
Fall 2006 Adapded from Java Concepts Companion Slides 1

An Introduction to
Data Structures

Advanced Programming

ICOM 4015

Lecture 17

Reading: Java Concepts Chapter 20

Fall 2006 Adapded from Java Concepts Companion Slides 2

Chapter Goals

• To learn how to use the linked lists provided
in the standard library

• To be able to use iterators to traverse linked
lists

• To understand the implementation of linked
lists

• To distinguish between abstract and concrete
data types

Continued

Fall 2006 Adapded from Java Concepts Companion Slides 3

Chapter Goals

• To know the efficiency of fundamental
operations of lists and arrays

• To become familiar with the stack and queue
types

Fall 2006 Adapded from Java Concepts Companion Slides 4

Using Linked Lists

• A linked list consists of a number of nodes,
each of which has a reference to the next
node

• Adding and removing elements in the middle
of a linked list is efficient

• Visiting the elements of a linked list in
sequential order is efficient

• Random access is not efficient

Fall 2006 Adapded from Java Concepts Companion Slides 5

Inserting an Element into a
Linked List

Figure 1:
Inserting an Element into a Linked List

Fall 2006 Adapded from Java Concepts Companion Slides 6

Java's LinkedList class
• Generic class

Specify type of elements in angle brackets:
LinkedList<Product>

• Package: java.util

• Easy access to first and last elements with
methods
void addFirst(E obj)
void addLast(E obj)
E getFirst()
E getLast()
E removeFirst()
E removeLast()

Fall 2006 Adapded from Java Concepts Companion Slides 7

List Iterator

• ListIterator type
Gives access to elements inside a linked list
Encapsulates a position anywhere inside the
linked list
Protects the linked list while giving access

Fall 2006 Adapded from Java Concepts Companion Slides 8

A List Iterator

Figure 2:
A List Iterator

Fall 2006 Adapded from Java Concepts Companion Slides 9

A Conceptual View of a List Iterator

Figure 3:
A Conceptual View of a List Iterator

Fall 2006 Adapded from Java Concepts Companion Slides 10

List Iterator

• Think of an iterator as pointing between two
elements

Analogy: like the cursor in a word processor
points between two characters

• The listIterator method of the
LinkedList class gets a list iterator

LinkedList<String> employeeNames = . . .;
ListIterator<String> iterator = employeeNames.listIterator();

Fall 2006 Adapded from Java Concepts Companion Slides 11

List Iterator
• Initially, the iterator points before the first

element

• The next method moves the iterator

• next throws a NoSuchElementException if
you are already past the end of the list

• hasNext returns true if there is a next
element

iterator.next();

if (iterator.hasNext())
iterator.next();

Fall 2006 Adapded from Java Concepts Companion Slides 12

List Iterator

• The next method returns the element that the
iterator is passing

while iterator.hasNext()
{

String name = iterator.next();
Do something with name

}

Continued

Fall 2006 Adapded from Java Concepts Companion Slides 13

List Iterator
• Shorthand:

Behind the scenes, the for loop uses an
iterator to visit all list elements

for (String name : employeeNames)
{

Do something with name
}

Fall 2006 Adapded from Java Concepts Companion Slides 14

List Iterator

• LinkedList is a doubly linked list
Class stores two links:

• One to the next element, and
• One to the previous element

• To move the list position backwards, use:
hasPrevious

previous

Fall 2006 Adapded from Java Concepts Companion Slides 15

Adding and Removing from a
LinkedList

• The add method:
Adds an object after the iterator
Moves the iterator position past the new
element

iterator.add("Juliet");

Fall 2006 Adapded from Java Concepts Companion Slides 16

Adding and Removing from a
LinkedList

• The remove method
Removes and
Returns the object that was returned by the
last call to next or previous

Continued

//Remove all names that fulfill a certain condition
while (iterator.hasNext())
{

String name = iterator.next();
if (name fulfills condition)

iterator.remove();
}

Fall 2006 Adapded from Java Concepts Companion Slides 17

Adding and Removing from a
LinkedList

• Be careful when calling remove:
It can be called only once after calling next or
previous

You cannot call it immediately after a call to add
If you call it improperly, it throws an
IllegalStateException

Fall 2006 Adapded from Java Concepts Companion Slides 18

Sample Program

• ListTester is a sample program that
Inserts strings into a list
Iterates through the list, adding and removing
elements
Prints the list

Fall 2006 Adapded from Java Concepts Companion Slides 19

File ListTester.java
01: import java.util.LinkedList;
02: import java.util.ListIterator;
03:
04: /**
05: A program that demonstrates the LinkedList class
06: */
07: public class ListTester
08: {
09: public static void main(String[] args)
10: {
11: LinkedList<String> staff = new LinkedList<String>();
12: staff.addLast("Dick");
13: staff.addLast("Harry");
14: staff.addLast("Romeo");
15: staff.addLast("Tom");
16:
17: // | in the comments indicates the iterator position
18: Continued

Fall 2006 Adapded from Java Concepts Companion Slides 20

File ListTester.java
19: ListIterator<String> iterator
20: = staff.listIterator(); // |DHRT
21: iterator.next(); // D|HRT
22: iterator.next(); // DH|RT
23:
24: // Add more elements after second element
25:
26: iterator.add("Juliet"); // DHJ|RT
27: iterator.add("Nina"); // DHJN|RT
28:
29: iterator.next(); // DHJNR|T
30:
31: // Remove last traversed element
32:
33: iterator.remove(); // DHJN|T
34: Continued

Fall 2006 Adapded from Java Concepts Companion Slides 21

File ListTester.java
35: // Print all elements
36:
37: for (String name : staff)
38: System.out.println(name);
39: }
40: }

Fall 2006 Adapded from Java Concepts Companion Slides 22

File ListTester.java

• Output:
Dick
Harry
Juliet
Nina
Tom

Fall 2006 Adapded from Java Concepts Companion Slides 23

Self Test

1. Do linked lists take more storage space
than arrays of the same size?

2. Why don't we need iterators with arrays?

Fall 2006 Adapded from Java Concepts Companion Slides 24

Answers

1. Yes, for two reasons. You need to store the
node references, and each node is a
separate object. (There is a fixed overhead
to store each object in the virtual machine.)

2. An integer index can be used to access any
array location.

Fall 2006 Adapded from Java Concepts Companion Slides 25

Implementing Linked Lists

• Previous section: Java's LinkedList class

• Now, we will look at the implementation of a
simplified version of this class

• It will show you how the list operations
manipulate the links as the list is modified

Continued

Fall 2006 Adapded from Java Concepts Companion Slides 26

Implementing Linked Lists

• To keep it simple, we will implement a singly
linked list

Class will supply direct access only to the first
list element, not the last one

• Our list will not use a type parameter
Store raw Object values and insert casts
when retrieving them

Fall 2006 Adapded from Java Concepts Companion Slides 27

Implementing Linked Lists

• Node: stores an object and a reference to the
next node

• Methods of linked list class and iterator
class have frequent access to the Node
instance variables

Continued

Fall 2006 Adapded from Java Concepts Companion Slides 28

Implementing Linked Lists

• To make it easier to use:
We do not make the instance variables private
We make Node a private inner class of
LinkedList

It is safe to leave the instance variables public
• None of the list methods returns a Node object

Fall 2006 Adapded from Java Concepts Companion Slides 29

Implementing Linked Lists

public class LinkedList
{

. . .
private class Node
{

public Object data;
public Node next;

}
}

Fall 2006 Adapded from Java Concepts Companion Slides 30

Implementing Linked Lists

• LinkedList class
Holds a reference first to the first node
Has a method to get the first element

Fall 2006 Adapded from Java Concepts Companion Slides 31

Implementing Linked Lists
public class LinkedList
{

public LinkedList()
{

first = null;
}
public Object getFirst()
{

if (first == null)
throw new NoSuchElementException();

return first.data;
}
. . .
private Node first;

}

Fall 2006 Adapded from Java Concepts Companion Slides 32

Adding a New First Element

• When a new node is added to the list
It becomes the head of the list
The old list head becomes its next node

Fall 2006 Adapded from Java Concepts Companion Slides 33

Adding a New First Element

• The addFirst method

public class LinkedList
{

. . .
public void addFirst(Object obj)
{

Node newNode = new Node();
newNode.data = obj; newNode.next = first;

first = newNode;
}
. . .

}

Fall 2006 Adapded from Java Concepts Companion Slides 34

Adding a Node to the Head of a
Linked List

Figure 4:
Adding a Node to the Head of a Linked List

Fall 2006 Adapded from Java Concepts Companion Slides 35

Removing the First Element

• When the first element is removed
The data of the first node are saved and later
returned as the method result
The successor of the first node becomes the
first node of the shorter list
The old node will be garbage collected when
there are no further references to it

Fall 2006 Adapded from Java Concepts Companion Slides 36

Removing the First Element

• The removeFirst method

public class LinkedList
{

. . .
public Object removeFirst()
{

if (first == null)
throw new NoSuchElementException();

Object obj = first.data;

first = first.next;
return obj;
}
. . .

}

Fall 2006 Adapded from Java Concepts Companion Slides 37

Removing the First Node from a
Linked List

Figure 5:
Removing the First Node from a Linked List

Fall 2006 Adapded from Java Concepts Companion Slides 38

Linked List Iterator

• We define LinkedListIterator: private
inner class of LinkedList

• Implements a simplified ListIterator
interface

• Has access to the first field and private
Node class

• Clients of LinkedList don't actually know
the name of the iterator class

They only know it is a class that implements
the ListIterator interface

Fall 2006 Adapded from Java Concepts Companion Slides 39

LinkedListIterator

• The LinkListIterator class

public class LinkedList
{

. . .
public ListIterator listIterator()
{

return new LinkedListIterator();
}
private class LinkedListIterator implements ListIterator
{

public LinkedListIterator()
{

position = null;
previous = null;

} Continued

Fall 2006 Adapded from Java Concepts Companion Slides 40

LinkedListIterator

. . .
private Node position;
private Node previous;

}
. . .

}

Fall 2006 Adapded from Java Concepts Companion Slides 41

The Linked List Iterator's next
Method

• position: reference to the last visited node

• Also, store a reference to the last reference
before that

• next method: position reference is
advanced to position.next

• Old position is remembered in previous

• If the iterator points before the first element
of the list, then the old position is null
and position must be set to first

Fall 2006 Adapded from Java Concepts Companion Slides 42

The Linked List Iterator's next
Method

public Object next()
{

if (!hasNext())
throw new NoSuchElementException();

previous = position; // Remember for remove
if (position == null)

position = first;
else

position = position.next;
return position.data;

}

Fall 2006 Adapded from Java Concepts Companion Slides 43

The Linked List Iterator's hasNext
Method

• The next method should only be called
when the iterator is not at the end of the list

• The iterator is at the end
if the list is empty (first == null)
if there is no element after the current position
(position.next == null)

Fall 2006 Adapded from Java Concepts Companion Slides 44

The Linked List Iterator's hasNext
Method
private class LinkedListIterator implements ListIterator
{

. . .
public boolean hasNext()
{

if (position == null)
return first != null;

else
return position.next != null;

}
. . .

}

Fall 2006 Adapded from Java Concepts Companion Slides 45

The Linked List Iterator's remove
Method

• If the element to be removed is the first
element, call removeFirst

• Otherwise, the node preceding the element
to be removed needs to have its next
reference updated to skip the removed
element

Continued

Fall 2006 Adapded from Java Concepts Companion Slides 46

The Linked List Iterator's remove
Method

• If the previous reference equals position:
this call does not immediately follow a call to
next
throw an IllegalArgumentException
It is illegal to call remove twice in a row
remove sets the previous reference to
position

Fall 2006 Adapded from Java Concepts Companion Slides 47

The Linked List Iterator's remove
Method

public void remove()
{

if (previous == position)
throw new IllegalStateException();

if (position == first)
{

removeFirst();
}
else
{

previous.next = position.next;

}

position = previous;
}

Fall 2006 Adapded from Java Concepts Companion Slides 48

Removing a Node From the Middle
of a Linked List

Figure 6:
Removing a Node From the Middle of a Linked List

Fall 2006 Adapded from Java Concepts Companion Slides 49

The Linked List Iterator's set
Method

• Changes the data stored in the previously
visited element

• The set method
public void set(Object obj)
{

if (position == null)
throw new NoSuchElementException();

position.data = obj;
}

Fall 2006 Adapded from Java Concepts Companion Slides 50

The Linked List Iterator's add
Method

• The most complex operation is the addition
of a node

• add inserts the new node after the current
position

• Sets the successor of the new node to the
successor of the current position

Fall 2006 Adapded from Java Concepts Companion Slides 51

The Linked List Iterator's add Method
public void add(Object obj)
{

if (position == null)
{

addFirst(obj);
position = first;

}
else
{

Node newNode = new Node();
newNode.data = obj;

newNode.next = position.next;

position.next = newNode;

position = newNode;
}

previous = position;
}

Fall 2006 Adapded from Java Concepts Companion Slides 52

Adding a Node to the Middle of a
Linked List

Figure 7:
Adding a Node to the Middle of a Linked List

Fall 2006 Adapded from Java Concepts Companion Slides 53

File LinkedList.java
001: import java.util.NoSuchElementException;
002:
003: /**
004: A linked list is a sequence of nodes with efficient
005: element insertion and removal. This class
006: contains a subset of the methods of the standard
007: java.util.LinkedList class.
008: */
009: public class LinkedList
010: {
011: /**
012: Constructs an empty linked list.
013: */
014: public LinkedList()
015: {
016: first = null;
017: }
018: Continued

Fall 2006 Adapded from Java Concepts Companion Slides 54

File LinkedList.java

019: /**
020: Returns the first element in the linked list.
021: @return the first element in the linked list
022: */
023: public Object getFirst()
024: {
025: if (first == null)
026: throw new NoSuchElementException();
027: return first.data;
028: }
029:
030: /**
031: Removes the first element in the linked list.
032: @return the removed element
033: */
034: public Object removeFirst()
035: {

Continued

Fall 2006 Adapded from Java Concepts Companion Slides 55

File LinkedList.java
036: if (first == null)
037: throw new NoSuchElementException();
038: Object element = first.data;
039: first = first.next;
040: return element;
041: }
042:
043: /**
044: Adds an element to the front of the linked list.
045: @param element the element to add
046: */
047: public void addFirst(Object element)
048: {
049: Node newNode = new Node();
050: newNode.data = element;
051: newNode.next = first;
052: first = newNode;
053: }
054: Continued

Fall 2006 Adapded from Java Concepts Companion Slides 56

File LinkedList.java
055: /**
056: Returns an iterator for iterating through this list.
057: @return an iterator for iterating through this list
058: */
059: public ListIterator listIterator()
060: {
061: return new LinkedListIterator();
062: }
063:
064: private Node first;
065:
066: private class Node
067: {
068: public Object data;
069: public Node next;
070: }
071: Continued

Fall 2006 Adapded from Java Concepts Companion Slides 57

File LinkedList.java
072: private class LinkedListIterator implements ListIterator
073: {
074: /**
075: Constructs an iterator that points to the front
076: of the linked list.
077: */
078: public LinkedListIterator()
079: {
080: position = null;
081: previous = null;
082: }
083:
084: /**
085: Moves the iterator past the next element.
086: @return the traversed element
087: */ Continued

Fall 2006 Adapded from Java Concepts Companion Slides 58

File LinkedList.java
088: public Object next()
089: {
090: if (!hasNext())
091: throw new NoSuchElementException();
092: previous = position; // Remember for remove
093:
094: if (position == null)
095: position = first;
096: else
097: position = position.next;
098:
099: return position.data;
100: }
101:
102: /**
103: Tests if there is an element after the iterator
104: position. Continued

Fall 2006 Adapded from Java Concepts Companion Slides 59

File LinkedList.java
105: @return true if there is an element after the

// iterator
106: position
107: */
108: public boolean hasNext()
109: {
110: if (position == null)
111: return first != null;
112: else
113: return position.next != null;
114: }
115:
116: /**
117: Adds an element before the iterator position
118: and moves the iterator past the inserted element.
119: @param element the element to add
120: */ Continued

Fall 2006 Adapded from Java Concepts Companion Slides 60

File LinkedList.java
121: public void add(Object element)
122: {
123: if (position == null)
124: {
125: addFirst(element);
126: position = first;
127: }
128: else
129: {
130: Node newNode = new Node();
131: newNode.data = element;
132: newNode.next = position.next;
133: position.next = newNode;
134: position = newNode;
135: }
136: previous = position;
137: }
138: Continued

Fall 2006 Adapded from Java Concepts Companion Slides 61

File LinkedList.java
139: /**
140: Removes the last traversed element. This method may
141: only be called after a call to the next() method.
142: */
143: public void remove()
144: {
145: if (previous == position)
146: throw new IllegalStateException();
147:
148: if (position == first)
149: {
150: removeFirst();
151: }
152: else
153: {
154: previous.next = position.next;
155: } Continued

Fall 2006 Adapded from Java Concepts Companion Slides 62

File LinkedList.java
156: position = previous;
157: }
158:
159: /**
160: Sets the last traversed element to a different
161: value.
162: @param element the element to set
163: */
164: public void set(Object element)
165: {
166: if (position == null)
167: throw new NoSuchElementException();
168: position.data = element;
169: }
170:
171: private Node position;
172: private Node previous;
173: }
174: }

Fall 2006 Adapded from Java Concepts Companion Slides 63

File ListIterator.java
01: /**
02: A list iterator allows access of a position in a linked list.
03: This interface contains a subset of the methods of the
04: standard java.util.ListIterator interface. The methods for
05: backward traversal are not included.
06: */
07: public interface ListIterator
08: {
09: /**
10: Moves the iterator past the next element.
11: @return the traversed element
12: */
13: Object next();
14:
15: /**
16: Tests if there is an element after the iterator
17: position.

Continued

Fall 2006 Adapded from Java Concepts Companion Slides 64

File ListIterator.java
18: @return true if there is an element after the iterator
19: position
20: */
21: boolean hasNext();
22:
23: /**
24: Adds an element before the iterator position
25: and moves the iterator past the inserted element.
26: @param element the element to add
27: */
28: void add(Object element);
29:
30: /**
31: Removes the last traversed element. This method may
32: only be called after a call to the next() method.
33: */

Continued

Fall 2006 Adapded from Java Concepts Companion Slides 65

File ListIterator.java
34: void remove();
35:
36: /**
37: Sets the last traversed element to a different
38: value.
39: @param element the element to set
40: */
41: void set(Object element);
42: }

Fall 2006 Adapded from Java Concepts Companion Slides 66

Self Check

1. Trace through the addFirst method when
adding an element to an empty list.

2. Conceptually, an iterator points between
elements (see Figure 3). Does the position
reference point to the element to the left or
to the element to the right?

3. Why does the add method have two
separate cases?

Fall 2006 Adapded from Java Concepts Companion Slides 67

Answers

1. When the list is empty, first is null. A
new Node is allocated. Its data field is set
to the newly inserted object. Its next field is
set to null because first is null. The
first field is set to the new node. The
result is a linked list of length 1.

2. It points to the element to the left. You can
see that by tracing out the first call to next.
It leaves position to point to the first node.

Continued

Fall 2006 Adapded from Java Concepts Companion Slides 68

Answers

1. If position is null, we must be at the head
of the list, and inserting an element requires
updating the first reference. If we are in
the middle of the list, the first reference
should not be changed.

Fall 2006 Adapded from Java Concepts Companion Slides 69

Abstract and Concrete Data Types

• There are two ways of looking at a linked list
To think of the concrete implementation of
such a list

• Sequence of node objects with links between them
Think of the abstract concept of the linked list

• Ordered sequence of data items that can be
traversed with an iterator

Fall 2006 Adapded from Java Concepts Companion Slides 70

Abstract and Concrete Data Types

Figure 8:
A Concrete View of a Linked List

Fall 2006 Adapded from Java Concepts Companion Slides 71

Abstract and Concrete Data Types

Figure 9:
An Abstract View of a Linked List

Fall 2006 Adapded from Java Concepts Companion Slides 72

Abstract Data Types

• Define the fundamental operations on the
data

• Do not specify an implementation

Fall 2006 Adapded from Java Concepts Companion Slides 73

Abstract and Concrete Array Type

• As with a linked list, there are two ways of
looking at an array list

• Concrete implementation: a partially filled
array of object references

• We don't usually think about the concrete
implementation when using an array list

We take the abstract point of view

• Abstract view: ordered sequence of data
items, each of which can be accessed by an
integer index

Fall 2006 Adapded from Java Concepts Companion Slides 74

Abstract and Concrete Data Types

Figure 10:
A Concrete View of an Array List

Fall 2006 Adapded from Java Concepts Companion Slides 75

Abstract and Concrete Data Types

Figure 11:
An Abstract View of an Array List

Fall 2006 Adapded from Java Concepts Companion Slides 76

Abstract and Concrete Data Types

• Concrete implementations of a linked list and
an array list are quite different

• The abstractions seem to be similar at first
glance

• To see the difference, consider the public
interfaces stripped down to their minimal
essentials

Fall 2006 Adapded from Java Concepts Companion Slides 77

Fundamental Operations on
Array List

public class ArrayList
{

public Object get(int index) { . . . }
public void set(int index, Object value) { . . . }
. . .

}

Fall 2006 Adapded from Java Concepts Companion Slides 78

Fundamental Operations on
Linked List
public class LinkedList
{

public ListIterator listIterator() { . . . }
. . .

}

public interface ListIterator
{

Object next();
boolean hasNext();
void add(Object value);
void remove();
void set(Object value);
. . .

}

Fall 2006 Adapded from Java Concepts Companion Slides 79

Abstract and Concrete Data Types

• ArrayList: combines the interfaces of an
array and a list

• Both ArrayList and LinkedList implement
an interface called List
List defines operations for random access
and for sequential access

• Terminology is not in common use outside
the Java library

Continued

Fall 2006 Adapded from Java Concepts Companion Slides 80

Abstract and Concrete Data Types

• More traditional terminology: array and list

• Java library provides concrete
implementations ArrayList and
LinkedList for these abstract types

• Java arrays are another implementation of
the abstract array type

Fall 2006 Adapded from Java Concepts Companion Slides 81

Efficiency of Operations for Arrays
and Lists

• Adding or removing an element
A fixed number of node references need to be
modified to add or remove a node, regardless
of the size of the list
In big-Oh notation: O(1)

• Adding or removing an element
On average n/2 elements need to be moved
In big-Oh notation: O(n)

Fall 2006 Adapded from Java Concepts Companion Slides 82

Efficiency of Operations for Arrays
and Lists

0(1)0(n)Add/Remove an Element

0(1)0(1)Linear Traversal Step

0(n)0(1)Random Access

ListArrayOperation

Fall 2006 Adapded from Java Concepts Companion Slides 83

Abstract Data Types

• Abstract list
Ordered sequence of items that can be
traversed sequentially
Allows for insertion and removal of elements
at any position

• Abstract array
Ordered sequence of items with random
access via an integer index

Fall 2006 Adapded from Java Concepts Companion Slides 84

Self Check

1. What is the advantage of viewing a type
abstractly?

2. How would you sketch an abstract view of a
doubly linked list? A concrete view?

3. How much slower is the binary search
algorithm for a linked list compared to the
linear search algorithm?

Fall 2006 Adapded from Java Concepts Companion Slides 85

Answers

1. You can focus on the essential
characteristics of the data type without
being distracted by implementation details.

2. The abstract view would be like Figure 9,
but with arrows in both directions. The
concrete view would be like Figure 8, but
with references to the previous node added
to each node.

Continued

Fall 2006 Adapded from Java Concepts Companion Slides 86

Answers

1. To locate the middle element takes n / 2
steps. To locate the middle of the
subinterval to the left or right takes another
n / 4 steps. The next lookup takes n / 8
steps. Thus, we expect almost n steps to
locate an element. At this point, you are
better off just making a linear search that,
on average, takes n / 2 steps.

Fall 2006 Adapded from Java Concepts Companion Slides 87

Stacks and Queues

• Stack: collection of items with "last in first
out" retrieval

• Queue: collection of items with "first in first
out" retrieval

Fall 2006 Adapded from Java Concepts Companion Slides 88

Stack

• Allows insertion and removal of elements
only at one end

Traditionally called the top of the stack

• New items are added to the top of the stack

• Items are removed at the top of the stack

• Called last in, first out or LIFO order

• Traditionally, addition and removal
operations are called push and pop

• Think of a stack of books

Fall 2006 Adapded from Java Concepts Companion Slides 89

A Stack of Books

Figure 12:
A Stack of Books

Fall 2006 Adapded from Java Concepts Companion Slides 90

Queue
• Add items to one end of the queue (the tail)

• Remove items from the other end of the
queue (the head)

• Queues store items in a first in, first out or
FIFO fashion

• Items are removed in the same order in
which they have been added

• Think of people lining up
People join the tail of the queue and wait until
they have reached the head of the queue

Fall 2006 Adapded from Java Concepts Companion Slides 91

A Queue

Figure 13:
A Queue

Fall 2006 Adapded from Java Concepts Companion Slides 92

Stacks and Queues: Uses in
Computer Science

• Queue
Event queue of all events, kept by the Java
GUI system
Queue of print jobs

• Stack
Run-time stack that a processor or virtual
machine keeps to organize the variables of
nested methods

Fall 2006 Adapded from Java Concepts Companion Slides 93

Abstract Data Type Stack

• Stack: concrete implementation of a stack in
the Java library

• Uses an array to implement a stack

Stack<String> s = new Stack<String>();
s.push("A");
s.push("B");
s.push("C");
// The following loop prints C, B, and A
while (s.size() > 0)

System.out.println(s.pop());

Fall 2006 Adapded from Java Concepts Companion Slides 94

Abstract Data Type Queue

• Queue implementations in the standard
library are designed for use with
multithreaded programs

• However, it is simple to implement a basic
queue yourself

Fall 2006 Adapded from Java Concepts Companion Slides 95

A Queue Implementation

public class LinkedListQueue
{

/** Constructs an empty queue that uses a linked list.
*/
public LinkedListQueue()
{

list = new LinkedList();
}
/**

Adds an item to the tail of the queue.
@param x the item to add

*/
public void add(Object x)
{

list.addLast(x);
Continued

Fall 2006 Adapded from Java Concepts Companion Slides 96

A Queue Implementation
}

/**
Removes an item from the head of the queue.
@return the removed item

*/
public Object remove()
{

return list.removeFirst();
}

/**
Gets the number of items in the queue.
@return the size

*/
int size()
{

return list.size();
}
private LinkedList list;

}

Fall 2006 Adapded from Java Concepts Companion Slides 97

Self Check

1. Draw a sketch of the abstract queue type,
similar to Figures 9 and 11.

2. Why wouldn't you want to use a stack to
manage print jobs?

Fall 2006 Adapded from Java Concepts Companion Slides 98

Answers

1.

2. Stacks use a "last in, first out" discipline. If
you are the first one to submit a print job
and lots of people add print jobs before the
printer has a chance to deal with your job,
they get their printouts first, and you have
to wait until all other jobs are completed.

