least in part,

because we use von Neumann machines
– Data and programs stored in same memory
– Memory is separate from CPU
– Instructions and data are piped from memory to

CPU
• Basis for imperative languages

– Variables model memory cells
– Assignment statements model piping
– Iteration is efficient

1-80

Von Neumann Architecture

1-81

LISP

• Pioneered functional programming
– No need for variables or assignment
– Control via recursion and conditional expressions

• Still the dominant language for AI
• COMMON LISP and Scheme are contemporary

dialects of LISP
• ML, Miranda, and Haskell are related languages

1-82

Zuse’s Plankalkül - 1945

• Never implemented
• Advanced data structures

– floating point, arrays, records
• Invariants

1-83

Plankalkül

• Notation:

A[7] = 5 * B[6]

| 5 * B => A
V | 6 7 (subscripts)
S | 1.n 1.n (data types)

1-84

Pseudocodes - 1949

• What was wrong with using machine code?
– Poor readability
– Poor modifiability
– Expression coding was tedious
– Machine deficiencies--no indexing or floating point

1-85

Pseudocodes

• Short code; 1949; BINAC; Mauchly
– Expressions were coded, left to right
– Some operations:

1n => (n+2)nd power
2n => (n+2)nd root
07 => addition

1-86

Pseudocodes

• Speedcoding; 1954; IBM 701, Backus
– Pseudo ops for arithmetic and math functions
– Conditional and unconditional branching
– Autoincrement registers for array access
– Slow!
– Only 700 words left for user program

1-87

Pseudocodes

• Laning and Zierler System - 1953
– Implemented on the MIT Whirlwind computer
– First "algebraic" compiler system
– Subscripted variables, function calls, expression

translation
– Never ported to any other machine

1-88

ALGOL 58

• Comments:
– Not meant to be implemented, but variations of it

were (MAD, JOVIAL)
– Although IBM was initially enthusiastic, all support was

dropped by mid-1959

1-89

COBOL - 1960

• Sate of affairs
– UNIVAC was beginning to use FLOW-MATIC
– USAF was beginning to use AIMACO
– IBM was developing COMTRAN

1-90

COBOL
• Based on FLOW-MATIC
• FLOW-MATIC features:

– Names up to 12 characters, with embedded
hyphens

– English names for arithmetic operators (no
arithmetic expressions)

– Data and code were completely separate
– Verbs were first word in every statement

1-91

COBOL
• First Design Meeting (Pentagon) - May 1959
• Design goals:

– Must look like simple English
– Must be easy to use, even if that means it will be less

powerful
– Must broaden the base of computer users
– Must not be biased by current compiler problems

• Design committee members were all from computer
manufacturers and DoD branches

• Design Problems: arithmetic expressions? subscripts?
Fights among manufacturers

1-92

Ada 95

• Ada 95 (began in 1988)
– Support for OOP through type derivation
– Better control mechanisms for shared data (new

concurrency features)
– More flexible libraries

