Top-Down Parsing

ICOM 4036 Lecture 6

Review

 A parser consumes a sequence of tokens s and produces a parse tree

· Issues:

- How do we recognize that $s \in L(G)$?
- A parse tree of s describes $how s \in L(G)$
- Ambiguity: more than one parse tree (interpretation) for some string s
- Error: no parse tree for some string s
- How do we construct the parse tree?

Ambiguity

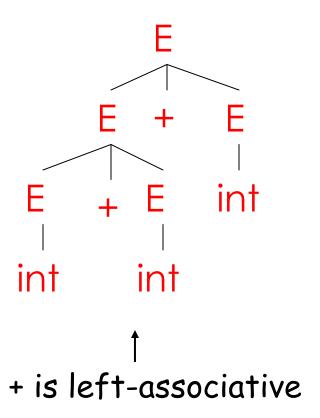
• Grammar

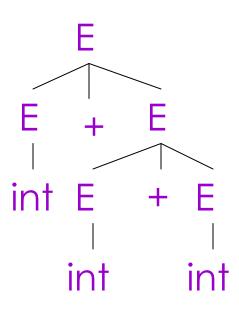
$$E \rightarrow E + E \mid E \times E \mid (E) \mid int$$

Strings

Ambiguity. Example

This string has two parse trees

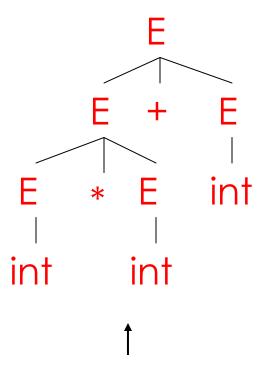


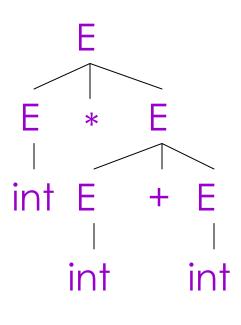


4

Ambiguity. Example

This string has two parse trees





^{*} has higher precedence than +

Ambiguity (Cont.)

- A grammar is ambiguous if it has more than one parse tree for some string
 - Equivalently, there is more than one right-most or left-most derivation for some string
- Ambiguity is <u>bad</u>
 - Leaves meaning of some programs ill-defined
- Ambiguity is <u>common</u> in programming languages
 - Arithmetic expressions
 - IF-THEN-ELSE

Dealing with Ambiguity

- There are several ways to handle ambiguity
- Most direct method is to rewrite the grammar unambiguously

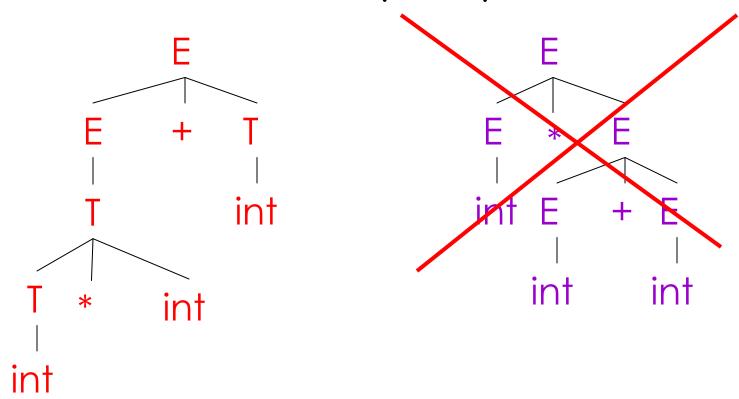
```
E \rightarrow E + T \mid T

T \rightarrow T^* \text{ int } \mid \text{ int } \mid (E)
```

- Enforces precedence of * over +
- Enforces left-associativity of + and *

Ambiguity. Example

The int * int + int has ony one parse tree now



Ambiguity: The Dangling Else

Consider the grammar

```
E \rightarrow if E \text{ then } E
| if E then E else E
| OTHER
```

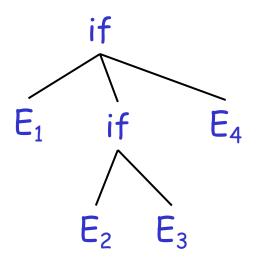
This grammar is also ambiguous

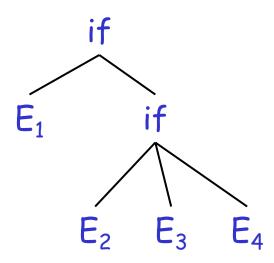
The Dangling Else: Example

The expression

if
$$E_1$$
 then if E_2 then E_3 else E_4

has two parse trees





Typically we want the second form

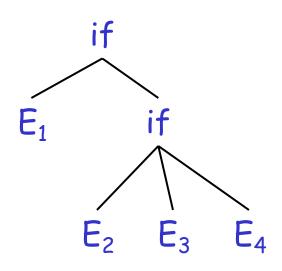
The Dangling Else: A Fix

- else matches the closest unmatched then
- We can describe this in the grammar (distinguish between matched and unmatched "then")

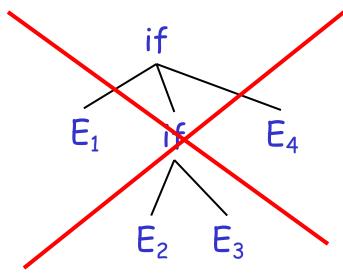
• Describes the same set of strings

The Dangling Else: Example Revisited

• The expression if E_1 then if E_2 then E_3 else E_4



 A valid parse tree (for a UIF)



 Not valid because the then expression is not a MIF

Ambiguity

- · No general techniques for handling ambiguity
- Impossible to convert automatically an ambiguous grammar to an unambiguous one
- Used with care, ambiguity can simplify the grammar
 - Sometimes allows more natural definitions
 - We need disambiguation mechanisms

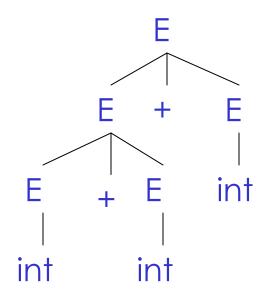
Precedence and Associativity Declarations

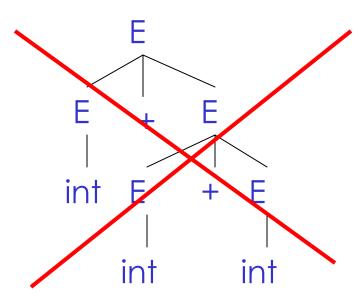
- Instead of rewriting the grammar
 - Use the more natural (ambiguous) grammar
 - Along with disambiguating declarations
- Most tools allow <u>precedence and associativity</u> <u>declarations</u> to disambiguate grammars
- · Examples ...

Associativity Declarations

Consider the grammar

- $E \rightarrow E + E \mid int$
- Ambiguous: two parse trees of int + int + int

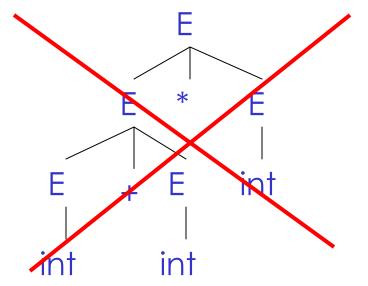


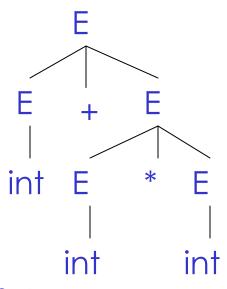


Left-associativity declaration: %left +

Precedence Declarations

- Consider the grammar $E \rightarrow E + E \mid E * E \mid int$
 - And the string int + int * int





Precedence declarations: %left +

Review

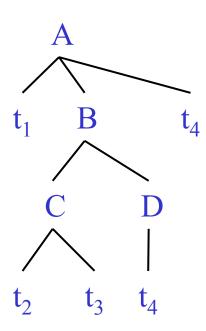
- We can specify language syntax using CFG
- A parser will answer whether $s \in L(G)$
- · ... and will build a parse tree
- · ... and pass on to the rest of the compiler
- · Next:
 - How do we answer $s \in L(G)$ and build a parse tree?

Approach 1 Top-Down Parsing

Intro to Top-Down Parsing

 Terminals are seen in order of appearance in the token stream:

- · The parse tree is constructed
 - From the top
 - From left to right



Recursive Descent Parsing

Consider the grammar

```
E \rightarrow T + E \mid T

T \rightarrow int \mid int * T \mid (E)
```

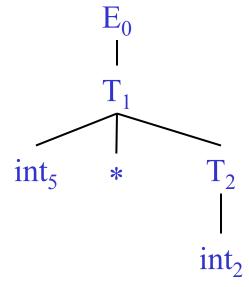
- Token stream is: int₅ * int₂
- Start with top-level non-terminal E
- Try the rules for E in order

Recursive Descent Parsing. Example (Cont.)

- Try $E_0 \rightarrow T_1 + E_2$
- Then try a rule for $T_1 \rightarrow (E_3)$
 - But (does not match input token int₅
- Try $T_1 \rightarrow int$. Token matches.
 - But + after T_1 does not match input token *
- Try $T_1 \rightarrow int * T_2$
 - This will match but + after T_1 will be unmatched
- Have exhausted the choices for T_1
 - Backtrack to choice for E₀

Recursive Descent Parsing. Example (Cont.)

- Try $E_0 \rightarrow T_1$
- Follow same steps as before for T_1
 - And succeed with $T_1 \rightarrow \text{int *} T_2$ and $T_2 \rightarrow \text{int}$
 - With the following parse tree



Recursive Descent Parsing. Notes.

- · Easy to implement by hand
 - An example implementation is provided as a supplement "Recursive Descent Parsing"

But does not always work ...

Recursive-Descent Parsing

- Parsing: given a string of tokens $t_1 t_2 ... t_n$, find its parse tree
- Recursive-descent parsing: Try all the productions exhaustively
 - At a given moment the fringe of the parse tree is: $t_1 t_2 ... t_k A ...$
 - Try all the productions for A: if $A \rightarrow BC$ is a production, the new fringe is $t_1 t_2 ... t_k B C ...$
 - Backtrack when the fringe doesn't match the string
 - Stop when there are no more non-terminals

When Recursive Descent Does Not Work

- Consider a production $S \rightarrow S$ a:
 - In the process of parsing 5 we try the above rule
 - What goes wrong?
- A <u>left-recursive grammar</u> has a non-terminal S $5 \rightarrow^+ 5\alpha$ for some α
- Recursive descent does not work in such cases
 - It goes into an ∞ loop

Elimination of Left Recursion

Consider the left-recursive grammar

$$S \rightarrow S \alpha \mid \beta$$

- 5 generates all strings starting with a β and followed by a number of α
- · Can rewrite using right-recursion

$$S \rightarrow \beta S'$$

 $S' \rightarrow \alpha S' \mid \epsilon$

Elimination of Left-Recursion. Example

Consider the grammar

$$5 \rightarrow 1 \mid 50$$
 ($\beta = 1$ and $\alpha = 0$)

can be rewritten as

$$S \rightarrow 1 S'$$

 $S' \rightarrow 0 S' \mid \epsilon$

More Elimination of Left-Recursion

In general

$$S \rightarrow S \alpha_1 \mid ... \mid S \alpha_n \mid \beta_1 \mid ... \mid \beta_m$$

- All strings derived from 5 start with one of $\beta_1,...,\beta_m$ and continue with several instances of $\alpha_1,...,\alpha_n$
- · Rewrite as

$$S \rightarrow \beta_1 S' \mid \dots \mid \beta_m S'$$

 $S' \rightarrow \alpha_1 S' \mid \dots \mid \alpha_n S' \mid \epsilon$

General Left Recursion

The grammar

$$S \rightarrow A \alpha \mid \delta$$

 $A \rightarrow S \beta$

is also left-recursive because

$$S \rightarrow^+ S \beta \alpha$$

- · This left-recursion can also be eliminated
- See Dragon Book, Section 4.3 for general algorithm

Summary of Recursive Descent

- Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - ... but that can be done automatically
- Unpopular because of backtracking
 - Thought to be too inefficient
- In practice, backtracking is eliminated by restricting the grammar

Predictive Parsers

- Like recursive-descent but parser can "predict" which production to use
 - By looking at the next few tokens
 - No backtracking
- Predictive parsers accept LL(k) grammars
 - L means "left-to-right" scan of input
 - L means "leftmost derivation"
 - k means "predict based on k tokens of lookahead"
- In practice, LL(1) is used

LL(1) Languages

- In recursive-descent, for each non-terminal and input token there may be a choice of production
- LL(1) means that for each non-terminal and token there is only one production that could lead to success
- Can be specified as a 2D table
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one production

Predictive Parsing and Left Factoring

Recall the grammar

```
E \rightarrow T + E \mid T

T \rightarrow int \mid int * T \mid (E)
```

- · Impossible to predict because
 - For T two productions start with int
 - For E it is not clear how to predict
- A grammar must be <u>left-factored</u> before use for predictive parsing

Left-Factoring Example

Recall the grammar

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int \mid int * T \mid (E)$

Factor out common prefixes of productions

$$E \rightarrow TX$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid int Y$
 $Y \rightarrow * T \mid \varepsilon$

LL(1) Parsing Table Example

Left-factored grammar

$$E \rightarrow TX$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \varepsilon$

The LL(1) parsing table:

	int	*	+	()	\$
T	int Y			(E)		
E	ΤX			ΤX		
X			+ E		3	3
У		* T	3		3	3

LL(1) Parsing Table Example (Cont.)

- · Consider the [E, int] entry
 - "When current non-terminal is E and next input is int, use production $E \to T\,X$
 - This production can generate an int in the first place
- Consider the [Y,+] entry
 - "When current non-terminal is Y and current token is +, get rid of Y"
 - We'll see later why this is so

LL(1) Parsing Tables. Errors

- Blank entries indicate error situations
 - Consider the [E,*] entry
 - "There is no way to derive a string starting with * from non-terminal E"

Using Parsing Tables

- Method similar to recursive descent, except
 - For each non-terminal 5
 - We look at the next token a
 - And choose the production shown at [S,a]
- We use a stack to keep track of pending nonterminals
- We reject when we encounter an error state
- We accept when we encounter end-of-input

LL(1) Parsing Algorithm

```
initialize stack = \langle S \rangle and next (pointer to tokens)
repeat
  case stack of
     \langle X, \text{ rest} \rangle : if T[X,*\text{next}] = Y_1...Y_n
                          then stack \leftarrow <Y_1...Y_n rest>;
                          else error ();
     \langle t, rest \rangle : if t == *next ++
                          then stack \leftarrow <rest>;
                          else error ();
until stack == < >
```

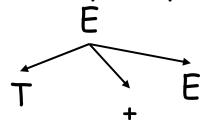
LL(1) Parsing Example

Stack	Input	Action
E \$	int * int \$	TX
TX\$	int * int \$	int Y
int Y X \$	int * int \$	terminal
Y X \$	* int \$	* T
* T X \$	* int \$	terminal
T X \$	int \$	int Y
int Y X \$	int \$	terminal
Y X \$	\$	3
X \$	\$	3
\$	\$	ACCEPT

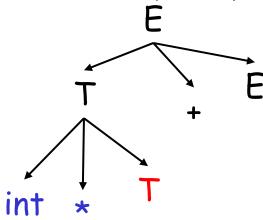
Constructing Parsing Tables

- LL(1) languages are those defined by a parsing table for the LL(1) algorithm
- No table entry can be multiply defined
- We want to generate parsing tables from CFG

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal



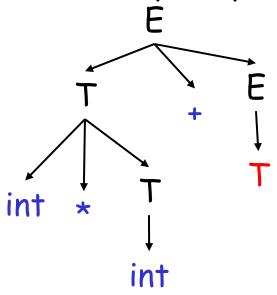
- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal



- The leaves at any point form a string $\beta A \gamma$
 - β contains only terminals
 - The input string is $\beta b \delta$
 - The prefix β matches
 - The next token is b

int * int + int

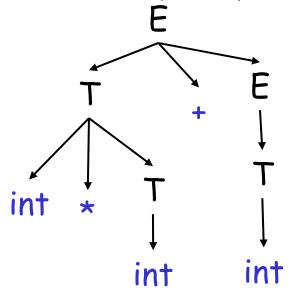
- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal



- The leaves at any point form a string $\beta A \gamma$
 - β contains only terminals
 - The input string is $\beta b \delta$
 - The prefix β matches
 - The next token is b

int * int + int

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal



- The leaves at any point form a string $\beta A \gamma$
 - β contains only terminals
 - The input string is $\beta b \delta$
 - The prefix β matches
 - The next token is b

Predictive Parsing. Review.

- A predictive parser is described by a table
 - For each non-terminal A and for each token b we specify a production A $\rightarrow \alpha$
 - When trying to expand A we use $A \rightarrow \alpha$ if b follows next
- Once we have the table
 - The parsing algorithm is simple and fast
 - No backtracking is necessary

Constructing Predictive Parsing Tables

- Consider the state $S \rightarrow^* \beta A \gamma$
 - With b the next token
 - Trying to match $\beta b \delta$

There are two possibilities:

- 1. b belongs to an expansion of A
 - Any $A \rightarrow \alpha$ can be used if b can start a string derived from α

In this case we say that $b \in First(\alpha)$

Or...

Constructing Predictive Parsing Tables (Cont.)

2. b does not belong to an expansion of A

- The expansion of ${\it A}$ is empty and ${\it b}$ belongs to an expansion of ${\it \gamma}$
- Means that b can appear after A in a derivation of the form S \rightarrow * $\beta Ab\omega$
- We say that $b \in Follow(A)$ in this case
- What productions can we use in this case?
 - Any $A \rightarrow \alpha$ can be used if α can expand to ϵ
 - We say that $\varepsilon \in First(A)$ in this case

Computing First Sets

Definition First(X) = { b |
$$X \rightarrow^* b\alpha$$
} \cup { $\epsilon \mid X \rightarrow^* \epsilon$ }

- 1. First(b) = { b }
- 2. For all productions $X \rightarrow A_1 \dots A_n$
 - Add First(A_1) { ϵ } to First(X). Stop if $\epsilon \notin First(A_1)$
 - Add First(A_2) { ε } to First(X). Stop if $\varepsilon \notin$ First(A_2)
 - •
 - Add First(A_n)^{rofs.} {^{Negul} to S First(X)? Stop if ε ∉
 First(A_n)

First Sets. Example

Recall the grammar

$$E \rightarrow TX$$

 $T \rightarrow (E) \mid int Y$

$$X \rightarrow + E \mid \varepsilon$$

 $Y \rightarrow * T \mid \varepsilon$

First sets

First(T) = {int, (}
First(E) = {int, (}
First(X) = {+,
$$\epsilon$$
 }
First(Y) = {*, ϵ }

Computing Follow Sets

Definition Follow(X) = { b | $S \rightarrow^* \beta X b \delta$ }

- Compute the First sets for all non-terminals first
- 2. Add \$ to Follow(S) (if S is the start non-terminal)
- 3. For all productions $Y \rightarrow ... X A_1 ... A_n$
 - Add First(A_1) { ϵ } to Follow(X). Stop if $\epsilon \notin First(A_1)$
 - Add First(A_2) { ε } to Follow(X). Stop if $\varepsilon \notin$ First(A_2)

Follow Sets. Example

Recall the grammar

$$E \rightarrow TX$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid \text{int } Y$ $Y \rightarrow * T \mid \varepsilon$

Follow sets

```
Follow(+) = { int, (} Follow(*) = { int, (} Follow(()) = { int, (} F
```

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $b \in First(\alpha)$ do
 - T[A, b] = α
 - If $\alpha \rightarrow * \epsilon$, for each $b \in Follow(A)$ do
 - T[A, b] = α
 - If $\alpha \to * \epsilon$ and $\$ \in Follow(A)$ do
 - T[A, \$] = α

Constructing LL(1) Tables. Example

Recall the grammar

$$E \rightarrow TX$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \varepsilon$

- Where in the row of Y do we put $Y \rightarrow T$?
 - In the lines of First(*T) = { * }
- Where in the row of Y do we put $Y \to \varepsilon$?
 - In the lines of Follow(Y) = { \$, +,) }

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - And in other cases as well
- Most programming language grammars are not LL(1)
- There are tools that build LL(1) tables

Review

- For some grammars there is a simple parsing strategy
 - Predictive parsing
- · Next: a more powerful parsing strategy