
Fall 2006 Adapted from Java Concepts Companion Slides 1

Files and Streams

Advanced Programming

ICOM 4015

Lecture 16

Reading: Java Concepts Chapter 16

Fall 2006 Adapted from Java Concepts Companion Slides 2

Chapter Goals

• To be able to read and write text files

• To become familiar with the concepts of text
and binary formats

• To learn about encryption

• To understand when to use sequential and
random file access

• To be able to read and write objects using
serialization

Fall 2006 Adapted from Java Concepts Companion Slides 3

Reading Text Files
• Simplest way to read text: use Scanner class

• To read from a disk file, construct a
FileReader

• Then, use the FileReader to construct a
Scanner object

Use the Scanner methods to read data from
file

next, nextLine, nextInt, and nextDouble

FileReader reader = new FileReader("input.txt");
Scanner in = new Scanner(reader);

Fall 2006 Adapted from Java Concepts Companion Slides 4

Writing Text Files

• To write to a file, construct a PrintWriter
object

• If file already exists, it is emptied before the
new data are written into it

• If file doesn't exist, an empty file is created

PrintWriter out = new PrintWriter("output.txt");

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 5

Writing Text Files

• Use print and println to write into a
PrintWriter:

• You must close a file when you are done
processing it:

• Otherwise, not all of the output may be
written to the disk file

out.println(29.95);
out.println(new Rectangle(5, 10, 15, 25));
out.println("Hello, World!");

out.close();

Fall 2006 Adapted from Java Concepts Companion Slides 6

A Sample Program

• Reads all lines of a file and sends them to the
output file, preceded by line numbers

• Sample input file:

Continued…

Mary had a little lamb
Whose fleece was white as snow.
And everywhere that Mary went,
The lamb was sure to go!

Fall 2006 Adapted from Java Concepts Companion Slides 7

A Sample Program

• Program produces the output file:

• Program can be used for numbering Java
source files

/* 1 */ Mary had a little lamb
/* 2 */ Whose fleece was white as snow.
/* 3 */ And everywhere that Mary went,
/* 4 */ The lamb was sure to go!

Fall 2006 Adapted from Java Concepts Companion Slides 8

File LineNumberer.java
01: import java.io.FileReader;
02: import java.io.IOException;
03: import java.io.PrintWriter;
04: import java.util.Scanner;
05:
06: public class LineNumberer
07: {
08: public static void main(String[] args)
09: {
10: Scanner console = new Scanner(System.in);
11: System.out.print("Input file: ");
12: String inputFileName = console.next();
13: System.out.print("Output file: ");
14: String outputFileName = console.next();
15:
16: try
17: {

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 9

File LineNumberer.java
18: FileReader reader = new FileReader(inputFileName);
19: Scanner in = new Scanner(reader);
20: PrintWriter out = new PrintWriter(outputFileName);
21: int lineNumber = 1;
22:
23: while (in.hasNextLine())
24: {
25: String line = in.nextLine();
26: out.println("/* " + lineNumber + " */ " + line);
27: lineNumber++;
28: }
29:
30: out.close();
31: }
32: catch (IOException exception)
33: { Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 10

File LineNumberer.java

34: System.out.println("Error processing file:"
+ exception);

35: }
36: }
37: }

Fall 2006 Adapted from Java Concepts Companion Slides 11

Self Check

1. What happens when you supply the same
name for the input and output files to the
LineNumberer program?

2. What happens when you supply the name of
a nonexistent input file to the
LineNumberer program?

Fall 2006 Adapted from Java Concepts Companion Slides 12

Answers

1. When the PrintWriter object is created,
the output file is emptied. Sadly, that is the
same file as the input file. The input file is
now empty and the while loop exits
immediately.

2. The program catches a
FileNotFoundException, prints an error
message, and terminates.

Fall 2006 Adapted from Java Concepts Companion Slides 13

File Dialog Boxes

Figure 1:
A JFileChooser Dialog Box

Fall 2006 Adapted from Java Concepts Companion Slides 14

File Dialog Boxes

JFileChooser chooser = new JFileChooser();
FileReader in = null;
if (chooser.showOpenDialog(null) == JFileChooser.APPROVE_OPTION)

{ File selectedFile = chooser.getSelectedFile();
reader = new FileReader(selectedFile);
. . .

}

Fall 2006 Adapted from Java Concepts Companion Slides 15

Text and Binary Formats

• Two ways to store data:
Text format
Binary format

Fall 2006 Adapted from Java Concepts Companion Slides 16

Text Format
• Human-readable form

• Sequence of characters
Integer 12,345 stored as characters '1' '2' '3' '4' '5'

• Use Reader and Writer and their
subclasses to process input and output

• To read:

• To write

FileReader reader = new FileReader("input.txt");

FileWriter writer = new FileWriter("output.txt");

Fall 2006 Adapted from Java Concepts Companion Slides 17

Binary Format

• Data items are represented in bytes

• Integer 12,345 stored as a sequence of four
bytes 0 0 48 57

• Use InputStream and OutputStream and
their subclasses

• More compact and more efficient

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 18

Binary Format

• To read:

• To write

FileInputStream inputStream
= new FileInputStream("input.bin");

FileOutputStream outputStream
= new FileOutputStream("output.bin");

Fall 2006 Adapted from Java Concepts Companion Slides 19

Reading a Single Character from
a File in Text Format

• Use read method of Reader class to read a
single character

returns the next character as an int
or the integer -1 at end of file

Reader reader = . . .;
int next = reader.read();
char c;
if (next != -1)

c = (char) next;

Fall 2006 Adapted from Java Concepts Companion Slides 20

Reading a Single Character from
a File in Text Format

• Use read method of InputStream class to
read a single byte

returns the next byte as an int
or the integer -1 at end of file

InputStream in = . . .;
int next = in.read();
byte b; if
(next != -1)

b = (byte) next;

Fall 2006 Adapted from Java Concepts Companion Slides 21

Text and Binary Format

• Use write method to write a single character
or byte

• read and write are the only input and
output methods provided by the file input
and output classes

• Java stream package principle: each class
should have a very focused responsibility

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 22

Text and Binary Format

• Job of FileInputStream: interact with files
and get bytes

• To read numbers, strings, or other objects,
combine class with other classes

Fall 2006 Adapted from Java Concepts Companion Slides 23

Self Check

1. Suppose you need to read an image file that
contains color values for each pixel in the
image. Will you use a Reader or an
InputStream?

2. Why do the read methods of the Reader
and InputStream classes return an int
and not a char or byte?

Fall 2006 Adapted from Java Concepts Companion Slides 24

Answers

1. Image data is stored in a binary format–try
loading an image file into a text editor, and
you won't see much text. Therefore, you
should use an InputStream.

2. They return a special value of -1 to indicate
that no more input is available. If the return
type had been char or byte, no special
value would have been available that is
distinguished from a legal data value.

Fall 2006 Adapted from Java Concepts Companion Slides 25

An Encryption Program

• File encryption
To scramble it so that it is readable only to those who
know the encryption method and secret keyword

• To use Caesar cipher
Choose an encryption key–a number between 1 and 25
Example: If the key is 3, replace A with D, B with E, . . .

Fall 2006 Adapted from Java Concepts Companion Slides 26

An Encryption Program

Figure 2:
The Caesar Cipher

To decrypt, use the negative of the encryption key

Fall 2006 Adapted from Java Concepts Companion Slides 27

To Encrypt Binary Data

int next = in.read();
if (next == -1) done = true;
else
{

byte b = (byte) next; //call the method to encrypt the byte
byte c = encrypt(b);
out.write(c);

}

Fall 2006 Adapted from Java Concepts Companion Slides 28

File Encryptor.java
01: import java.io.File;
02: import java.io.FileInputStream;
03: import java.io.FileOutputStream;
04: import java.io.InputStream;
05: import java.io.OutputStream;
06: import java.io.IOException;
07:
08: /**
09: An encryptor encrypts files using the Caesar cipher.
10: For decryption, use an encryptor whose key is the
11: negative of the encryption key.
12: */
13: public class Encryptor
14: {
15: /**
16: Constructs an encryptor.
17: @param aKey the encryption key
18: */ Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 29

File Encryptor.java
19: public Encryptor(int aKey)
20: {
21: key = aKey;
22: }
23:
24: /**
25: Encrypts the contents of a file.
26: @param inFile the input file
27: @param outFile the output file
28: */
29: public void encryptFile(String inFile, String outFile)
30: throws IOException
31: {
32: InputStream in = null;
33: OutputStream out = null;
34:
35: try
36: { Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 30

File Encryptor.java
37: in = new FileInputStream(inFile);
38: out = new FileOutputStream(outFile);
39: encryptStream(in, out);
40: }
41: finally
42: {
43: if (in != null) in.close();
44: if (out != null) out.close();
45: }
46: }
47:
48: /**
49: Encrypts the contents of a stream.
50: @param in the input stream
51: @param out the output stream
52: */ Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 31

File Encryptor.java

53: public void encryptStream(InputStream in, OutputStream out)
54: throws IOException
55: {
56: boolean done = false;
57: while (!done)
58: {
59: int next = in.read();
60: if (next == -1) done = true;
61: else
62: {
63: byte b = (byte) next;
64: byte c = encrypt(b);
65: out.write(c);
66: }
67: }
68: }
69: Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 32

File Encryptor.java
70: /**
71: Encrypts a byte.
72: @param b the byte to encrypt
73: @return the encrypted byte
74: */
75: public byte encrypt(byte b)
76: {
77: return (byte) (b + key);
78: }
79:
80: private int key;
81: }

Fall 2006 Adapted from Java Concepts Companion Slides 33

File EncryptorTester.java

01: import java.io.IOException;
02: import java.util.Scanner;
03:
04: /**
05: A program to test the Caesar cipher encryptor.
06: */
07: public class EncryptorTester
08: {
09: public static void main(String[] args)
10: {
11: Scanner in = new Scanner(System.in);
12: try
13: {
14: System.out.print("Input file: ");
15: String inFile = in.next();
16: System.out.print("Output file: ");
17: String outFile = in.next(); Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 34

File EncryptorTester.java

18: System.out.print("Encryption key: ");
19: int key = in.nextInt();
20: Encryptor crypt = new Encryptor(key);
21: crypt.encryptFile(inFile, outFile);
22: }
23: catch (IOException exception)
24: {
25: System.out.println("Error processing file: "

+ exception);
26: }
27: }
28: }
29:
30:

Fall 2006 Adapted from Java Concepts Companion Slides 35

Self Test

1. Decrypt the following message:
Khoor/#Zruog$.

2. Can you use this program to encrypt a
binary file, for example, an image file?

Fall 2006 Adapted from Java Concepts Companion Slides 36

Answers

1. It is "Hello, World!", encrypted with a key of 3.

2. Yes–the program uses streams and encrypts
each byte.

Fall 2006 Adapted from Java Concepts Companion Slides 37

Public Key Encryption

Figure 3:
Public Key Encryption

Fall 2006 Adapted from Java Concepts Companion Slides 38

Random Access vs. Sequential
Access

• Sequential access
A file is processed a byte at a time
It can be inefficient

• Random access
Allows access at arbitrary locations in the file
Only disk files support random access
•System.in and System.out do not

Each disk file has a special file pointer position
• You can read or write at the position where the

pointer is
Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 39

Random Access vs. Sequential
Access

Figure 4:
Random and Sequential Access

Each disk file has a special file pointer position
• You can read or write at the position where the

pointer is

Fall 2006 Adapted from Java Concepts Companion Slides 40

RandomAccessFile

• You can open a file either for
Reading only ("r")
Reading and writing ("rw")

• To move the file pointer to a specific byte

RandomAccessFile f = new RandomAcessFile("bank.dat","rw");

f.seek(n);

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 41

RandomAccessFile

• To get the current position of the file pointer.

• To find the number of bytes in a file long

long n = f.getFilePointer();
// of type "long" because files can be very large

fileLength = f.length();

Fall 2006 Adapted from Java Concepts Companion Slides 42

A Sample Program

• Use a random access file to store a set of
bank accounts

• Program lets you pick an account and
deposit money into it

• To manipulate a data set in a file, pay special
attention to data formatting

Suppose we store the data as text
Say account 1001 has a balance of $900, and
account 1015 has a balance of 0

Fall 2006 Adapted from Java Concepts Companion Slides 43

A Sample Program

We want to deposit $100 into account 1001

If we now simply write out the new value, the result is

Fall 2006 Adapted from Java Concepts Companion Slides 44

A Sample Program

• Better way to manipulate a data set in a file:
Give each value a fixed size that is sufficiently large
Every record has the same size
Easy to skip quickly to a given record
To store numbers, it is easier to store them in binary
format

Fall 2006 Adapted from Java Concepts Companion Slides 45

A Sample Program

• RandomAccessFile class stores binary data

• readInt and writeInt read/write integers
as four-byte quantities

• readDouble and writeDouble use 8 bytes

double x = f.readDouble();
f.writeDouble(x);

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 46

A Sample Program

• To find out how many bank accounts are in
the file

public int size() throws IOException
{

return (int) (file.length() / RECORD_SIZE);
// RECORD_SIZE is 12 bytes:
// 4 bytes for the account number and
// 8 bytes for the balance }

Fall 2006 Adapted from Java Concepts Companion Slides 47

A Sample Program

• To read the nth account in the file

public BankAccount read(int n)
throws IOException

{
file.seek(n * RECORD_SIZE);
int accountNumber = file.readInt();
double balance = file.readDouble();
return new BankAccount(accountNumber, balance);

}

Fall 2006 Adapted from Java Concepts Companion Slides 48

A Sample Program

• To write the nth account in the file
public void write(int n, BankAccount account)

throws IOException
{

file.seek(n * RECORD_SIZE);
file.writeInt(account.getAccountNumber());
file.writeDouble(account.getBalance());

}

Fall 2006 Adapted from Java Concepts Companion Slides 49

File BankDatatester.java

01: import java.io.IOException;
02: import java.io.RandomAccessFile;
03: import java.util.Scanner;
04:
05: /**
06: This program tests random access. You can access existing
07: accounts and deposit money, or create new accounts. The
08: accounts are saved in a random access file.
09: */
10: public class BankDataTester
11: {
12: public static void main(String[] args)
13: throws IOException
14: {
15: Scanner in = new Scanner(System.in);
16: BankData data = new BankData();
17: try Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 50

File BankDatatester.java
18: {
19: data.open("bank.dat");
20:
21: boolean done = false;
22: while (!done)
23: {
24: System.out.print("Account number: ");
25: int accountNumber = in.nextInt();
26: System.out.print("Amount to deposit: ");
27: double amount = in.nextDouble();
28:
29: int position = data.find(accountNumber);
30: BankAccount account;
31: if (position >= 0)
32: {
33: account = data.read(position);
34: account.deposit(amount); Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 51

File BankDatatester.java
35: System.out.println("new balance="
36: + account.getBalance());
37: }
38: else // Add account
39: {
40: account = new BankAccount(accountNumber,
41: amount);
42: position = data.size();
43: System.out.println("adding new account");
44: }
45: data.write(position, account);
46:
47: System.out.print("Done? (Y/N) ");
48: String input = in.next();
49: if (input.equalsIgnoreCase("Y")) done = true;
50: }
51: } Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 52

File BankDatatester.java
52: finally
53: {
54: data.close();
55: }
56: }
57: }
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:

Fall 2006 Adapted from Java Concepts Companion Slides 53

File BankData.java

001: import java.io.IOException;
002: import java.io.RandomAccessFile;
003:
004: /**
005: This class is a conduit to a random access file
006: containing savings account data.
007: */
008: public class BankData
009: {
010: /**
011: Constructs a BankData object that is not associated
012: with a file.
013: */
014: public BankData()
015: {
016: file = null;
017: } Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 54

File BankData.java

018:
019: /**
020: Opens the data file.
021: @param filename the name of the file containing savings
022: account information
023: */
024: public void open(String filename)
025: throws IOException
026: {
027: if (file != null) file.close();
028: file = new RandomAccessFile(filename, "rw");
029: }
030:
031: /**
032: Gets the number of accounts in the file.
033: @return the number of accounts
034: */ Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 55

File BankData.java

035: public int size()
036: throws IOException
037: {
038: return (int) (file.length() / RECORD_SIZE);
039: }
040:
041: /**
042: Closes the data file.
043: */
044: public void close()
045: throws IOException
046: {
047: if (file != null) file.close();
048: file = null;
049: }
050: Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 56

File BankData.java
051: /**
052: Reads a savings account record.
053: @param n the index of the account in the data file
054: @return a savings account object initialized with

// the file data
055: */
056: public BankAccount read(int n)
057: throws IOException
058: {
059: file.seek(n * RECORD_SIZE);
060: int accountNumber = file.readInt();
061: double balance = file.readDouble();
062: return new BankAccount(accountNumber, balance);
063: }
064:
065: /**
066: Finds the position of a bank account with a given

// number

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 57

File BankData.java

067: @param accountNumber the number to find
068: @return the position of the account with the given

// number,
069: or -1 if there is no such account
070: */
071: public int find(int accountNumber)
072: throws IOException
073: {
074: for (int i = 0; i < size(); i++)
075: {
076: file.seek(i * RECORD_SIZE);
077: int a = file.readInt();
078: if (a == accountNumber) // Found a match
079: return i;
080: }
081: return -1; // No match in the entire file
082: } Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 58

File BankData.java

083:
084: /**
085: Writes a savings account record to the data file
086: @param n the index of the account in the data file
087: @param account the account to write
088: */
089: public void write(int n, BankAccount account)
090: throws IOException
091: {
092: file.seek(n * RECORD_SIZE);
093: file.writeInt(account.getAccountNumber());
094: file.writeDouble(account.getBalance());
095: }
096:
097: private RandomAccessFile file;
098:

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 59

File BankData.java

099: public static final int INT_SIZE = 4;
100: public static final int DOUBLE_SIZE = 8;
101: public static final int RECORD_SIZE
102: = INT_SIZE + DOUBLE_SIZE;
103: }

Fall 2006 Adapted from Java Concepts Companion Slides 60

Output

Account number: 1001
Amount to deposit: 100
adding new account
Done? (Y/N) N
Account number: 1018
Amount to deposit: 200
adding new account
Done? (Y/N) N
Account number: 1001
Amount to deposit: 1000
new balance=1100.0
Done? (Y/N) Y

Fall 2006 Adapted from Java Concepts Companion Slides 61

Self Check

1. Why doesn't System.out support random
access?

2. What is the advantage of the binary format
for storing numbers? What is the
disadvantage?

Fall 2006 Adapted from Java Concepts Companion Slides 62

Answers

1. Suppose you print something, and then you
call seek(0), and print again to the same
location. It would be difficult to reflect that
behavior in the console window.

2. Advantage: The numbers use a fixed
amount of storage space, making it
possible to change their values without
affecting surrounding data. Disadvantage:
You cannot read a binary file with a text
editor.

Fall 2006 Adapted from Java Concepts Companion Slides 63

Object Streams

• ObjectOutputStream class can save a
entire objects to disk

• ObjectInputStream class can read
objects back in from disk

• Objects are saved in binary format; hence,
you use streams

Fall 2006 Adapted from Java Concepts Companion Slides 64

Writing a BankAccount Object to
a File

• The object output stream saves all instance
variables

BankAccount b = . . .;
ObjectOutputStream out = new ObjectOutputStream(

new FileOutputStream("bank.dat"));
out.writeObject(b);

Fall 2006 Adapted from Java Concepts Companion Slides 65

Reading a BankAccount Object
From a File

• readObject returns an Object reference

• Need to remember the types of the objects
that you saved and use a cast

ObjectInputStream in = new ObjectInputStream(
new FileInputStream("bank.dat"));

BankAccount b = (BankAccount) in.readObject();

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 66

Reading a BankAccount Object
From a File

• readObject method can throw a
ClassNotFoundException

• It is a checked exception

• You must catch or declare it

Fall 2006 Adapted from Java Concepts Companion Slides 67

Write and Read an ArrayList to
a File

• Write

• Read

ArrayList<BankAccount> a = new ArrayList<BankAccount>();
// Now add many BankAccount objects into a
out.writeObject(a);

ArrayList<BankAccount> a = (ArrayList<BankAccount>)
in.readObject();

Fall 2006 Adapted from Java Concepts Companion Slides 68

Serializable

• Objects that are written to an object stream
must belong to a class that implements the
Serializable interface.

• Serializable interface has no methods.

class BankAccount implements Serializable
{

. . .
}

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 69

Serializable

• Serialization: process of saving objects to a
stream

Each object is assigned a serial number on the
stream
If the same object is saved twice, only serial number
is written out the second time
When reading, duplicate serial numbers are restored
as references to the same object

Fall 2006 Adapted from Java Concepts Companion Slides 70

File Serialtester.java

01: import java.io.File;
02: import java.io.IOException;
03: import java.io.FileInputStream;
04: import java.io.FileOutputStream;
05: import java.io.ObjectInputStream;
06: import java.io.ObjectOutputStream;
07:
08: /**
09: This program tests serialization of a Bank object.
10: If a file with serialized data exists, then it is
11: loaded. Otherwise the program starts with a new bank.
12: Bank accounts are added to the bank. Then the bank
13: object is saved.
14: */
15: public class SerialTester
16: { Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 71

File Serialtester.java
17: public static void main(String[] args)
18: throws IOException, ClassNotFoundException
19: {
20: Bank firstBankOfJava;
21:
22: File f = new File("bank.dat");
23: if (f.exists())
24: {
25: ObjectInputStream in = new ObjectInputStream
26: (new FileInputStream(f));
27: firstBankOfJava = (Bank) in.readObject();
28: in.close();
29: }
30: else
31: {
32: firstBankOfJava = new Bank();
33: firstBankOfJava.addAccount(new

BankAccount(1001, 20000)); Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 72

File Serialtester.java
34: firstBankOfJava.addAccount(new

BankAccount(1015, 10000));
35: }
36:
37: // Deposit some money
38: BankAccount a = firstBankOfJava.find(1001);
39: a.deposit(100);
40: System.out.println(a.getAccountNumber()

+ ":" + a.getBalance());
41: a = firstBankOfJava.find(1015);
42: System.out.println(a.getAccountNumber()

+ ":" + a.getBalance());
43:
44: ObjectOutputStream out = new ObjectOutputStream
45: (new FileOutputStream(f));
46: out.writeObject(firstBankOfJava);
47: out.close();
48: }
49: } Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 73

Output

1001:20100.0
1015:10000.0

First Program Run

Second Program Run

1001:20200.0
1015:10000.0

Fall 2006 Adapted from Java Concepts Companion Slides 74

Self Check

1. Why is it easier to save an object with an
ObjectOutputStream than a
RandomAccessFile?

2. What do you have to do to the Coin class
so that its objects can be saved in an
ObjectOutputStream?

Fall 2006 Adapted from Java Concepts Companion Slides 75

Answers

1. You can save the entire object with a single
writeObject call. With a
RandomAccessFile, you have to save each
field separately.

2. Add implements Serializable to the class
definition.

