
Prof. Necula CS 164 Lecture 3 1

Lexical Analysis

Lecture 3-4

Prof. Necula CS 164 Lecture 3 2

Course Administration

• PA1 due September 16 11:59:59 PM

• Read Chapters 1-3 of Red Dragon Book

• Continue Learning about Flex or JLex

Prof. Necula CS 164 Lecture 3 3

Outline

• Informal sketch of lexical analysis
– Identifies tokens in input string

• Issues in lexical analysis
– Lookahead
– Ambiguities

• Specifying lexers
– Regular expressions
– Examples of regular expressions

Prof. Necula CS 164 Lecture 3 4

Recall: The Structure of a Compiler

Source Tokens

Interm.
Language

Lexical
analysis

Parsing

Code
Gen.

Machine
Code

Today we start

Optimization

Prof. Necula CS 164 Lecture 3 5

Lexical Analysis

• What do we want to do? Example:
if (i == j)

z = 0;
else

z = 1;

• The input is just a sequence of characters:
\tif (i == j)\n\t\tz = 0;\n\telse\n\t\tz = 1;

• Goal: Partition input string into substrings
– And classify them according to their role

Prof. Necula CS 164 Lecture 3 6

What’s a Token?

• Output of lexical analysis is a stream of
tokens

• A token is a syntactic category
– In English:

noun, verb, adjective, …
– In a programming language:

Identifier, Integer, Keyword, Whitespace, …

• Parser relies on the token distinctions:
– E.g., identifiers are treated differently than keywords

Prof. Necula CS 164 Lecture 3 7

Tokens

• Tokens correspond to sets of strings.

• Identifier: strings of letters or digits,
starting with a letter

• Integer: a non-empty string of digits
• Keyword: “else” or “if” or “begin” or …
• Whitespace: a non-empty sequence of blanks,

newlines, and tabs
• OpenPar: a left-parenthesis

Prof. Necula CS 164 Lecture 3 8

Lexical Analyzer: Implementation

• An implementation must do two things:

1. Recognize substrings corresponding to tokens

2. Return the value or lexeme of the token
– The lexeme is the substring

Prof. Necula CS 164 Lecture 3 9

Example

• Recall:
\tif (i == j)\n\t\tz = 0;\n\telse\n\t\tz = 1;

• Token-lexeme pairs returned by the lexer:
– (Whitespace, “\t”)
– (Keyword, “if”)
– (OpenPar, “(“)
– (Identifier, “i”)
– (Relation, “==“)
– (Identifier, “j”)
– …

Prof. Necula CS 164 Lecture 3 10

Lexical Analyzer: Implementation

• The lexer usually discards “uninteresting”
tokens that don’t contribute to parsing.

• Examples: Whitespace, Comments

• Question: What happens if we remove all
whitespace and all comments prior to lexing?

Prof. Necula CS 164 Lecture 3 11

Lookahead.

• Two important points:
1. The goal is to partition the string. This is

implemented by reading left-to-right, recognizing
one token at a time

2. “Lookahead” may be required to decide where one
token ends and the next token begins

– Even our simple example has lookahead issues
 i vs. if
 = vs. ==

Prof. Necula CS 164 Lecture 3 12

Next

• We need
– A way to describe the lexemes of each token

– A way to resolve ambiguities
• Is if two variables i and f?
• Is == two equal signs = =?

Prof. Necula CS 164 Lecture 3 13

Regular Languages

• There are several formalisms for specifying
tokens

• Regular languages are the most popular
– Simple and useful theory
– Easy to understand
– Efficient implementations

Prof. Necula CS 164 Lecture 3 14

Languages

Def. Let Σ be a set of characters. A language
over Σ is a set of strings of characters drawn

from Σ
 (Σ is called the alphabet)

Prof. Necula CS 164 Lecture 3 15

Examples of Languages

• Alphabet = English
characters

• Language = English
sentences

• Not every string on
English characters is an
English sentence

• Alphabet = ASCII
• Language = C programs

• Note: ASCII character
set is different from
English character set

Prof. Necula CS 164 Lecture 3 16

Notation

• Languages are sets of strings.

• Need some notation for specifying which sets
we want

• For lexical analysis we care about regular
languages, which can be described using
regular expressions.

Prof. Necula CS 164 Lecture 3 17

Regular Expressions and Regular Languages

• Each regular expression is a notation for a
regular language (a set of words)

• If A is a regular expression then we write
L(A) to refer to the language denoted by A

Prof. Necula CS 164 Lecture 3 18

Atomic Regular Expressions

• Single character: ‘c’
 L(‘c’) = { “c” } (for any c ∈ Σ)

• Concatenation: AB (where A and B are reg. exp.)
 L(AB) = { ab | a ∈ L(A) and b ∈ L(B) }

• Example: L(‘i’ ‘f’) = { “if” }
 (we will abbreviate ‘i’ ‘f’ as ‘if’)

Prof. Necula CS 164 Lecture 3 19

Compound Regular Expressions

• Union
 L(A | B) = { s | s ∈ L(A) or s ∈ L(B) }

• Examples:
 ‘if’ | ‘then‘ | ‘else’ = { “if”, “then”, “else”}
 ‘0’ | ‘1’ | … | ‘9’ = { “0”, “1”, …, “9” }
 (note the … are just an abbreviation)

• Another example:
 (‘0’ | ‘1’) (‘0’ | ‘1’) = { “00”, “01”, “10”, “11” }

Prof. Necula CS 164 Lecture 3 20

More Compound Regular Expressions

• So far we do not have a notation for infinite
languages

• Iteration: A*

 L(A*) = { “” } [L(A) [L(AA) [L(AAA) […
• Examples:

 ‘0’* = { “”, “0”, “00”, “000”, …}
 ‘1’ ‘0’* = { strings starting with 1 and followed by 0’s }

• Epsilon: ε
 L(ε) = { “” }

Prof. Necula CS 164 Lecture 3 21

Example: Keyword

– Keyword: “else” or “if” or “begin” or …

 ‘else’ | ‘if’ | ‘begin’ | …

 (Recall: ‘else’ abbreviates ‘e’ ‘l’ ‘s’ ‘e’)

Prof. Necula CS 164 Lecture 3 22

Example: Integers

Integer: a non-empty string of digits

digit = ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’
number = digit digit*

Abbreviation: A+ = A A*

Prof. Necula CS 164 Lecture 3 23

Example: Identifier

Identifier: strings of letters or digits,
starting with a letter

letter = ‘A’ | … | ‘Z’ | ‘a’ | … | ‘z’
identifier = letter (letter | digit) *

Is (letter* | digit*) the same ?

Prof. Necula CS 164 Lecture 3 24

Example: Whitespace

Whitespace: a non-empty sequence of blanks,
newlines, and tabs

 (‘ ‘ | ‘\t’ | ‘\n’)+

 (Can you spot a small mistake?)

Prof. Necula CS 164 Lecture 3 25

Example: Phone Numbers

• Regular expressions are all around you!
• Consider (510) 643-1481
 Σ = { 0, 1, 2, 3, …, 9, (,), - }
 area = digit3

 exchange = digit3

 phone = digit4

 number = ‘(‘ area ‘)’ exchange ‘-’ phone

Prof. Necula CS 164 Lecture 3 26

Example: Email Addresses

• Consider necula@cs.berkeley.edu

Σ = letter | ‘.’ | ‘@’ }
name = letter+

address = name ‘@’ name (‘.’ name)*

Prof. Necula CS 164 Lecture 3 27

Summary

• Regular expressions describe many useful
languages

• Next: Given a string s and a rexp R, is

• But a yes/no answer is not enough !
• Instead: partition the input into lexemes

• We will adapt regular expressions to this goal

()?s L R!

Prof. Necula CS 164 Lecture 3 28

Outline

• Specifying lexical structure using regular
expressions

• Finite automata
– Deterministic Finite Automata (DFAs)
– Non-deterministic Finite Automata (NFAs)

• Implementation of regular expressions
 RegExp => NFA => DFA => Tables

Prof. Necula CS 164 Lecture 3 29

Regular Expressions => Lexical Spec. (1)

1. Select a set of tokens
• Number, Keyword, Identifier, ...

2. Write a R.E. for the lexemes of each token
• Number = digit+

• Keyword = ‘if’ | ‘else’ | …
• Identifier = letter (letter | digit)*
• OpenPar = ‘(‘
• …

Prof. Necula CS 164 Lecture 3 30

Regular Expressions => Lexical Spec. (2)

3. Construct R, matching all lexemes for all
tokens

 R = Keyword | Identifier | Number | …
 = R1 | R2 | R3 | …

Facts: If s ∈ L(R) then s is a lexeme
– Furthermore s ∈ L(Ri) for some “i”
– This “i” determines the token that is reported

Prof. Necula CS 164 Lecture 3 31

Regular Expressions => Lexical Spec. (3)

4. Let the input be x1…xn
 (x1 ... xn are characters in the language alphabet)
• For 1 ≤ i ≤ n check

 x1…xi ∈ L(R) ?

5. It must be that
 x1…xi ∈ L(Rj) for some i and j

6. Remove x1…xi from input and go to (4)

Prof. Necula CS 164 Lecture 3 32

Lexing Example

R = Whitespace | Integer | Identifier | ‘+’
• Parse “f +3 +g”

– “f” matches R, more precisely Identifier
– “+“ matches R, more precisely ‘+’
– …
– The token-lexeme pairs are

(Identifier, “f”), (‘+’, “+”), (Integer, “3”)
(Whitespace, “ “), (‘+’, “+”), (Identifier, “g”)

• We would like to drop the Whitespace tokens
– after matching Whitespace, continue matching

Prof. Necula CS 164 Lecture 3 33

Ambiguities (1)

• There are ambiguities in the algorithm
• Example:
 R = Whitespace | Integer | Identifier | ‘+’
• Parse “foo+3”

– “f” matches R, more precisely Identifier
– But also “fo” matches R, and “foo”, but not “foo+”

• How much input is used? What if
• x1…xi ∈ L(R) and also x1…xK ∈ L(R)

– “Maximal munch” rule: Pick the longest possible
substring that matches R

Prof. Necula CS 164 Lecture 3 34

More Ambiguities

R = Whitespace | ‘new’ | Integer | Identifier
• Parse “new foo”

– “new” matches R, more precisely ‘new’
– but also Identifier, which one do we pick?

• In general, if x1…xi ∈ L(Rj) and x1…xi ∈ L(Rk)
– Rule: use rule listed first (j if j < k)

• We must list ‘new’ before Identifier

Prof. Necula CS 164 Lecture 3 35

Error Handling

R = Whitespace | Integer | Identifier | ‘+’
• Parse “=56”

– No prefix matches R: not “=“, nor “=5”, nor “=56”
• Problem: Can’t just get stuck …
• Solution:

– Add a rule matching all “bad” strings; and put it last
• Lexer tools allow the writing of:

R = R1 | ... | Rn | Error
– Token Error matches if nothing else matches

Prof. Necula CS 164 Lecture 3 36

Summary

• Regular expressions provide a concise notation
for string patterns

• Use in lexical analysis requires small
extensions
– To resolve ambiguities
– To handle errors

• Good algorithms known (next)
– Require only single pass over the input
– Few operations per character (table lookup)

Prof. Necula CS 164 Lecture 3 37

Finite Automata

• Regular expressions = specification
• Finite automata = implementation

• A finite automaton consists of
– An input alphabet Σ
– A set of states S
– A start state n
– A set of accepting states F ⊆ S
– A set of transitions state →input state

Prof. Necula CS 164 Lecture 3 38

Finite Automata

• Transition
s1 →a s2

• Is read
In state s1 on input “a” go to state s2

• If end of input (or no transition possible)
– If in accepting state => accept
– Otherwise => reject

Prof. Necula CS 164 Lecture 3 39

Finite Automata State Graphs

• A state

• The start state

• An accepting state

• A transition
a

Prof. Necula CS 164 Lecture 3 40

A Simple Example

• A finite automaton that accepts only “1”

• A finite automaton accepts a string if we can
follow transitions labeled with the characters
in the string from the start to some accepting
state

1

Prof. Necula CS 164 Lecture 3 41

Another Simple Example

• A finite automaton accepting any number of 1’s
followed by a single 0

• Alphabet: {0,1}

• Check that “1110” is accepted but “110…” is not

0

1

Prof. Necula CS 164 Lecture 3 42

And Another Example

• Alphabet {0,1}
• What language does this recognize?

0

1

0

1

0

1

Prof. Necula CS 164 Lecture 3 43

And Another Example

• Alphabet still { 0, 1 }

• The operation of the automaton is not
completely defined by the input
– On input “11” the automaton could be in either

state

1

1

Prof. Necula CS 164 Lecture 3 44

Epsilon Moves

• Another kind of transition: ε-moves
ε

• Machine can move from state A to state B
without reading input

A B

Prof. Necula CS 164 Lecture 3 45

Deterministic and Nondeterministic Automata

• Deterministic Finite Automata (DFA)
– One transition per input per state
– No ε-moves

• Nondeterministic Finite Automata (NFA)
– Can have multiple transitions for one input in a

given state
– Can have ε-moves

• Finite automata have finite memory
– Need only to encode the current state

Prof. Necula CS 164 Lecture 3 46

Execution of Finite Automata

• A DFA can take only one path through the
state graph
– Completely determined by input

• NFAs can choose
– Whether to make ε-moves
– Which of multiple transitions for a single input to

take

Prof. Necula CS 164 Lecture 3 47

Acceptance of NFAs

• An NFA can get into multiple states

• Input:

0

1

1

0

1 0 1

• Rule: NFA accepts if it can get in a final state

Prof. Necula CS 164 Lecture 3 48

NFA vs. DFA (1)

• NFAs and DFAs recognize the same set of
languages (regular languages)

• DFAs are easier to implement
– There are no choices to consider

Prof. Necula CS 164 Lecture 3 49

NFA vs. DFA (2)

• For a given language the NFA can be simpler
than the DFA

0
1

0

0

0
1

0

1

0

1

NFA

DFA

• DFA can be exponentially larger than NFA

Prof. Necula CS 164 Lecture 3 50

Regular Expressions to Finite Automata

• High-level sketch

Regular
expressions

NFA

DFA

Lexical
Specification

Table-driven
Implementation of DFA

Prof. Necula CS 164 Lecture 3 51

Regular Expressions to NFA (1)

• For each kind of rexp, define an NFA
– Notation: NFA for rexp A

A

• For ε
ε

• For input a
a

Prof. Necula CS 164 Lecture 3 52

Regular Expressions to NFA (2)

• For AB
A B

ε

• For A | B

A

B

ε

ε

ε

ε

Prof. Necula CS 164 Lecture 3 53

Regular Expressions to NFA (3)

• For A*

Aε

ε

ε

Prof. Necula CS 164 Lecture 3 54

Example of RegExp -> NFA conversion

• Consider the regular expression
(1 | 0)*1

• The NFA is

ε

1C E
0D F

ε

ε
B

ε

ε
G

ε

ε

ε

A H 1I J

Prof. Necula CS 164 Lecture 3 55

Next

Regular
expressions

NFA

DFA

Lexical
Specification

Table-driven
Implementation of DFA

Prof. Necula CS 164 Lecture 3 56

NFA to DFA. The Trick

• Simulate the NFA
• Each state of DFA

= a non-empty subset of states of the NFA
• Start state

= the set of NFA states reachable through ε-moves
from NFA start state

• Add a transition S →a S’ to DFA iff
– S’ is the set of NFA states reachable from the

states in S after seeing the input a
• considering ε-moves as well

Prof. Necula CS 164 Lecture 3 57

NFA -> DFA Example

1

0 1ε ε

ε

ε

ε

ε

ε

ε

A B
C

D

E

F
G H I J

ABCDHI

FGABCDHI

EJGABCDHI

0

1

0

10 1

Prof. Necula CS 164 Lecture 3 58

NFA to DFA. Remark

• An NFA may be in many states at any time

• How many different states ?

• If there are N states, the NFA must be in
some subset of those N states

• How many non-empty subsets are there?
– 2N - 1 = finitely many

Prof. Necula CS 164 Lecture 3 59

Implementation

• A DFA can be implemented by a 2D table T
– One dimension is “states”
– Other dimension is “input symbols”
– For every transition Si →a Sk define T[i,a] = k

• DFA “execution”
– If in state Si and input a, read T[i,a] = k and skip to

state Sk

– Very efficient

Prof. Necula CS 164 Lecture 3 60

Table Implementation of a DFA

S

T

U

0

1

0

10 1

UTU
UTT
UTS
10

Prof. Necula CS 164 Lecture 3 61

Implementation (Cont.)

• NFA -> DFA conversion is at the heart of tools
such as flex or jlex

• But, DFAs can be huge

• In practice, flex-like tools trade off speed
for space in the choice of NFA and DFA
representations

Prof. Necula CS 164 Lecture 3 62

PA2: Lexical Analysis

• Correctness is job #1.
– And job #2 and #3!

• Tips on building large systems:
– Keep it simple
– Design systems that can be tested
– Don’t optimize prematurely
– It is easier to modify a working system than to get

a system working

