
Fall 2006 Adapted from Java Concepts Companion Slides 1

Programming Graphics

Advanced Programming

ICOM 4015

Lecture 14

Reading: Java Concepts Chapter 5

Fall 2006 Adapted from Java Concepts Companion Slides 2

Chapter Goals

• To be able to write simple applications

• To display graphical shapes such as lines and
ellipses

• To use colors

• To display drawings consisting of many
shapes

• To read input from a dialog box

• To develop test cases that validate the
correctness of your programs

Fall 2006 Adapted from Java Concepts Companion Slides 3

Frame Windows
• The JFrame class

• import javax.swing.*;

JFrame frame = new JFrame();
frame.setSize(300, 400);
frame.setTitle("An Empty Frame");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

Fall 2006 Adapted from Java Concepts Companion Slides 4

A Frame Window

Figure 1:
A Frame Window

Fall 2006 Adapted from Java Concepts Companion Slides 5

File EmptyFrameViewer.java
01: import javax.swing.*;
02:
03: public class EmptyFrameViewer
04: {
05: public static void main(String[] args)
06: {
07: JFrame frame = new JFrame();
08:
09: final int FRAME_WIDTH = 300;
10: final int FRAME_HEIGHT = 400;
11:
12: frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
13: frame.setTitle("An Empty Frame");
14: frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
15:
16: frame.setVisible(true);
17: }
18: }

Fall 2006 Adapted from Java Concepts Companion Slides 6

Self Check

1. How do you display a square frame with a
title bar that reads "Hello, World!"?

2. How can a program display two frames at
once?

Fall 2006 Adapted from Java Concepts Companion Slides 7

Answers

1. Modify the EmptyFrameViewer program as
follows:

2. Construct two JFrame objects, set each
of their sizes, and call setVisible(true)
on each of them

frame.setSize(300, 300);
frame.setTitle("Hello, World!");

Fall 2006 Adapted from Java Concepts Companion Slides 8

Drawing Shapes

• paintComponent: called whenever the
component needs to be repainted:

public class RectangleComponent extends JComponent
{

public void paintComponent(Graphics g)
{

// Recover Graphics2D
Graphics2D g2 = (Graphics2D) g;
. . .

}
}

Fall 2006 Adapted from Java Concepts Companion Slides 9

Drawing Shapes

• Graphics class lets you manipulate the
graphics state (such as current color)

• Graphics2D class has methods to draw
shape objects

• Use a cast to recover the Graphics2D object
from the Graphics parameter

• java.awt package

Rectangle box = new Rectangle(5, 10, 20, 30);
g2.draw(box);

Fall 2006 Adapted from Java Concepts Companion Slides 10

Drawing Rectangles

Figure 2:
Drawing Rectangles

Fall 2006 Adapted from Java Concepts Companion Slides 11

Rectangle Drawing Program Classes

• RectangleComponent: its paintComponent
method produces the drawing

• RectangleViewer: its main method constructs
a frame and a RectangleComponent, adds the
component to the frame, and makes the frame
visible

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 12

Rectangle Drawing Program Classes

1. Construct a frame
2. Construct an object of your component class:

3. Add the component to the frame

However, if you use an older version of Java (before
Version 5), you must make a slightly more
complicated call:

4. Make the frame visible

RectangleComponent component = new RectangleComponent();

frame.add(component);

frame.getContentPane().add(component);

Fall 2006 Adapted from Java Concepts Companion Slides 13

File RectangleComponent.java
01: import java.awt.Graphics;
02: import java.awt.Graphics2D;
03: import java.awt.Rectangle;
04: import javax.swing.JPanel;
05: import javax.swing.JComponent;
06:
07: /**
08: A component that draws two rectangles.
09: */
10: public class RectangleComponent extends JComponent
11: {
12: public void paintComponent(Graphics g)
13: {
14: // Recover Graphics2D
15: Graphics2D g2 = (Graphics2D) g;
16:

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 14

File RectangleComponent.java
17: // Construct a rectangle and draw it
18: Rectangle box = new Rectangle(5, 10, 20, 30);
19: g2.draw(box);
20:
21: // Move rectangle 15 units to the right and 25 units

// down
22: box.translate(15, 25);
23:
24: // Draw moved rectangle
25: g2.draw(box);
26: }
27: }

Fall 2006 Adapted from Java Concepts Companion Slides 15

File RectangleViewer.java

01: import javax.swing.JFrame;
02:
03: public class RectangleViewer
04: {
05: public static void main(String[] args)
06: {
07: JFrame frame = new JFrame();
08:
09: final int FRAME_WIDTH = 300;
10: final int FRAME_HEIGHT = 400;11:
12: frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
13: frame.setTitle("Two rectangles");
14: frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
15:

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 16

File RectangleViewer.java

16: RectangleComponent component = new RectangleComponent();
17: frame.add(component);
18:
19: frame.setVisible(true);
20: }
21: }

Fall 2006 Adapted from Java Concepts Companion Slides 17

Self Check

1. How do you modify the program to draw
two squares?

2. How do you modify the program to draw
one rectangle and one square?

3. What happens if you call g.draw(box)
instead of g2.draw(box)?

Fall 2006 Adapted from Java Concepts Companion Slides 18

Answers

1.

2. Replace the call to

with

3. The compiler complains that g doesn't have
a draw method

Rectangle box = new Rectangle(5, 10, 20, 20);

box.translate(15, 25)

box = new Rectangle(20, 35, 20, 20);

Fall 2006 Adapted from Java Concepts Companion Slides 19

Applets

• Applets are programs that run inside a web
browser

• To implement an applet, use this code
outline:
public class MyApplet extends JApplet
{

public void paint(Graphics g)
{

// Recover Graphics2D
Graphics2D g2 = (Graphics2D) g;
// Drawing instructions go here
. . .

}
}

Fall 2006 Adapted from Java Concepts Companion Slides 20

Applets

• This is almost the same outline as for a
component, with two minor differences:
1. You extend JApplet, not JComponent
2. You place the drawing code inside the paint

method, not inside paintComponent

• To run an applet, you need an HTML file
with the applet tag

Fall 2006 Adapted from Java Concepts Companion Slides 21

Applets

• An HTML file can have multiple applets; add
a separate applet tag for each applet

• You view applets with the applet viewer or a
Java enabled browser

appletviewer RectangleApplet.html

Fall 2006 Adapted from Java Concepts Companion Slides 22

File RectangleApplet.java

01: import java.awt.Graphics;
02: import java.awt.Graphics2D;
03: import java.awt.Rectangle;
04: import javax.swing.JApplet;
05:
06: /**
07: An applet that draws two rectangles.
08: */
09: public class RectangleApplet extends JApplet
10: {
11: public void paint(Graphics g)
12: {
13: // Prepare for extended graphics
14: Graphics2D g2 = (Graphics2D) g;

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 23

File RectangleApplet.java

15:
16: // Construct a rectangle and draw it
17: Rectangle box = new Rectangle(5, 10, 20, 30);
18: g2.draw(box);
19:
20: // Move rectangle 15 units to the right and 25 units

// down
21: box.translate(15, 25);
22:
23: // Draw moved rectangle
24: g2.draw(box);
25: }
26: }
27:

Fall 2006 Adapted from Java Concepts Companion Slides 24

File RectangleApplet.html

<applet code="RectangleApplet.class" width="300" height="400"
> </applet>

Fall 2006 Adapted from Java Concepts Companion Slides 25

File
RectangleAppletExplained.html

<html>
<head>

<title>Two rectangles</title>
</head>
<body>

<p>Here is my <i>first applet</i>:</p>
<applet code="RectangleApplet.class" width="300" height="400">
</applet>

</body>
</html>

Fall 2006 Adapted from Java Concepts Companion Slides 26

Applets

Figure 3:
An Applet in the Applet Viewer

Fall 2006 Adapted from Java Concepts Companion Slides 27

Applets

Figure 4:
An Applet in a Web Browser

Fall 2006 Adapted from Java Concepts Companion Slides 28

Graphical Shapes

• Rectangle, Ellipse2D.Double, and
Line2D.Double describe graphical shapes

• We won't use the .Float classes

• These classes are inner classes–doesn't matter
to us except for the import statement:

• Must construct and draw the shape

Ellipse2D.Double ellipse = new Ellipse2D.Double(x, y, width, height);
g2.draw(ellipse);

import java.awt.geom.Ellipse2D; // no .Double

Fall 2006 Adapted from Java Concepts Companion Slides 29

An Ellipse

Figure 6:
An Ellipse and Its Bounding Box

Fall 2006 Adapted from Java Concepts Companion Slides 30

Drawing Lines

• To draw a line:

or,

Line2D.Double segment = new Line2D.Double(x1, y1, x2, y2);

Point2D.Double from = new Point2D.Double(x1, y1);
Point2D.Double to = new Point2D.Double(x2, y2);
Line2D.Double segment = new Line2D.Double(from, to);

Fall 2006 Adapted from Java Concepts Companion Slides 31

Drawing Strings

Figure 7:
Basepoint and Baseline

g2.drawString("Message", 50, 100);

Fall 2006 Adapted from Java Concepts Companion Slides 32

Self Test

1. Give instructions to draw a circle with
center (100, 100) and radius 25

2. Give instructions to draw a letter "V" by
drawing two line segments

3. Give instructions to draw a string
consisting of the letter "V"

Fall 2006 Adapted from Java Concepts Companion Slides 33

Answers

1.

2.

3.

Line2D.Double segment1 = new Line2D.Double(0, 0, 10, 30);
g2.draw(segment1);
Line2D.Double segment2 = new Line2D.Double(10, 30, 20, 0);
g2.draw(segment2);

g2.draw(new Ellipse2D.Double(75, 75, 50, 50);

g2.drawString("V", 0, 30);

Fall 2006 Adapted from Java Concepts Companion Slides 34

Colors

• Standard colors Color.BLUE, Color.RED,
Color.PINK etc.

• Specify red, green, blue between 0.0F and
1.0F Color magenta = new Color(1.0F,
0.0F, 1.0F); // F = float

• Set color in graphics context

• Color is used when drawing and filling shapes

g2.setColor(magenta);

g2.fill(rectangle); // filled with current color

Fall 2006 Adapted from Java Concepts Companion Slides 35

Self Check

1. What are the RGB color values of
Color.BLUE?

2. How do you draw a yellow square on a red
background?

Fall 2006 Adapted from Java Concepts Companion Slides 36

Answers

1. 0.0F, 0.0F, and 0.1F

2. First fill a big red square, then fill a small
yellow square inside:

g2.setColor(Color.RED);
g2.fill(new Rectangle(0, 0, 200, 200));
g2.setColor(Color.YELLOW);
g2.fill(new Rectangle(50, 50, 100, 100));

Fall 2006 Adapted from Java Concepts Companion Slides 37

Drawing Complex Shapes

• Good practice: Make a class for each
graphical shape

• Plan complex shapes by making sketches on
graph paper

class Car
{

. . .
public void draw(Graphics2D g2)
{

// Drawing instructions
. . .

}
}

Fall 2006 Adapted from Java Concepts Companion Slides 38

Drawing Cars
• Draw two cars: one in top-left corner of

window, and another in the bottom right

• Compute bottom right position, inside
paintComponent method:

• getWidth and getHeight are applied to
object that executes paintComponent

• If window is resized paintComponent is
called and car position recomputed

int x = getWidth() - 60;
int y = getHeight() - 30;
Car car2 = new Car(x, y);

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 39

Drawing Cars

Figure 8:
The Car Component Draws Two Shapes

Fall 2006 Adapted from Java Concepts Companion Slides 40

Plan Complex Shapes on Graph
Paper

Figure 9:
Using Graph Paper to
Find Shape Coordinates

Fall 2006 Adapted from Java Concepts Companion Slides 41

File CarComponent.java
01: import java.awt.Graphics;
02: import java.awt.Graphics2D;
03: import javax.swing.JComponent;
04:
05: /**
06: This component draws two car shapes.
07: */
08: public class CarComponent extends JComponent
09: {
10: public void paintComponent(Graphics g)
11: {
12: Graphics2D g2 = (Graphics2D) g;
13:
14: Car car1 = new Car(0, 0);
15:

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 42

File CarComponent.java
16: int x = getWidth() - Car.WIDTH;
17: int y = getHeight() - Car.HEIGHT;
18:
19: Car car2 = new Car(x, y);
20:
21: car1.draw(g2);
22: car2.draw(g2);
23: }
24: }

Fall 2006 Adapted from Java Concepts Companion Slides 43

File Car.java
01: import java.awt.Graphics2D;
02: import java.awt.Rectangle;
03: import java.awt.geom.Ellipse2D;
04: import java.awt.geom.Line2D;
05: import java.awt.geom.Point2D;
06:
07: /**
08: A car shape that can be positioned anywhere on the screen.
09: */
10: public class Car
11: {
12: /**
13: Constructs a car with a given top left corner
14: @param x the x coordinate of the top left corner
15: @param y the y coordinate of the top left corner
16: */

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 44

File Car.java
17: public Car(int x, int y)
18: {
19: xLeft = x;
20: yTop = y;
21: }
22:
23: /**
24: Draws the car.
25: @param g2 the graphics context
26: */
27: public void draw(Graphics2D g2)
28: {
29: Rectangle body
30: = new Rectangle(xLeft, yTop + 10, 60, 10);
31: Ellipse2D.Double frontTire
32: = new Ellipse2D.Double(xLeft + 10, yTop

+ 20, 10, 10);
33: Ellipse2D.Double rearTire Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 45

File Car.java
34: = new Ellipse2D.Double(xLeft + 40, yTop

+ 20, 10, 10);
35:
36: // The bottom of the front windshield
37: Point2D.Double r1
38: = new Point2D.Double(xLeft + 10, yTop + 10);
39: // The front of the roof
40: Point2D.Double r2
41: = new Point2D.Double(xLeft + 20, yTop);
42: // The rear of the roof
43: Point2D.Double r3
44: = new Point2D.Double(xLeft + 40, yTop);
45: // The bottom of the rear windshield
46: Point2D.Double r4
47: = new Point2D.Double(xLeft + 50, yTop + 10);
48:
49: Line2D.Double frontWindshield
50: = new Line2D.Double(r1, r2);

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 46

File Car.java

51: Line2D.Double roofTop
52: = new Line2D.Double(r2, r3);
53: Line2D.Double rearWindshield
54: = new Line2D.Double(r3, r4);
55:
56: g2.draw(body);
57: g2.draw(frontTire);
58: g2.draw(rearTire);
59: g2.draw(frontWindshield);
60: g2.draw(roofTop);
61: g2.draw(rearWindshield);
62: }
63:
64: public static int WIDTH = 60;
65: public static int HEIGHT = 30;
66: private int xLeft;
67: private int yTop;
68: }

Fall 2006 Adapted from Java Concepts Companion Slides 47

File CarViewer.java

01: import javax.swing.JFrame;
02:
03: public class CarViewer
04: {
05: public static void main(String[] args)
06: {
07: JFrame frame = new JFrame();
08:
09: final int FRAME_WIDTH = 300;
10: final int FRAME_HEIGHT = 400;
11:
12: frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
13: frame.setTitle("Two cars");
14: frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 48

File CarViewer.java

15:
16: CarComponent component = new CarComponent();
17: frame.add(component);
18:
19: frame.setVisible(true);
20: }
21: }

Fall 2006 Adapted from Java Concepts Companion Slides 49

Self Check

1. Which class needs to be modified to have
the two cars positioned next to each other?

2. Which class needs to be modified to have
the car tires painted in black, and what
modification do you need to make?

3. How do you make the cars twice as big?

Fall 2006 Adapted from Java Concepts Companion Slides 50

Answers

1. CarComponent

2. In the draw method of the Car class, call

3. Double all measurements in the draw
method of the Car class

g2.fill(frontTire);
g2.fill(rearTire);

Fall 2006 Adapted from Java Concepts Companion Slides 51

Drawing Graphical Shapes

Rectangle leftRectangle = new Rectangle(100, 100, 30, 60);
Rectangle rightRectangle = new Rectangle(160, 100, 30, 60);
Line2D.Double topLine

= new Line2D.Double(130, 100, 160, 100);
Line2D.Double bottomLine

= new Line2D.Double(130, 160, 160, 160);

Fall 2006 Adapted from Java Concepts Companion Slides 52

Computer Graphics

Figure 10:
Diagrams

Fall 2006 Adapted from Java Concepts Companion Slides 53

Computer Graphics

Figure 11:
Scene

Fall 2006 Adapted from Java Concepts Companion Slides 54

Computer Graphics

Figure 12:
Manipulated Image

Fall 2006 Adapted from Java Concepts Companion Slides 55

Reading Text Input

• A graphical application can obtain input by
displaying a JOptionPane

• The showInputDialog method displays a
prompt and waits for user input

• The showInputDialog method returns the
string that the user typed

Continued…

String input = JOptionPane.showInputDialog("Enter x");
double x = Double.parseDouble(input);

Fall 2006 Adapted from Java Concepts Companion Slides 56

Reading Text Input

Figure 13:
An Input Dialog Box

Fall 2006 Adapted from Java Concepts Companion Slides 57

File ColorViewer.java
01: import java.awt.Color;
02: import javax.swing.JFrame;
03: import javax.swing.JOptionPane;
04:
05: public class ColorViewer
06: {
07: public static void main(String[] args)
08: {
09: JFrame frame = new JFrame();
10:
11: final int FRAME_WIDTH = 300;
12: final int FRAME_HEIGHT = 400;
13:
14: frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
15: frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
16:
17: String input;
18: Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 58

File ColorViewer.java
19: // Ask the user for red, green, blue values
20:
21: input = JOptionPane.showInputDialog("red:");
22: double red = Double.parseDouble(input);
23:
24: input = JOptionPane.showInputDialog("green:");
25: double green = Double.parseDouble(input);
26:
27: input = JOptionPane.showInputDialog("blue:");
28: double blue = Double.parseDouble(input);
29:
30: Color fillColor = new Color(
31: (float) red, (float) green, (float) blue);
32: ColoredSquareComponent component
33: = new ColoredSquareComponent(fillColor);
34: frame.add(component);
35:
36: frame.setVisible(true);
37: }
38: }

Fall 2006 Adapted from Java Concepts Companion Slides 59

File
ColoredSquareComponent.java

01: import java.awt.Color;
02: import java.awt.Graphics;
03: import java.awt.Graphics2D;
04: import java.awt.Rectangle;
05: import javax.swing.JComponent;
06:
07: /**
08: A component that shows a colored square.
09: */
10: public class ColoredSquareComponent extends JComponent
11: {
12: /**
13: Constructs a component that shows a colored square.
14: @param aColor the fill color for the square
15: */
16: public ColoredSquareComponent(Color aColor) Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 60

File
ColoredSquareComponent.java

17: {
18: fillColor = aColor;
19: }
20:
21: public void paintComponent(Graphics g)
22: {
23: Graphics2D g2 = (Graphics2D) g;
24:
25: // Select color into graphics context
26:
27: g2.setColor(fillColor);
28:
29: // Construct and fill a square whose center is
30: // the center of the window
31:

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 61

File
ColoredSquareComponent.java

32: final int SQUARE_LENGTH = 100;
33:
34: Rectangle square = new Rectangle(
35: (getWidth() - SQUARE_LENGTH) / 2,
36: (getHeight() - SQUARE_LENGTH) / 2,
37: SQUARE_LENGTH,
38: SQUARE_LENGTH);
39:
40: g2.fill(square);
41: }
42:
43: private Color fillColor;
44: }

Fall 2006 Adapted from Java Concepts Companion Slides 62

Output

Figure 14:
A Square Filled with a User-
Specified Color

Fall 2006 Adapted from Java Concepts Companion Slides 63

Self Check

1. Why does this program produce three
separate dialog boxes instead of inviting
the user to type all three values in a single
dialog box?

2. Why does this program place the
showInputDialog call into the main
method of the ColorViewer class and not
into the paintComponent method of the
ColorComponent class?

Fall 2006 Adapted from Java Concepts Companion Slides 64

Answers

1. If the user entered a string, such as "1.0
0.7 0.7", you would need to break it up
into three separate strings. That can be
done, but it is more tedious to program
than three calls to showInputDialog.

2. You don't want the dialog boxes to appear
every time the component is repainted.

Fall 2006 Adapted from Java Concepts Companion Slides 65

Comparing Visual and Numerical
Information

• Compute intersection between circle and
vertical line

• Circle has radius r = 100 and center (a, b) =
(100, 100)

• Line has constant x value

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 66

Comparing Visual and Numerical
Information
• Calculate intersection points using mathematics:

Equation of a circle with radius r and center point
(a, b) is

If you know x, then you can solve for y:

Fall 2006 Adapted from Java Concepts Companion Slides 67

Comparing Visual and Numerical
Information

• That is easy to compute in Java:

• Plot circle, line, computed intersection points

• Visual and numerical results should be the
same

double root = Math.sqrt(r * r - (x - a) * (x - a));
double y1 = b + root;
double y2 = b - root;

Fall 2006 Adapted from Java Concepts Companion Slides 68

Intersection of a Line and a Circle

Figure 15
Intersection of a Line and a Circle

Fall 2006 Adapted from Java Concepts Companion Slides 69

File
IntersectionComponent.java
01: import java.awt.Graphics;
02: import java.awt.Graphics2D;
03: import java.awt.geom.Ellipse2D;
04: import java.awt.geom.Line2D;
05: import javax.swing.JComponent;
06:
07: /**
08: A component that computes and draws the intersection points
09: of a circle and a line.
10: */
11: public class IntersectionComponent extends JComponent
12: {
13: /**
14: Constructs the component from a given x-value for the line
15: @param anX the x-value for the line (between 0 and 200)
16: */

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 70

File
IntersectionComponent.java

17: public IntersectionComponent(double anX)
18: {
19: x = anX;
20: }
21:
22: public void paintComponent(Graphics g)
23: {
24: Graphics2D g2 = (Graphics2D) g;
25:
26: // Draw the circle
27:
28: final double RADIUS = 100;
29:
30: Ellipse2D.Double circle
31: = new Ellipse2D.Double(0, 0, 2 * RADIUS, 2 * RADIUS);
32: g2.draw(circle);
33:
34: // Draw the vertical line
35: Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 71

File
IntersectionComponent.java

36: Line2D.Double line
37: = new Line2D.Double(x, 0, x, 2 * RADIUS);
38: g2.draw(line);
39:
40: // Compute the intersection points
41:
42: double a = RADIUS;
43: double b = RADIUS;
44:
45: double root = Math.sqrt(RADIUS * RADIUS - (x - * (x - a));
46: double y1 = b + root;
47: double y2 = b - root;
48:
49: // Draw the intersection points
50:
51: LabeledPoint p1 = new LabeledPoint(x, y1);
52: LabeledPoint p2 = new LabeledPoint(x, y2); Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 72

File
IntersectionComponent.java

53:
54: p1.draw(g2);
55: p2.draw(g2);
56: }
57:
58: private double x;
59: }

Fall 2006 Adapted from Java Concepts Companion Slides 73

File IntersectionViewer.java

01: import javax.swing.JFrame;
02: import javax.swing.JOptionPane;
03:
04: public class IntersectionViewer
05: {
06: public static void main(String[] args)
07: {
08: JFrame frame = new JFrame();
09:
10: final int FRAME_WIDTH = 300;
11: final int FRAME_HEIGHT = 400;
12:
13: frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
14: frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
15:

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 74

File IntersectionViewer.java

16: String input = JOptionPane.showInputDialog("Enter x");
17: double x = Double.parseDouble(input);
18: IntersectionComponent component
19: = new IntersectionComponent(x);
20: frame.add(component);
21:
22: frame.setVisible(true);
23: }
24: }

Fall 2006 Adapted from Java Concepts Companion Slides 75

File LabeledPoint.java
01: import java.awt.Graphics2D;
02: import java.awt.geom.Ellipse2D;
03:
04: /**
05: A point with a label showing the point's coordinates.
06: */
07: public class LabeledPoint
08: {
09: /**
10: Construct a labeled point.
11: @param anX the x coordinate
12: @param aY the y coordinate
13: */
14: public LabeledPoint(double anX, double aY)
15: {
16: x = anX;17: y = aY;
18: }

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 76

File LabeledPoint.java

19:
20: /**
21: Draws the point as a small circle with a coordinate label.
22: @param g2 the graphics context23: */
24: public void draw(Graphics2D g2)
25: {
26: // Draw a small circle centered around (x, y)
27:
28: Ellipse2D.Double circle = new Ellipse2D.Double(
29: x - SMALL_CIRCLE_RADIUS,
30: y - SMALL_CIRCLE_RADIUS,
31: 2 * SMALL_CIRCLE_RADIUS,
32: 2 * SMALL_CIRCLE_RADIUS);
33:
34: g2.draw(circle);
35:
36: // Draw the label

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 77

File LabeledPoint.java

37:
38: String label = "(" + x + "," + y + ")";
39:
40: g2.drawString(label, (float) x, (float) y);
41: }
42:
43: private static final double SMALL_CIRCLE_RADIUS = 2;
44:
45: private double x;
46: private double y;
47: }

Fall 2006 Adapted from Java Concepts Companion Slides 78

Self Check

1. Suppose you make a mistake in the math,
say, by using a + sign instead of a - sign in
the formula for root. How can you tell that
the program does not run correctly?

2. Which intersection points does the
program draw when you provide an input
of 0?

Fall 2006 Adapted from Java Concepts Companion Slides 79

Answers

1. The intersection points will be drawn at a
location that is different from the true
intersection of the line and the circle

2. The point (0, 100) is drawn twice

