Lexical Analysis

Lecture 3-4

Course Administration

- PA1 due September 16 11:59:59 PM
- Read Chapters 1-3 of Red Dragon Book
- Continue Learning about Flex or JLex

Outline

- Informal sketch of lexical analysis
 - Identifies tokens in input string
- Issues in lexical analysis
 - Lookahead
 - Ambiguities
- Specifying lexers
 - Regular expressions
 - Examples of regular expressions

Recall: The Structure of a Compiler

Lexical Analysis

- What do we want to do? Example:
 if (i == j)
 z = 0;
 else
 z = 1;
- The input is just a sequence of characters: \tif (i == j)\n\t\tz = 0;\n\telse\n\t\tz = 1;
- Goal: Partition input string into substrings
 - And classify them according to their role

What's a Token?

- Output of lexical analysis is a stream of tokens
- A token is a syntactic category
 - In English:

noun, verb, adjective, ...

- In a programming language: Identifier, Integer, Keyword, Whitespace, ...
- Parser relies on the token distinctions:
 - E.g., identifiers are treated differently than keywords

Tokens

- Tokens correspond to <u>sets of strings</u>.
- Identifier: strings of letters or digits, starting with a letter
- Integer: a non-empty string of digits
- Keyword: "else" or "if" or "begin" or ...
- Whitespace: a non-empty sequence of blanks, newlines, and tabs
- OpenPar: a left-parenthesis

Lexical Analyzer: Implementation

- An implementation must do two things:
 - 1. Recognize substrings corresponding to tokens
 - 2. Return the value or <u>lexeme</u> of the token
 - The lexeme is the substring

Example

• Recall:

tif (i == j) n t = 0; n telse n t = 1;

- Token-lexeme pairs returned by the lexer:
 - (Whitespace, "\t")
 - (Keyword, "if")
 - (OpenPar, "(")
 - (Identifier, "i")
 - (Relation, "==")
 - (Identifier, "j")

Lexical Analyzer: Implementation

- The lexer usually discards "uninteresting" tokens that don't contribute to parsing.
- Examples: Whitespace, Comments
- Question: What happens if we remove all whitespace and all comments prior to lexing?

Lookahead.

• Two important points:

- The goal is to partition the string. This is implemented by reading left-to-right, recognizing one token at a time
- 2. "Lookahead" may be required to decide where one token ends and the next token begins
- Even our simple example has lookahead issues
 i vs. if
 = vs. ==

Next

- We need
 - A way to describe the lexemes of each token
 - A way to resolve ambiguities
 - Is if two variables i and f?
 - Is == two equal signs = =?

Regular Languages

- There are several formalisms for specifying tokens
- *Regular languages* are the most popular
 - Simple and useful theory
 - Easy to understand
 - Efficient implementations

Def. Let Σ be a set of characters. A *language* over Σ is a set of strings of characters drawn from Σ (Σ is called the *alphabet*)

Examples of Languages

- Alphabet = English characters
- Language = English sentences
- Not every string on English characters is an English sentence

- Alphabet = ASCII
- Language = C programs

 Note: ASCII character set is different from English character set

Notation

- Languages are sets of strings.
- Need some notation for specifying which sets we want
- For lexical analysis we care about *regular languages*, which can be described using *regular expressions*.

Regular Expressions and Regular Languages

- Each regular expression is a notation for a regular language (a set of words)
- If A is a regular expression then we write L(A) to refer to the language denoted by A

Atomic Regular Expressions

- Single character: 'c' $L(c') = \{ c'' \}$ (for any $c \in \Sigma$)
- Concatenation: AB (where A and B are reg. exp.) $L(AB) = \{ab \mid a \in L(A) \text{ and } b \in L(B)\}$
- Example: L('i' 'f') = { "if" }
 (we will abbreviate 'i' 'f' as 'if')

Compound Regular Expressions

• Union

 $L(A | B) = \{ s | s \in L(A) \text{ or } s \in L(B) \}$

• Examples:

'if' | 'then' | 'else' = { "if", "then", "else"} '0' | '1' | ... | '9' = { "0", "1", ..., "9" }

(note the ... are just an abbreviation)

Another example:
 ('0' | '1') ('0' | '1') = { "00", "01", "10", "11" }

More Compound Regular Expressions

- So far we do not have a notation for infinite languages
- Iteration: A*

 $L(A^*) = \{ "" \} [L(A) [L(AA) [L(AAA) [...]$

• Examples:

'0'* = { "", "0", "00", "000", ...}

'1' '0'* = { strings starting with 1 and followed by 0's }

• Epsilon: ε

L(ɛ) = { "" }

Example: Keyword

- Keyword: "else" or "if" or "begin" or ...

'else' | 'if' | 'begin' | ...

(Recall: 'else' abbreviates 'e' 'l' 's' 'e')

Example: Integers

Integer: a non-empty string of digits

digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' number = digit digit*

Abbreviation: $A^+ = A A^*$

Example: Identifier

Identifier: strings of letters or digits, starting with a letter

letter = 'A' | ... | 'Z' | 'a' | ... | 'z' identifier = letter (letter | digit) *

Is (letter* | digit*) the same?

Example: Whitespace

Whitespace: a non-empty sequence of blanks, newlines, and tabs

(' ' | '\t' | '\n')+

(Can you spot a small mistake?)

Example: Phone Numbers

- Regular expressions are all around you!
- Consider (510) 643-1481

 Σ = { 0, 1, 2, 3, ..., 9, (,), - } area = digit³ exchange = digit³ phone = digit⁴ number = '(' area ')' exchange '-' phone

Example: Email Addresses

Consider <u>necula@cs.berkeley.edu</u>

Σ = letter | '.' | '@' }

- name = letter⁺
- address = name '@' name ('.' name)*

Summary

- Regular expressions describe many useful languages
- Next: Given a string s and a rexp R, is $s \in L(R)$?
- But a yes/no answer is not enough !
- Instead: partition the input into lexemes
- We will adapt regular expressions to this goal

Outline

- Specifying lexical structure using regular expressions
- Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)
- Implementation of regular expressions
 RegExp => NFA => DFA => Tables

Regular Expressions => Lexical Spec. (1)

- 1. Select a set of tokens
 - Number, Keyword, Identifier, ...
- 2. Write a R.E. for the lexemes of each token
 - Number = digit⁺
 - Keyword = 'if' | 'else' | ...
 - Identifier = letter (letter | digit)*
 - OpenPar = '('
 - •

...

Regular Expressions => Lexical Spec. (2)

Construct R, matching all lexemes for all tokens

 $R = Keyword | Identifier | Number | ... \\= R_1 | R_2 | R_3 | ...$

Facts: If $s \in L(R)$ then s is a lexeme

- Furthermore $s \in L(R_i)$ for some "i"
- This "i" determines the token that is reported

Regular Expressions => Lexical Spec. (3)

4. Let the input be x₁...x_n

(x₁ ... x_n are characters in the language alphabet)
For 1 ≤ i ≤ n check

x₁...x_i ∈ L(R) ?

5. It must be that

 $x_1...x_i \in L(R_i)$ for some i and j

6. Remove $x_{1}...x_{i}$ from input and go to (4)

Lexing Example

- R = Whitespace | Integer | Identifier | '+'
- Parse "f +3 +g"
 - "f" matches R, more precisely Identifier
 - "+" matches R, more precisely '+'
 - The token-lexeme pairs are (Identifier, "f"), ('+', "+"), (Integer, "3") (Whitespace, ""), ('+', "+"), (Identifier, "g")
- We would like to drop the Whitespace tokens
 - after matching Whitespace, continue matching

Ambiguities (1)

- There are ambiguities in the algorithm
- Example:
 - R = Whitespace | Integer | Identifier | '+'
- Parse "foo+3"
 - "f" matches R, more precisely Identifier
 - But also "fo" matches R, and "foo", but not "foo+"
- How much input is used? What if
 - $x_1...x_i \in L(R)$ and also $x_1...x_K \in L(R)$
 - "Maximal munch" rule: <u>Pick the longest possible</u> <u>substring that matches R</u>

More Ambiguities

- R = Whitespace | 'new' | Integer | Identifier
- Parse "new foo"
 - "new" matches R, more precisely 'new'
 - but also Identifier, which one do we pick?
- In general, if $x_1...x_i \in L(R_i)$ and $x_1...x_i \in L(R_k)$
 - Rule: use rule listed first (j if j < k)
- We must list 'new' before Identifier

Error Handling

- R = Whitespace | Integer | Identifier | '+'
- Parse "=56"
 - No prefix matches R: not "=", nor "=5", nor "=56"
- Problem: Can't just get stuck ...
- Solution:
 - Add a rule matching all "bad" strings; and put it last
- Lexer tools allow the writing of:
 - $R = R_1 | \dots | R_n | Error$
 - Token Error matches if nothing else matches

Summary

- Regular expressions provide a concise notation for string patterns
- Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors
- Good algorithms known (next)
 - Require only single pass over the input
 - Few operations per character (table lookup)

Finite Automata

- Regular expressions = specification
- Finite automata = implementation
- A finite automaton consists of
 - An input alphabet Σ
 - A set of states S
 - A start state n
 - A set of accepting states $\mathsf{F} \subseteq \mathsf{S}$
 - A set of transitions state \rightarrow^{input} state

Finite Automata

Transition

$$s_1 \rightarrow^{a} s_2$$

• Is read

In state s_1 on input "a" go to state s_2

- If end of input (or no transition possible)
 - If in accepting state => accept
 - Otherwise => reject

Finite Automata State Graphs

A Simple Example

• A finite automaton that accepts only "1"

 A finite automaton accepts a string if we can follow transitions labeled with the characters in the string from the start to some accepting state

Another Simple Example

- A finite automaton accepting any number of 1's followed by a single 0
- Alphabet: {0,1}

• Check that "1110" is accepted but "110..." is not

And Another Example

- Alphabet {0,1}
- What language does this recognize?

And Another Example

Alphabet still { 0, 1 }

- The operation of the automaton is not completely defined by the input
 - On input "11" the automaton could be in either state

Epsilon Moves

• Another kind of transition: ϵ -moves

 Machine can move from state A to state B without reading input

Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No ϵ -moves
- Nondeterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ϵ -moves
- Finite automata have finite memory
 - Need only to encode the current state

Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input
- NFAs can choose
 - Whether to make ϵ -moves
 - Which of multiple transitions for a single input to take

Acceptance of NFAs

• An NFA can get into multiple states

- Input: 1 0 1
- Rule: NFA accepts if it <u>can</u> get in a final state

NFA vs. DFA (1)

 NFAs and DFAs recognize the same set of languages (regular languages)

- DFAs are easier to implement
 - There are no choices to consider

NFA vs. DFA (2)

 For a given language the NFA can be simpler than the DFA

• DFA can be exponentially larger than NFA

Regular Expressions to Finite Automata

High-level sketch

Regular Expressions to NFA (1)

- For each kind of rexp, define an NFA
 - Notation: NFA for rexp A

• For ε

• For input a

Regular Expressions to NFA (2)

For A | B

Regular Expressions to NFA (3)

• For A*

Example of RegExp -> NFA conversion

- Consider the regular expression
 (1 | 0)*1
- The NFA is

Next

NFA to DFA. The Trick

- Simulate the NFA
- Each state of DFA
 - = a non-empty subset of states of the NFA
- Start state
 - = the set of NFA states reachable through $\epsilon\text{-moves}$ from NFA start state
- Add a transition $S \rightarrow^{a} S'$ to DFA iff
 - S' is the set of NFA states reachable from the states in S after seeing the input a
 - · considering $\epsilon\text{-moves}$ as well

NFA -> DFA Example

NFA to DFA. Remark

- An NFA may be in many states at any time
- How many different states?
- If there are N states, the NFA must be in some subset of those N states
- How many non-empty subsets are there?
 - $2^N 1 =$ finitely many

Implementation

- A DFA can be implemented by a 2D table T
 - One dimension is "states"
 - Other dimension is "input symbols"
 - For every transition $S_i \rightarrow^a S_k$ define T[i,a] = k
- DFA "execution"
 - If in state S_i and input a, read T[i,a] = k and skip to state S_k
 - Very efficient

Table Implementation of a DFA

	0	1
S	Г	U
Т	Т	U
U	Т	U

Prof. Necula CS 164 Lecture 3

Implementation (Cont.)

- NFA -> DFA conversion is at the heart of tools such as flex or jlex
- But, DFAs can be huge
- In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations

PA2: Lexical Analysis

- Correctness is job #1.
 - And job #2 and #3!
- Tips on building large systems:
 - Keep it simple
 - Design systems that can be tested
 - Don't optimize prematurely
 - It is easier to modify a working system than to get a system working