
Fall 2006 Slides adapted from Java Concepts companion slides 1

Arrays and Array Lists

Advanced Programming

ICOM 4015

Lecture 7

Reading: Java Concepts Chapter 8

Fall 2006 Slides adapted from Java Concepts companion slides 2

Lecture Goals
• To become familiar with using arrays and

array lists

• To learn about wrapper classes, auto-boxing
and the generalized for loop

• To study common array algorithms

• To learn how to use two-dimensional arrays

• To understand when to choose array lists and
arrays in your programs

• To implement partially filled arrays

Fall 2006 Slides adapted from Java Concepts companion slides 3

Arrays

• Array: Sequence of values of the same type

• Construct array:

• Store in variable of type double[]

new double[10]

double[] data = new double[10];

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 4

Arrays

• When array is created, all values are
initialized depending on array type:

Numbers: 0
Boolean: false
Object References: null

Fall 2006 Slides adapted from Java Concepts companion slides 5

Arrays

Figure 1:
An Array Reference and an Array

Fall 2006 Slides adapted from Java Concepts companion slides 6

Arrays
• Use [] to access an element

Figure 2:
Storing a Value in an Array

data[2] = 29.95;

Fall 2006 Slides adapted from Java Concepts companion slides 7

Arrays

• Using the value stored:

• Get array length as data.length. (Not a
method!)

• Index values range from 0 to length - 1

System.out.println("The value of this data item is " + data[4]);

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 8

Arrays

• Accessing a nonexistent element results in a
bounds error

• Limitation: Arrays have fixed length

double[] data = new double[10];
data[10] = 29.95; // ERROR

Fall 2006 Slides adapted from Java Concepts companion slides 9

Syntax 8.1: Array Construction

new typeName[length]

Example:
new double[10]

Purpose:
To construct an array with a given number of elements

Fall 2006 Slides adapted from Java Concepts companion slides 10

Syntax 8.2: Array Element Access

arrayReference[index]

Example:
data[2]

Purpose:
To access an element in an array

Fall 2006 Slides adapted from Java Concepts companion slides 11

Self Check

1. What elements does the data array contain
after the following statements?

double[] data = new double[10];
for (int i = 0; i < data.length; i++) data[i] = i * i;

Fall 2006 Slides adapted from Java Concepts companion slides 12

Self Check

2. What do the following program segments
print? Or, if there is an error, describe the
error and specify whether it is detected at
compile-time or at run-time.

1. double[] a = new double[10];
System.out.println(a[0]);

2. double[] b = new double[10];
System.out.println(b[10]);

3. double[] c;
System.out.println(c[0]);

Fall 2006 Slides adapted from Java Concepts companion slides 13

Answers

1. 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, but not 100

2.
1. 0
2. a run-time error: array index out of bounds
3. a compile-time error: c is not initialized

Fall 2006 Slides adapted from Java Concepts companion slides 14

Array Lists

• The ArrayList class manages a sequence
of objects

• Can grow and shrink as needed

• ArrayList class supplies methods for many
common tasks, such as inserting and
removing elements

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 15

Array Lists

• The ArrayList class is a generic class:
ArrayList<T> collects objects of type T:

• size method yields number of elements

ArrayList<BankAccount> accounts = new ArrayList<BankAccount>();
accounts.add(new BankAccount(1001));
accounts.add(new BankAccount(1015));
accounts.add(new BankAccount(1022));

Fall 2006 Slides adapted from Java Concepts companion slides 16

Retrieving Array List Elements

• Use get method

• Index starts at 0
•

• Bounds error if index is out of range

BankAccount anAccount = accounts.get(2);
// gets the third element of the array list

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 17

Retrieving Array List Elements

• Most common bounds error:

int i = accounts.size();
anAccount = accounts.get(i); // Error
// legal index values are 0. . .i-1

Fall 2006 Slides adapted from Java Concepts companion slides 18

Adding Elements

• set overwrites an existing value

• add adds a new value before the index

Continued…

BankAccount anAccount = new BankAccount(1729);
accounts.set(2, anAccount);

accounts.add(i, a)

Fall 2006 Slides adapted from Java Concepts companion slides 19

Adding Elements

Figure 3:
Adding an Element in the
Middle of an Array List

Fall 2006 Slides adapted from Java Concepts companion slides 20

Removing Elements

• remove removes an element at an index

Continued…

Accounts.remove(i)

Fall 2006 Slides adapted from Java Concepts companion slides 21

Removing Elements

Figure 4:
Removing an Element in
the Middle of an Array List

Fall 2006 Slides adapted from Java Concepts companion slides 22

File: ArrayListTester.java

01: import java.util.ArrayList;
02:
03: /**
04: This program tests the ArrayList class.
05: */
06: public class ArrayListTester
07: {
08: public static void main(String[] args)
09: {
10: ArrayList<BankAccount> accounts
11: = new ArrayList<BankAccount>();
12: accounts.add(new BankAccount(1001));
13: accounts.add(new BankAccount(1015));
14: accounts.add(new BankAccount(1729));
15: accounts.add(1, new BankAccount(1008));
16: accounts.remove(0);

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 23

File: ArrayListTester.java
17:
18: System.out.println("size=" + accounts.size());
19: BankAccount first = accounts.get(0);
20: System.out.println("first account number="
21: + first.getAccountNumber());
22: BankAccount last = accounts.get(accounts.size() - 1);
23: System.out.println("last account number="
24: + last.getAccountNumber());
25: }
26: }

Fall 2006 Slides adapted from Java Concepts companion slides 24

File: BankAccount.java
01: /**
02: A bank account has a balance that can be changed by
03: deposits and withdrawals.
04: */
05: public class BankAccount
06: {
07: /**
08: Constructs a bank account with a zero balance
09: @param anAccountNumber the account number for this account
10: */
11: public BankAccount(int anAccountNumber)
12: {
13: accountNumber = anAccountNumber;
14: balance = 0;
15: }
16: Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 25

File: BankAccount.java
17: /**
18: Constructs a bank account with a given balance
19: @param anAccountNumber the account number for this account
20: @param initialBalance the initial balance
21: */
22: public BankAccount(int anAccountNumber, double initialBalance)
23: {
24: accountNumber = anAccountNumber;
25: balance = initialBalance;
26: }
27:
28: /**
29: Gets the account number of this bank account.
30: @return the account number
31: */
32: public int getAccountNumber()
33: {
34: return accountNumber;
35: } Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 26

File: BankAccount.java
36:
37: /**
38: Deposits money into the bank account.
39: @param amount the amount to deposit
40: */
41: public void deposit(double amount)
42: {
43: double newBalance = balance + amount;
44: balance = newBalance;
45: }
46:
47: /**
48: Withdraws money from the bank account.
49: @param amount the amount to withdraw
50: */
51: public void withdraw(double amount)
52: {
53: double newBalance = balance - amount;
54: balance = newBalance;

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 27

File: BankAccount.java
55: }
56:
57: /**
58: Gets the current balance of the bank account.
59: @return the current balance
60: */
61: public double getBalance()
62: {
63: return balance;
64: }
65:
66: private int accountNumber;
67: private double balance;
68: }

Output
size=3
first account number=1008
last account number=1729

Fall 2006 Slides adapted from Java Concepts companion slides 28

Self Check

1. How do you construct an array of 10
strings? An array list of strings?

2. What is the content of names after the
following statements?

ArrayList<String> names = new ArrayList<String>();
names.add("A");
names.add(0, "B");
names.add("C");
names.remove(1);

Fall 2006 Slides adapted from Java Concepts companion slides 29

Answers

1.

2. names contains the strings "B" and "C" at
positions 0 and 1

new String[10];
new ArrayList<String>();

Fall 2006 Slides adapted from Java Concepts companion slides 30

Wrappers

• You cannot insert primitive types directly
into array lists

• To treat primitive type values as objects, you
must use wrapper classes:

Continued…

ArrayList<Double> data = new ArrayList<Double>();
data.add(29.95);
double x = data.get(0);

Fall 2006 Slides adapted from Java Concepts companion slides 31

Wrappers

Figure 5:
An Object of a Wrapper Class

Fall 2006 Slides adapted from Java Concepts companion slides 32

Wrappers

• There are wrapper classes for all eight
primitive types

Fall 2006 Slides adapted from Java Concepts companion slides 33

Auto-boxing

• Auto-boxing: Starting with Java 5.0,
conversion between primitive types and the
corresponding wrapper classes is automatic.

Double d = 29.95; // auto-boxing; same as Double d =
new Double(29.95);

double x = d; // auto-unboxing; same as double x =
d.doubleValue();

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 34

Auto-boxing

• Auto-boxing even works inside arithmetic
expressions

Means:
auto-unbox d into a double
add 1
auto-box the result into a new Double
store a reference to the newly created wrapper object
in e

Double e = d + 1;

Fall 2006 Slides adapted from Java Concepts companion slides 35

Self Check

1. What is the difference between the types
double and Double?

2. Suppose data is an ArrayList<Double> of
size > 0. How do you increment the element
with index 0?

Fall 2006 Slides adapted from Java Concepts companion slides 36

Answers

1. double is one of the eight primitive types.
Double is a class type.

2. data.set(0, data.get(0) + 1);

Fall 2006 Slides adapted from Java Concepts companion slides 37

The Generalized for Loop

• Traverses all elements of a collection:

Continued…

double[] data = . . .;
double sum = 0;
for (double e : data) // You should read this loop as

"for each e in data"
{

sum = sum + e;
}

Fall 2006 Slides adapted from Java Concepts companion slides 38

The Generalized for Loop

• Traditional alternative:

double[] data = . . .;
double sum = 0;
for (int i = 0; i < data.length; i++)
{

double e = data[i];
sum = sum + e;

}

Fall 2006 Slides adapted from Java Concepts companion slides 39

The Generalized for Loop

• Works for ArrayLists too:

ArrayList<BankAccount> accounts = . . . ;ArrayList<BankAccount> accounts = . . . ;
double sum = 0;double sum = 0;
for (BankAccount a : accounts)for (BankAccount a : accounts)
{{

sum = sum + a.getBalance();sum = sum + a.getBalance();
} }

Fall 2006 Slides adapted from Java Concepts companion slides 40

The Generalized for Loop

• Equivalent to the following ordinary for
loop:

double sum = 0;
for (int i = 0; i < accounts.size(); i++)
{

BankAccount a = accounts.get(i);
sum = sum + a.getBalance();

}

Fall 2006 Slides adapted from Java Concepts companion slides 41

Syntax 8.3: The "for each" Loop
for (Type variable : collection)

statement

Example:
for (double e : data)

sum = sum + e;

Purpose:
To execute a loop for each element in the collection. In each iteration,
the variable is assigned the next element of the collection. Then the
statement is executed.

Fall 2006 Slides adapted from Java Concepts companion slides 42

Self Check

1. Write a "for each" loop that prints all
elements in the array data

2. Why is the "for each" loop not an
appropriate shortcut for the following
ordinary for loop?

for (int i = 0; i < data.length; i++) data[i] = i * i;

Fall 2006 Slides adapted from Java Concepts companion slides 43

Answers

1.

2. The loop writes a value into data[i]. The
"for each" loop does not have the index
variable i.

for (double x : data) System.out.println(x);

Fall 2006 Slides adapted from Java Concepts companion slides 44

Simple Array Algorithms:
Counting Matches

• Check all elements and count the matches
until you reach the end of the array list.
public class Bank
{

public int count(double atLeast)
{

int matches = 0;
for (BankAccount a : accounts)
{

if (a.getBalance() >= atLeast) matches++;
// Found a match

}
return matches;

}
. . .
private ArrayList<BankAccount> accounts;

}

Fall 2006 Slides adapted from Java Concepts companion slides 45

Simple Array Algorithms:
Finding a Value

• Check all elements until you have found a
match.

public class Bank
{

public BankAccount find(int accountNumber)
{

for (BankAccount a : accounts)
{

if (a.getAccountNumber() == accountNumber) // Found a match
return a;

}
return null; // No match in the entire array list

}
. . .

}

Fall 2006 Slides adapted from Java Concepts companion slides 46

Simple Array Algorithms:
Finding the Maximum or Minimum

• Initialize a candidate with the starting
element

• Compare candidate with remaining elements

• Update it if you find a larger or smaller value

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 47

Simple Array Algorithms:
Finding the Maximum or Minimum

• Example:

BankAccount largestYet = accounts.get(0);
for (int i = 1; i < accounts.size(); i++)
{

BankAccount a = accounts.get(i);
if (a.getBalance() > largestYet.getBalance())

largestYet = a;
}
return largestYet;

Fall 2006 Slides adapted from Java Concepts companion slides 48

Simple Array Algorithms:
Finding the Maximum or Minimum

• Works only if there is at least one element in
the array list

• If list is empty, return null

if (accounts.size() == 0) return null;
BankAccount largestYet = accounts.get(0);
. . .

Fall 2006 Slides adapted from Java Concepts companion slides 49

File Bank.java
01: import java.util.ArrayList;
02:
03: /**
04: This bank contains a collection of bank accounts.
05: */
06: public class Bank
07: {
08: /**
09: Constructs a bank with no bank accounts.
10: */
11: public Bank()
12: {
13: accounts = new ArrayList<BankAccount>();
14: }
15:
16: /**
17: Adds an account to this bank.
18: @param a the account to add
19: */ Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 50

File Bank.java
20: public void addAccount(BankAccount a)
21: {
22: accounts.add(a);
23: }
24:
25: /**
26: Gets the sum of the balances of all accounts in this bank.
27: @return the sum of the balances
28: */
29: public double getTotalBalance()
30: {
31: double total = 0;
32: for (BankAccount a : accounts)
33: {
34: total = total + a.getBalance();
35: }
36: return total;
37: }
38: Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 51

File Bank.java
39: /**
40: Counts the number of bank accounts whose balance is at
41: least a given value.
42: @param atLeast the balance required to count an account
43: @return the number of accounts having least the given
// balance
44: */
45: public int count(double atLeast)
46: {
47: int matches = 0;
48: for (BankAccount a : accounts)
49: {
50: if (a.getBalance() >= atLeast) matches++; // Found
// a match
51: }
52: return matches;
53: }
54:

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 52

File Bank.java
55: /**
56: Finds a bank account with a given number.
57: @param accountNumber the number to find
58: @return the account with the given number, or null
59: if there is no such account
60: */
61: public BankAccount find(int accountNumber)
62: {
63: for (BankAccount a : accounts)
64: {
65: if (a.getAccountNumber() == accountNumber)

// Found a match
66: return a;
67: }
68: return null; // No match in the entire array list
69: }
70: Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 53

File Bank.java
71: /**
72: Gets the bank account with the largest balance.
73: @return the account with the largest balance, or
74: null if the bank has no accounts
75: */
76: public BankAccount getMaximum()
77: {
78: if (accounts.size() == 0) return null;
79: BankAccount largestYet = accounts.get(0);
80: for (int i = 1; i < accounts.size(); i++)
81: {
82: BankAccount a = accounts.get(i);
83: if (a.getBalance() > largestYet.getBalance())
84: largestYet = a;
85: }
86: return largestYet;
87: }
88:
89: private ArrayList<BankAccount> accounts;
90: }

Fall 2006 Slides adapted from Java Concepts companion slides 54

File BankTester.java
01: /**
02: This program tests the Bank class.
03: */
04: public class BankTester
05: {
06: public static void main(String[] args)
07: {
08: Bank firstBankOfJava = new Bank();
09: firstBankOfJava.addAccount(new BankAccount(1001, 20000));
10: firstBankOfJava.addAccount(new BankAccount(1015, 10000));
11: firstBankOfJava.addAccount(new BankAccount(1729, 15000));
12:
13: double threshold = 15000;
14: int c = firstBankOfJava.count(threshold);
15: System.out.println(c + " accounts with balance >= "

+ threshold);

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 55

File BankTester.java
16:
17: int accountNumber = 1015;
18: BankAccount a = firstBankOfJava.find(accountNumber);
19: if (a == null)
20: System.out.println("No account with number "

+ accountNumber);
21: else
22: System.out.println("Account with number "

+ accountNumber
23: + " has balance " + a.getBalance());
24:
25: BankAccount max = firstBankOfJava.getMaximum();
26: System.out.println("Account with number "
27: + max.getAccountNumber()
28: + " has the largest balance.");
29: }
30: }

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 56

File BankTester.java

Output

2 accounts with balance >= 15000.0
Account with number 1015 has balance 10000.0
Account with number 1001 has the largest balance.

Fall 2006 Slides adapted from Java Concepts companion slides 57

Self Check

1. What does the find method do if there are
two bank accounts with a matching
account number?

2. Would it be possible to use a "for each"
loop in the getMaximum method?

Fall 2006 Slides adapted from Java Concepts companion slides 58

Answers

1. It returns the first match that it finds

2. Yes, but the first comparison would always
fail

Fall 2006 Slides adapted from Java Concepts companion slides 59

Two-Dimensional Arrays

• When constructing a two-dimensional array,
you specify how many rows and columns
you need:

• You access elements with an index pair
a[i][j]

final int ROWS = 3;
final int COLUMNS = 3;
String[][] board = new String[ROWS][COLUMNS];

board[i][j] = "x";

Fall 2006 Slides adapted from Java Concepts companion slides 60

A Tic-Tac-Toe Board

Figure 6:
A Tic-Tac-Toe Board

Fall 2006 Slides adapted from Java Concepts companion slides 61

Traversing Two-Dimensional Arrays

• It is common to use two nested loops when
filling or searching:

for (int i = 0; i < ROWS; i++)
for (int j = 0; j < COLUMNS; j++)

board[i][j] = " ";

Fall 2006 Slides adapted from Java Concepts companion slides 62

File TicTacToe.java
01: /**
02: A 3 x 3 tic-tac-toe board.
03: */
04: public class TicTacToe
05: {
06: /**
07: Constructs an empty board.
08: */
09: public TicTacToe()
10: {
11: board = new String[ROWS][COLUMNS];
12: // Fill with spaces
13: for (int i = 0; i < ROWS; i++)
14: for (int j = 0; j < COLUMNS; j++)
15: board[i][j] = " ";
16: }
17: Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 63

File TicTacToe.java
18: /**
19: Sets a field in the board. The field must be unoccupied.
20: @param i the row index
21: @param j the column index
22: @param player the player ("x" or "o")
23: */
24: public void set(int i, int j, String player)
25: {
26: if (board[i][j].equals(" "))
27: board[i][j] = player;
28: }
29:
30: /**
31: Creates a string representation of the board, such as
32: |x o|
33: | x |
34: | o|
35: @return the string representation
36: */ Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 64

File TicTacToe.java
37: public String toString()
38: {
39: String r = "";
40: for (int i = 0; i < ROWS; i++)
41: {
42: r = r + "|";
43: for (int j = 0; j < COLUMNS; j++)
44: r = r + board[i][j];
45: r = r + "|\n";
46: }
47: return r;
48: }
49:
50: private String[][] board;
51: private static final int ROWS = 3;
52: private static final int COLUMNS = 3;
53: }

Fall 2006 Slides adapted from Java Concepts companion slides 65

File TicTacToeTester.java
01: import java.util.Scanner;
02:
03: /**
04: This program tests the TicTacToe class by prompting the
05: user to set positions on the board and printing out the
06: result.
07: */
08: public class TicTacToeTester
09: {
10: public static void main(String[] args)
11: {
12: Scanner in = new Scanner(System.in);
13: String player = "x";
14: TicTacToe game = new TicTacToe();
15: boolean done = false;
16: while (!done)
17: { Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 66

File TicTacToeTester.java
18: System.out.print(game.toString());
19: System.out.print(
20: "Row for " + player + " (-1 to exit): ");
21: int row = in.nextInt();
22: if (row < 0) done = true;
23: else
24: {
25: System.out.print("Column for " + player + ": ");
26: int column = in.nextInt();
27: game.set(row, column, player);
28: if (player.equals("x"))
29: player = "o";
30: else
31: player = "x";
32: }
33: }
34: }
35: } Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 67

Output
| |
| |
| |
Row for x (-1 to exit): 1

Column for x: 2

| |

| x|

|

Row for o (-1 to exit): 0

Column for o: 0

|o |

| x|

| |

Row for x (-1 to exit): -1

Fall 2006 Slides adapted from Java Concepts companion slides 68

Self Check

1. How do you declare and initialize a 4-by-4
array of integers?

2. How do you count the number of spaces in
the tic-tac-toe board?

Fall 2006 Slides adapted from Java Concepts companion slides 69

Answers

1.

2.

int[][] array = new int[4][4];

int count = 0;
for (int i = 0; i < ROWS; i++)

for (int j = 0; j < COLUMNS; j++)
if (board[i][j] == ' ') count++;

Fall 2006 Slides adapted from Java Concepts companion slides 70

Copying Arrays:
Copying Array References

• Copying an array variable yields a second
reference to the same array

double[] data = new double[10];
// fill array . . .
double[] prices = data;

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 71

Copying Arrays:
Copying Array References

Figure 7:
Two References to the Same Array

Fall 2006 Slides adapted from Java Concepts companion slides 72

Copying Arrays:
Cloning Arrays

• Use clone to make true copy

double[] prices = (double[]) data.clone();

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 73

Copying Arrays:
Cloning Arrays

Figure 8:
Cloning an Array

Fall 2006 Slides adapted from Java Concepts companion slides 74

Copying Arrays:
Copying Array Elements

Continued…

System.arraycopy(from, fromStart, to, toStart, count);

Fall 2006 Slides adapted from Java Concepts companion slides 75

Copying Arrays:
Copying Array Elements

Figure 9:
The System.arraycopy Method

Fall 2006 Slides adapted from Java Concepts companion slides 76

Adding an Element to an Array

System.arraycopy(data, i, data, i + 1, data.length - i - 1);
data[i] = x;

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 77

Adding an Element to an Array

Figure 10:
Inserting a New Element Into an Array

Fall 2006 Slides adapted from Java Concepts companion slides 78

Removing an Element from an Array

Continued…

System.arraycopy(data, i + 1, data, i, data.length - i - 1);

Fall 2006 Slides adapted from Java Concepts companion slides 79

Removing an Element from an Array

Figure 11
Removing an Element from an
Array

Fall 2006 Slides adapted from Java Concepts companion slides 80

Growing an Array

• If the array is full and you need more space,
you can grow the array:

1. Create a new, larger array.

2. Copy all elements into the new array

3. Store the reference to the new array in the array
variable

double[] newData = new double[2 * data.length];

System.arraycopy(data, 0, newData, 0, data.length);

data = newData;

Fall 2006 Slides adapted from Java Concepts companion slides 81

Growing an Array

Figure 12:
Growing an Array

Fall 2006 Slides adapted from Java Concepts companion slides 82

Self Check

1. How do you add or remove elements in the
middle of an array list?

2. Why do we double the length of the array
when it has run out of space rather than
increasing it by one element?

Fall 2006 Slides adapted from Java Concepts companion slides 83

Answers

1. Use the insert and remove methods.

2. Allocating a new array and copying the
elements is time-consuming. You wouldn't
want to go through the process every time
you add an element.

Fall 2006 Slides adapted from Java Concepts companion slides 84

Make Parallel Arrays into Arrays
of Objects

Figure 13:
Avoid Parallel Arrays

// Don't do this
int[] accountNumbers;
double[] balances;

•

Fall 2006 Slides adapted from Java Concepts companion slides 85

Make Parallel Arrays into Arrays
of Objects

• Avoid parallel arrays by changing them into
arrays of objects:

Figure 14:
Reorganizing Parallel Arrays into Arrays of Objects

BankAccount[] = accounts;

Fall 2006 Slides adapted from Java Concepts companion slides 86

Partially Filled Arrays

• Array length = maximum number of elements
in array

• Usually, array is partially filled

• Need companion variable to keep track of
current size

• Uniform naming convention:
final int DATA_LENGTH = 100;
double[] data = new double[DATA_LENGTH];
int dataSize = 0;

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 87

Partially Filled Arrays

• Update dataSize as array is filled:

data[dataSize] = x;
dataSize++;

Fall 2006 Slides adapted from Java Concepts companion slides 88

Partially Filled Arrays

Figure 15:
A Partially Filled Array

Fall 2006 Slides adapted from Java Concepts companion slides 89

An Early Internet Worm

Figure 16:
A "Buffer Overrun" Attack

