Semantic Analysis Typechecking in COOL

Lecture 7

Prof. Necula CS 164 Lectures 10-13

Outline

- The role of semantic analysis in a compiler
 - A laundry list of tasks
- Scope
- Types

The Compiler So Far

- Lexical analysis
 - Detects inputs with illegal tokens
- Parsing
 - Detects inputs with ill-formed parse trees
- Semantic analysis
 - Last "front end" phase
 - Catches more errors

What's Wrong?

• Example 1

let y: Int in x + 3

Example 2
 let y: String ← "abc" in y + 3

Why a Separate Semantic Analysis?

- Parsing cannot catch some errors
- Some language constructs are not contextfree
 - Example: All used variables must have been declared (i.e. scoping)
 - Example: A method must be invoked with arguments of proper type (i.e. typing)

What Does Semantic Analysis Do?

- Checks of many kinds . . . coolc checks:
 - 1. All identifiers are declared
 - 2. Types
 - 3. Inheritance relationships
 - 4. Classes defined only once
 - 5. Methods in a class defined only once
 - 6. Reserved identifiers are not misused And others . . .
- The requirements depend on the language

Scope

- Matching identifier declarations with uses
 - Important semantic analysis step in most languages
 - Including COOL!

Scope (Cont.)

- The <u>scope</u> of an identifier is the portion of a program in which that identifier is accessible
- The same identifier may refer to different things in different parts of the program
 - Different scopes for same name don't overlap
- An identifier may have restricted scope

- Most languages have <u>static</u> scope
 - Scope depends only on the program text, not runtime behavior
 - Cool has static scope
- A few languages are <u>dynamically</u> scoped
 - Lisp, SNOBOL
 - Lisp has changed to mostly static scoping
 - Scope depends on execution of the program

Static Scoping Example

```
let x: Int <- 0 in
  {
      Х;
      let x: Int <- 1 in
             Х;
      Х;
```

Static Scoping Example (Cont.)

```
let(x) Int <- 0 in
      let x: Int <- 1 in
            X
      Х
Uses of x refer to closest enclosing definition
```

Prof. Necula CS 164 Lectures 10-13

Dynamic Scope

- A dynamically-scoped variable refers to the closest enclosing binding in the execution of the program
- Example
 - Class foo {
 - a : Int \leftarrow 4;
 - $g(y : Int) : Int \{y + a\};$
 - $f(): Int \{ let a \leftarrow 5 in g(2) \}$
 - When invoking f() the result will be 6
- More about dynamic scope later in the course

Scope in Cool

- Cool identifier bindings are introduced by
 - Class declarations (introduce class names)
 - Method definitions (introduce method names)
 - Let expressions (introduce object id's)
 - Formal parameters (introduce object id's)
 - Attribute definitions in a class (introduce object id's)
 - Case expressions (introduce object id's)

Implementing the Most-Closely Nested Rule

- Much of semantic analysis can be expressed as a recursive descent of an AST
 - Process an AST node n
 - Process the children of *n*
 - Finish processing the AST node n

Implementing . . . (Cont.)

 Example: the scope of let bindings is one subtree

let x: Int \leftarrow 0 in e

• x can be used in subtree e

Symbol Tables

- Consider again: let x: Int $\leftarrow 0$ in e
- Idea:
 - Before processing e, add definition of x to current definitions, overriding any other definition of x
 - After processing e, remove definition of x and restore old definition of x
- A symbol table is a data structure that tracks the current bindings of identifiers

Prof. Necula CS 164 Lectures 10-13

- Not all kinds of identifiers follow the mostclosely nested rule
- For example, class definitions in Cool
 - Cannot be nested
 - Are *globally visible* throughout the program
- In other words, a class name can be used before it is defined

Example: Use Before Definition

```
Class Foo {
... let y: Bar in ...
};
```

Class Bar {

```
· · · · };
```

Attribute names are global within the class in which they are defined

```
Class Foo {
f(): Int { a };
a: Int ← 0;
}
```

More Scope (Cont.)

- Method and attribute names have complex rules
- A method need not be defined in the class in which it is used, but in some parent class
- Methods may also be redefined (overridden)

Class Definitions

- Class names can be used before being defined
- We can't check this property
 - using a symbol table
 - or even in one pass
- Solution
 - Pass 1: Gather all class names
 - Pass 2: Do the checking
- Semantic analysis requires multiple passes
 - Probably more than two

Types

- What is a type?
 - The notion varies from language to language
- Consensus
 - A set of values
 - A set of operations on those values
- Classes are one instantiation of the modern notion of type

Why Do We Need Type Systems?

Consider the assembly language fragment

addi \$r1, \$r2, \$r3

What are the types of \$r1, \$r2, \$r3?

Types and Operations

- Certain operations are legal for values of each type
 - It doesn't make sense to add a function pointer and an integer in C
 - It does make sense to add two integers
 - But both have the same assembly language implementation!

Type Systems

- A language's type system specifies which operations are valid for which types
- The goal of type checking is to ensure that operations are used with the correct types
 - Enforces intended interpretation of values, because nothing else will!
- Type systems provide a concise formalization of the semantic checking rules

What Can Types do For Us?

- Can detect certain kinds of errors
- Memory errors:
 - Reading from an invalid pointer, etc.
- Violation of abstraction boundaries:

Type Checking Overview

- Three kinds of languages:
 - Statically typed: All or almost all checking of types is done as part of compilation (C, Java, Cool)
 - Dynamically typed: Almost all checking of types is done as part of program execution (Scheme)
 - Untyped: No type checking (machine code)

The Type Wars

- Competing views on static vs. dynamic typing
- Static typing proponents say:
 - Static checking catches many programming errors at compile time
 - Avoids overhead of runtime type checks
- Dynamic typing proponents say:
 - Static type systems are restrictive
 - Rapid prototyping easier in a dynamic type system

The Type Wars (Cont.)

- In practice, most code is written in statically typed languages with an "escape" mechanism
 - Unsafe casts in C, Java
- It's debatable whether this compromise represents the best or worst of both worlds

Type Checking in Cool

Outline

- Type concepts in COOL
- Notation for type rules
 - Logical rules of inference
- COOL type rules
- General properties of type systems

Cool Types

- The types are:
 - Class names
 - SELF_TYPE
 - Note: there are no base types (as in Java int, ...)
- The user declares types for all identifiers
- The compiler infers types for expressions
 - Infers a type for *every* expression

Type Checking and Type Inference

- <u>Type Checking</u> is the process of verifying fully typed programs
- <u>Type Inference</u> is the process of filling in missing type information
- The two are different, but are often used interchangeably

Rules of Inference

- We have seen two examples of formal notation specifying parts of a compiler
 - Regular expressions (for the lexer)
 - Context-free grammars (for the parser)
- The appropriate formalism for type checking is <u>logical rules of inference</u>

- Inference rules have the form If Hypothesis is true, then Conclusion is true
- Type checking computes via reasoning If E_1 and E_2 have certain types, then E_3 has a certain type
- Rules of inference are a compact notation for "If-Then" statements

From English to an Inference Rule

- The notation is easy to read (with practice)
- Start with a simplified system and gradually add features
- Building blocks
 - Symbol \land is "and"
 - Symbol \Rightarrow is "if-then"
 - x:T is "x has type T"

From English to an Inference Rule (2)

If e_1 has type Int and e_2 has type Int, then $e_1 + e_2$ has type Int

(e₁ has type Int \land e₂ has type Int) \Rightarrow e₁ + e₂ has type Int

(e_1 : Int $\land e_2$: Int) $\Rightarrow e_1 + e_2$: Int

From English to an Inference Rule (3)

The statement

 $\begin{array}{l} (e_1 \colon \text{Int} \land e_2 \colon \text{Int}) \ \Rightarrow \ e_1 + e_2 \colon \text{Int} \\ \text{is a special case of} \\ (\ \text{Hypothesis}_1 \land \ldots \land \text{Hypothesis}_n) \Rightarrow \text{Conclusion} \end{array}$

This is an inference rule

• By tradition inference rules are written

`Hypothesis₁ ... `Hypothesis_n
`Conclusion

 Cool type rules have hypotheses and conclusions of the form:

`e:T

• `means ``it is provable that . . ."

Two Rules

$$e_1 : Int$$

$$e_2 : Int$$

$$e_1 + e_2 : Int$$
[Add]

Prof. Necula CS 164 Lectures 10-13

Two Rules (Cont.)

- These rules give templates describing how to type integers and + expressions
- By filling in the templates, we can produce complete typings for expressions

Example: 1 + 2

1 is an integer	2 is an integer
`1:Int	`2:Int
` 1	. + 2 : Int

Soundness

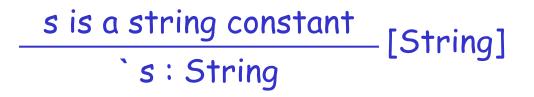
- A type system is <u>sound</u> if
 - Whenever `e:T
 - Then e evaluates to a value of type T
- We only want sound rules
 - But some sound rules are better than others:

i is an integer `i : Object

Type Checking Proofs

- Type checking proves facts e: T
 - Proof is on the structure of the AST
 - Proof has the shape of the AST
 - One type rule is used for each kind of AST node
- In the type rule used for a node e:
 - Hypotheses are the proofs of types of e's subexpressions
 - Conclusion is the proof of type of e
- Types are computed in a bottom-up pass over the AST

Rules for Constants



Prof. Necula CS 164 Lectures 10-13

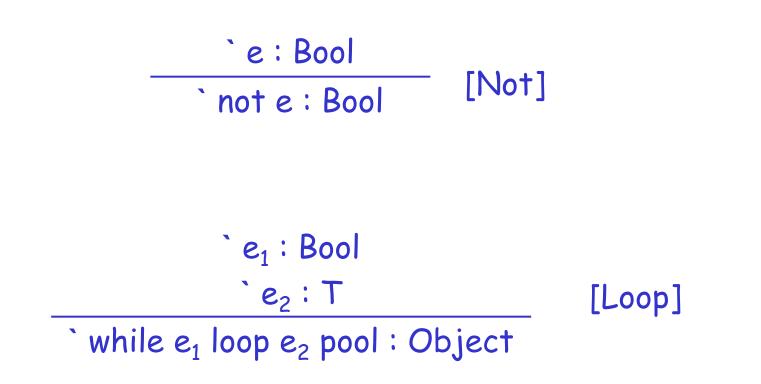
Rule for New

new T produces an object of type T

- Ignore SELF_TYPE for now . . .

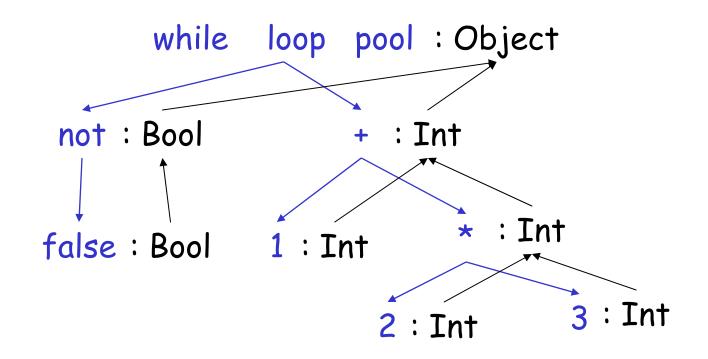
Prof. Necula CS 164 Lectures 10-13

Two More Rules



Typing: Example

Typing for while not false loop 1 + 2 * 3 pool



Typing Derivations

The typing reasoning can be expressed as a tree:

		2:1nt	3:1nt
`false : Bool	`1:Int	`2*3:Int	
`not false : Bool	`1+2 * 3: Int		
`while not false loop 1 + 2 * 3 · Object			

- while not taise loop 1 + 2 * 3 : Object
- The root of the tree is the whole expression
- Each node is an instance of a typing rule
- Leaves are the rules with no hypotheses

A Problem

• What is the type of a variable reference?

 The local, structural rule does not carry enough information to give x a type.

A Solution: Put more information in the rules!

- A type environment gives types for free variables
 - A <u>type environment</u> is a function from
 ObjectIdentifiers to Types
 - A variable is <u>free</u> in an expression if:
 - It occurs in the expression
 - It is declared outside the expression
 - E.g. in the expression "x", the variable "x" is free
 - E.g. in "let x : Int in x + y" only "y" is free

Let O be a function from ObjectIdentifiers to Types

The sentence O = T

is read: Under the assumption that variables have the types given by O, it is provable that the expression e has the type T

Modified Rules

The type environment is added to the earlier rules:

i is an integer O`i:Int [Int]

$$O e_{1} : Int$$

$$O e_{2} : Int$$

$$O e_{1} + e_{2} : Int$$
[Add]

Prof. Necula CS 164 Lectures 10-13

And we can write new rules:

$$\frac{O(x) = T}{O \cdot x : T}$$
 [Var]

• More (complicated) typing rules

 Connections between typing rules and safety of execution

$$\frac{O[T_0/x] \cdot e_1 : T_1}{O \cdot \text{let } x : T_0 \text{ in } e_1 : T_1} \quad [\text{Let-No-Init}]$$

 $O[T_0/x]$ means O modified to return T_0 on argument x and behave as O on all other arguments:

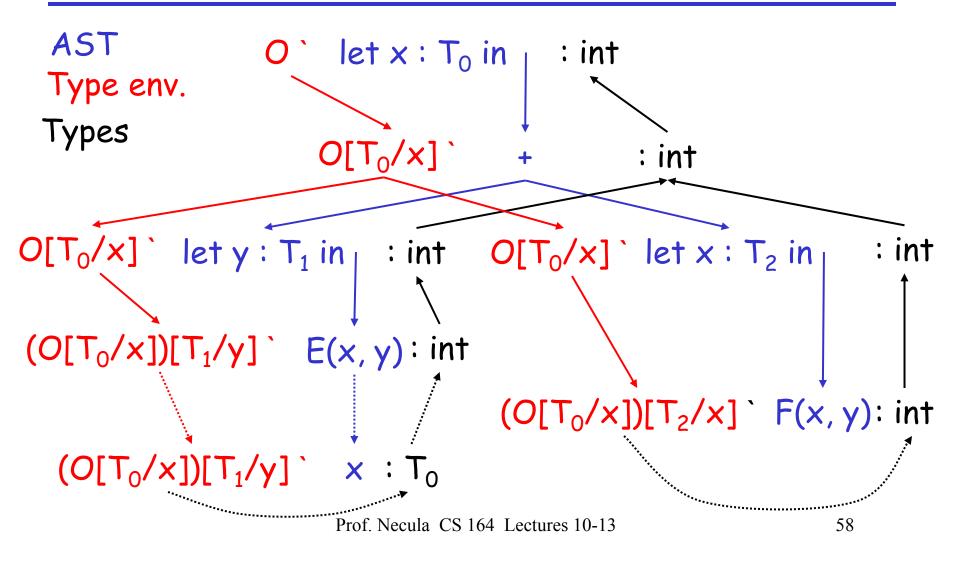
> $O[T_0/x](x) = T_0$ $O[T_0/x](y) = O(y)$

> > Prof. Necula CS 164 Lectures 10-13

Let. Example.

- Consider the Cool expression let x : T₀ in (let y : T₁ in $E_{x,y}$) + (let x : T₂ in $F_{x,y}$) (where $E_{x,y}$ and $F_{x,y}$ are some Cool expression that contain occurrences of "x" and "y")
- Scope
 - of "y" is $E_{x,y}$
 - of outer "x" is $E_{x,y}$
 - of inner "x" is $F_{x,y}$
- This is captured precisely in the typing rule.

Let. Example.



- The type environment gives types to the free identifiers in the current scope
- The type environment is passed down the AST from the root towards the leaves
- Types are computed up the AST from the leaves towards the root

Now consider let with initialization:

$$O \ e_0 : T_0$$

$$O[T_0/x] \ e_1 : T_1$$

$$O \ let \ x : T_0 \leftarrow e_0 \text{ in } e_1 : T_1$$
[Let-Init]

This rule is weak. Why?

Prof. Necula CS 164 Lectures 10-13

Let with Initialization

Consider the example:

...

```
class C inherits P { ... }
...
let x : P \leftarrow \text{new C in ...}
```

- The previous let rule does not allow this code
 - We say that the rule is too weak

Subtyping

- Define a relation X · Y on classes to say that:
 - An object of type X could be used when one of type Y is acceptable, or equivalently
 - X conforms with Y
 - In Cool this means that X is a subtype of Y

 $\begin{array}{l} \mathsf{X} \leq \mathsf{X} \\ \mathsf{X} \leq \mathsf{Y} \text{ if } \mathsf{X} \text{ inherits from } \mathsf{Y} \\ \mathsf{X} \leq \mathsf{Z} \text{ if } \mathsf{X} \leq \mathsf{Y} \text{ and } \mathsf{Y} \leq \mathsf{Z} \end{array}$

$$O \ e_0 : T$$
$$T \cdot T_0$$
$$O[T_0/x] \ e_1 : T_1$$
$$[Let-Init]$$
$$O \ let \ x : T_0 \leftarrow e_0 \text{ in } e_1 : T_1$$

- Both rules for let are correct
- But more programs type check with the latter

- There is a tension between
 - Flexible rules that do not constrain programming
 - Restrictive rules that ensure safety of execution

Expressiveness of Static Type Systems

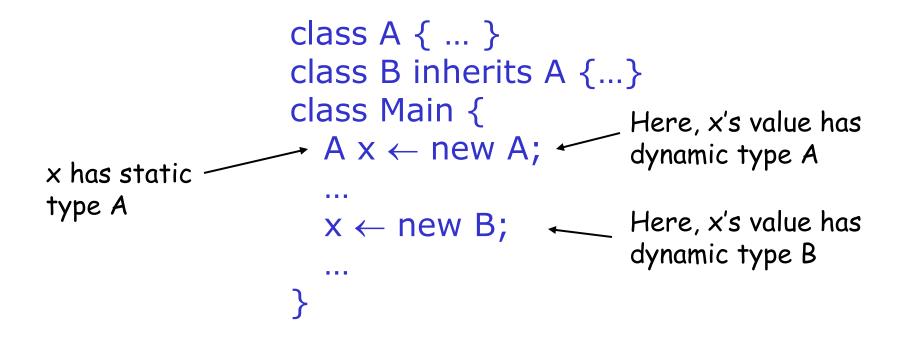
- A static type system enables a compiler to detect many common programming errors
- The cost is that some correct programs are disallowed
 - Some argue for dynamic type checking instead
 - Others argue for more expressive static type checking
- But more expressive type systems are also more complex

- The <u>dynamic type</u> of an object is the class C that is used in the "new C" expression that creates the object
 - A run-time notion
 - Even languages that are not statically typed have the notion of dynamic type
- The <u>static type</u> of an expression is a notation that captures all possible dynamic types the expression could take
 - A compile-time notion

Dynamic and Static Types. (Cont.)

- In early type systems the set of static types correspond directly with the dynamic types
- Soundness theorem: for all expressions E dynamic_type(E) = static_type(E) (in all executions, E evaluates to values of the type inferred by the compiler)
- This gets more complicated in advanced type systems

Dynamic and Static Types in COOL



• A variable of static type A can hold values of static type B, if $B \le A$

Soundness theorem for the Cool type system:

 $\forall E. dynamic_type(E) \leq static_type(E)$

Why is this Ok?

- All operations that can be used on an object of type C can also be used on an object of type $C' \leq C$
 - Such as fetching the value of an attribute
 - Or invoking a method on the object
- Subclasses can <u>only add</u> attributes or methods
- Methods can be redefined but with same type !

Let. Examples.

Consider the following Cool class definitions

Class A { a() : int { 0 }; } Class B inherits A { b() : int { 1 }; }

- An instance of B has methods "a" and "b"
- An instance of A has method "a"
 - A type error occurs if we try to invoke method "b" on an instance of A

Example of Wrong Let Rule (1)

• Now consider a hypothetical let rule:

$$\begin{array}{ccc} O \, \widehat{} \, e_0 : T & T \cdot T_0 & O \, \widehat{} \, e_1 : T_1 \\ \\ O \, \widehat{} \, \text{let } x : T_0 \, \widetilde{A} \, e_0 \text{ in } e_1 : T_1 \end{array}$$

- How is it different from the correct rule?
- The following good program does not typecheck
 let x : Int à O in x + 1
- Why?

Example of Wrong Let Rule (2)

• Now consider a hypothetical let rule:

- How is it different from the correct rule?
- The following bad program is well typed let x : B Å new A in x.b()
- Why is this program bad?

Example of Wrong Let Rule (3)

• Now consider a hypothetical let rule:

 $\begin{array}{ccc} O \, \widehat{} \, e_0 : \mathsf{T} & \mathsf{T} \cdot \mathsf{T}_0 & O[\mathsf{T}/\mathsf{x}] \, \widehat{} \, e_1 : \mathsf{T}_1 \\ \\ O \, \widehat{} \, \text{let } \mathsf{x} : \mathsf{T}_0 \, \tilde{\mathsf{A}} \, e_0 \text{ in } e_1 : \mathsf{T}_1 \end{array}$

- How is it different from the correct rule?
- The following good program is not well typed let x : A à new B in {... x à new A; x.a(); }
- Why is this program not well typed?

Morale.

- The typing rules use very concise notation
- They are very carefully constructed
- Virtually any change in a rule either:
 - Makes the type system unsound (bad programs are accepted as well typed)
 - Or, makes the type system less usable (perfectly good programs are rejected)
- But some good programs will be rejected anyway
 - The notion of a good program is undecidable

More uses of subtyping:

$$O(id) = T_0$$

$$O`e_1 : T_1$$

$$T_1 \cdot T_0$$

$$O`id \tilde{A} e_1 : T_1$$
[Assign]

- Let $O_c(x) = T$ for all attributes x:T in class C
- Attribute initialization is similar to let, except for the scope of names

$$O_{c}(id) = T_{0}$$

$$O_{c} e_{1} : T_{1}$$

$$T_{1} \cdot T_{0}$$

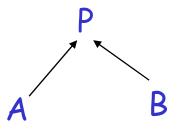
$$O_{c} id : T_{0} \tilde{A} e_{1};$$
[Attr-Init]

If-Then-Else

- Consider:
 - if e_0 then e_1 else e_2 fi
- The result can be either e_1 or e_2
- The type is either e_1 's type or e_2 's type
- The best we can do is the smallest supertype larger than the type of e_1 and e_2

If-Then-Else example

Consider the class hierarchy



• ... and the expression

if ... then new A else new B fi

- Its type should allow for the dynamic type to be both A or B
 - Smallest supertype is P

Least Upper Bounds

- lub(X,Y), the least upper bound of X and Y, is
 Z if
 - $X \leq Z \land Y \leq Z$

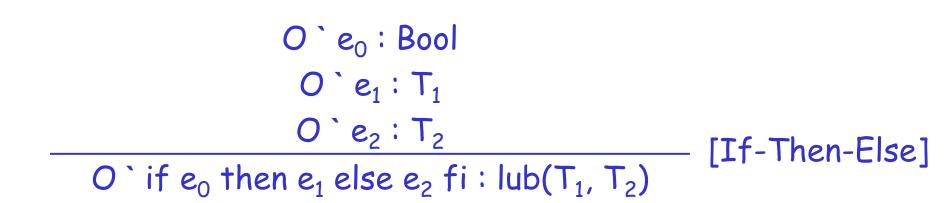
Z is an upper bound

- $X \le Z' \land Y \le Z' \Longrightarrow Z \le Z'$

Z is least among upper bounds

 In COOL, the least upper bound of two types is their least common ancestor in the inheritance tree

If-Then-Else Revisited



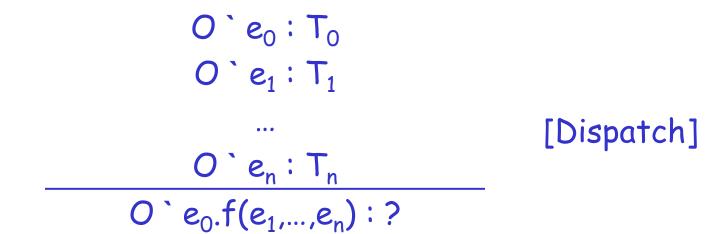
 The rule for case expressions takes a lub over all branches

$$\begin{array}{c} O \ e_{0} : T_{0} \\ O[T_{1}/x_{1}] \ e_{1} : T_{1}' \\ \vdots \\ O[T_{n}/x_{n}] \ e_{n} : T_{n}' \end{array} \qquad [Case] \\ O[T_{n}/x_{n}] \ e_{n} : T_{n}' \\ O \ case \ e_{0} \ of \ x_{1} : T_{1} \) \ e_{1} ; \ ... ; \ x_{n} : T_{n} \) \ e_{n} ; \ esac \ : \ lub(T_{1}', ..., T_{n}') \end{array}$$

- Type checking method dispatch
- Type checking with SELF_TYPE in COOL

Method Dispatch

There is a problem with type checking method calls:



 We need information about the formal parameters and return type of f

- In Cool, method and object identifiers live in different name spaces
 - A method foo and an object foo can coexist in the same scope
- In the type rules, this is reflected by a separate mapping M for method signatures $M(C,f) = (T_1, \ldots, T_n, T_{n+1})$ means in class C there is a method f $f(x_1:T_1, \ldots, x_n:T_n): T_{n+1}$

An Extended Typing Judgment

- Now we have two environments O and M
- The form of the typing judgment is O, M = T

read as: "with the assumption that the object identifiers have types as given by O and the method identifiers have signatures as given by M, the expression e has type T"

The Method Environment

- The method environment must be added to all rules
- In most cases, M is passed down but not actually used
 - Example of a rule that does not use M:

 $\begin{array}{c}
O, M \ e_1 : T_1 \\
O, M \ e_2 : T_2 \\
O, M \ e_1 + e_2 : Int
\end{array}$ [Add]

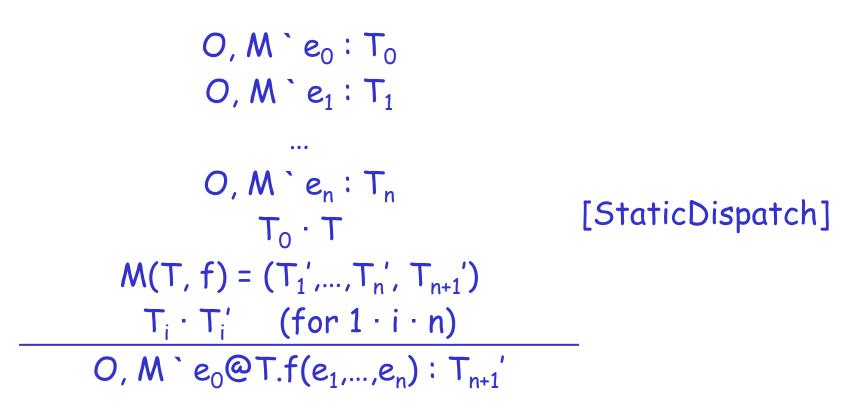
- Only the dispatch rules uses $\boldsymbol{\mathsf{M}}$

 $\begin{array}{c} O, M \ e_{0} : T_{0} \\ O, M \ e_{1} : T_{1} \\ & \cdots \\ O, M \ e_{n} : T_{n} \\ M(T_{0}, f) = (T_{1}', \dots, T_{n}', T_{n+1}') \\ T_{i} \cdot T_{i}' \quad (for \ 1 \cdot i \cdot n) \\ O, M \ e_{0}.f(e_{1}, \dots, e_{n}) : T_{n+1}' \end{array} \qquad [Dispatch]$

Prof. Necula CS 164 Lectures 10-13

Static Dispatch

- Static dispatch is a variation on normal dispatch
- The method is found in the class explicitly named by the programmer
- The inferred type of the dispatch expression must conform to the specified type



Prof. Necula CS 164 Lectures 10-13

Handling the SELF_TYPE

Flexibility vs. Soundness

- Recall that type systems have two conflicting goals:
 - Give flexibility to the programmer
 - Prevent valid programs to "go wrong"
 - Milner, 1981: "Well-typed programs do not go wrong"
- An active line of research is in the area of inventing more flexible type systems while preserving soundness

- The <u>dynamic type</u> of an object is the class C that is used in the "new C" expression that created it
 - A run-time notion
 - Even languages that are not statically typed have the notion of dynamic type
- The <u>static type</u> of an expression is a notation that captures all possible dynamic types the expression could take
 - A compile-time notion

Soundness theorem for the Cool type system:

 \forall E. dynamic_type(E) \leq static_type(E)

Why is this Ok?

- All operations that can be used on an object of type C can also be used on an object of type $C' \leq C$
 - Such as fetching the value of an attribute
 - Or invoking a method on the object
- Subclasses can <u>only add</u> attributes or methods
- Methods can be redefined but with same type !

An Example

- Class Count incorporates a counter
- The inc method works for any subclass
- But there is disaster lurking in the type system

An Example (Cont.)

Consider a subclass Stock of Count

class Stock inherits Count {
 name : String; -- name of item
};

And the following use of Stock:

```
class Main {
   Stock a ← (new Stock).inc (); Type checking error !
   ... a.name ...
};
```

What Went Wrong?

- (new Stock).inc() has dynamic type Stock
- So it is legitimate to write Stock a ← (new Stock).inc ()
- But this is not well-typed (new Stock).inc() has static type Count
- The type checker "looses" type information
- This makes inheriting inc useless
 - So, we must redefine inc for each of the subclasses, with a specialized return type

SELF_TYPE to the Rescue

- We will extend the type system
- Insight:
 - inc returns "self"
 - Therefore the return value has same type as "self"
 - Which could be Count or any subtype of Count !
 - In the case of (new Stock).inc () the type is Stock
- We introduce the keyword SELF_TYPE to use for the return value of such functions
 - We will also need to modify the typing rules to handle SELF_TYPE

SELF_TYPE to the Rescue (Cont.)

- SELF_TYPE allows the return type of inc to change when inc is inherited
- Modify the declaration of inc to read inc() : SELF_TYPE { ... }
- The type checker can now prove:
 O, M ` (new Count).inc() : Count
 O, M ` (new Stock).inc() : Stock
- The program from before is now well typed

Notes About SELF_TYPE

- SELF_TYPE is not a dynamic type
- It is a static type
- It helps the type checker to keep better track of types
- It enables the type checker to accept more correct programs
- In short, having SELF_TYPE increases the expressive power of the type system

SELF_TYPE and Dynamic Types (Example)

- What can be the dynamic type of the object returned by inc?
 - Answer: whatever could be the type of "self"

class A inherits Count { } ; class B inherits Count { } ; class C inherits Count { } ;

(inc could be invoked through any of these classes)

- Answer: Count or any subtype of Count

SELF_TYPE and Dynamic Types (Example)

 In general, if SELF_TYPE appears textually in the class C as the declared type of E then it denotes the dynamic type of the "self" expression:

 $dynamic_type(E) = dynamic_type(self) \leq C$

- Note: The meaning of SELF_TYPE depends on where it appears
 - We write SELF_TYPE_c to refer to an occurrence of SELF_TYPE in the body of C

Type Checking

- This suggests a typing rule: SELF_TYPE_c \leq C
- This rule has an important consequence:
 - In type checking it is always safe to replace SELF_TYPE_c by C
- This suggests one way to handle SELF_TYPE :
 - Replace all occurrences of SELF_TYPE_c by C
- This would be correct but it is like not having SELF_TYPE at all

Operations on SELF_TYPE

- Recall the operations on types
 - $T_1 \leq T_2$ T_1 is a subtype of T_2
 - $lub(T_1, T_2)$ the least-upper bound of T_1 and T_2
- We must extend these operations to handle SELF_TYPE

Let T and T' be any types but SELF_TYPE There are four cases in the definition of \leq

- 1. SELF_TYPE_C \leq T if C \leq T
 - SELF_TYPE_c can be any subtype of C
 - This includes C itself
 - Thus this is the most flexible rule we can allow
- **2.** SELF_TYPE_c \leq SELF_TYPE_c
 - SELF_TYPE_c is the type of the "self" expression
 - In Cool we never need to compare SELF_TYPEs coming from different classes

Extending \leq (Cont.)

3. $T \leq SELF_TYPE_c$ always false Note: $SELF_TYPE_c$ can denote any subtype of C.

4. $T \leq T'$ (according to the rules from before)

Based on these rules we can extend lub ...

Extending lub(T,T')

Let T and T' be any types but SELF_TYPE Again there are four cases: 1. $lub(SELF_TYPE_c, SELF_TYPE_c) = SELF_TYPE_c$

- 2. $lub(SELF_TYPE_c, T) = lub(C, T)$ This is the best we can do because $SELF_TYPE_c \le C$
- 3. $lub(T, SELF_TYPE_c) = lub(C, T)$
- 4. lub(T, T') defined as before

Where Can SELF_TYPE Appear in COOL?

- The parser checks that SELF_TYPE appears only where a type is expected
- But SELF_TYPE is not allowed everywhere a type can appear:
- 1. class T inherits T' {...}
 - T, T' cannot be SELF_TYPE
 - Because SELF_TYPE is never a dynamic type
- 2. x : T
 - T can be SELF_TYPE
 - An attribute whose type is SELF_TYPE_C Prof. Necula CS 164 Lectures 10-13

Where Can SELF_TYPE Appear in COOL?

3. let x : T in E

- T can be SELF_TYPE
- x has type $SELF_TYPE_c$
- 4. new T
 - T can be SELF_TYPE
 - Creates an object of the same type as self
- 5. $m@T(E_1,...,E_n)$
 - T cannot be SELF_TYPE

Typing Rules for SELF_TYPE

- Since occurrences of SELF_TYPE depend on the enclosing class we need to carry more context during type checking
- New form of the typing judgment:

O,M,C`e:T

(An expression e occurring in the body of C has static type T given a variable type environment O and method signatures M)

- The next step is to design type rules using SELF_TYPE for each language construct
- Most of the rules remain the same except that < and lub are the new ones
- Example:

$$O(id) = T_0$$
$$O \cdot e_1 : T_1$$
$$T_1 \cdot T_0$$
$$O \cdot id \tilde{A} e_1 : T_1$$

What's Different?

• Recall the old rule for dispatch

```
O,M,C = e_0 : T_0
```

```
\begin{array}{l} O,M,C \ \hat{} \ e_n \ : \ T_n \\ M(T_0, \ f) \ = \ (T_1',...,T_n',T_{n+1}') \\ T_{n+1}' \ \neq \ SELF\_TYPE \\ T_i \ \leq \ T_i' \qquad 1 \ \leq \ i \ \leq \ n \\ O,M,C \ \hat{} \ e_0.f(e_1,...,e_n) \ : \ T_{n+1}' \end{array}
```

 If the return type of the method is SELF_TYPE then the type of the dispatch is the type of the dispatch expression:

 $\begin{array}{l} \mathsf{O},\mathsf{M},\mathsf{C} \ \ \ e_0 \ : \ \mathsf{T}_0 \\ & \cdots \\ \mathsf{O},\mathsf{M},\mathsf{C} \ \ \ e_n \ : \ \mathsf{T}_n \\ \mathsf{M}(\mathsf{T}_0, \ f) = (\mathsf{T}_1', \ldots, \mathsf{T}_n', \ \mathsf{SELF_TYPE}) \\ & \mathsf{T}_i \leq \mathsf{T}_i' \qquad 1 \leq i \leq n \\ \mathsf{O},\mathsf{M},\mathsf{C} \ \ \ e_0.f(e_1, \ldots, e_n) \ : \ \mathsf{T}_0 \end{array}$

Prof. Necula CS 164 Lectures 10-13

- Note this rule handles the Stock example
- Formal parameters cannot be SELF_TYPE
- Actual arguments can be SELF_TYPE
 - The extended < relation handles this case
- The type T_0 of the dispatch expression could be <code>SELF_Type</code>
 - Which class is used to find the declaration of f?
 - Answer: it is safe to use the class where the dispatch appears

Static Dispatch

Recall the original rule for static dispatch

 $O,M,C = e_0 : T_0$

```
O,M,C \cdot e_n : T_n
                    T_0 \leq T
      M(T, f) = (T_{1}', ..., T_{n}', T_{n+1}')
           T_{n+1}' \neq SELF_TYPE
        T_i \leq T_i' 1 \leq i \leq n
O,M,C = e_0 @T.f(e_1,...,e_n) : T_{n+1}'
            Prof. Necula CS 164 Lectures 10-13
```

Static Dispatch

 If the return type of the method is SELF_TYPE we have:

O,M,C ` e₀ : T₀

```
\begin{array}{l} & \cdots \\ & O,M,C \ \hat{\ } e_n \, : \, T_n \\ & T_0 \leq T \\ \\ M(T,\,f) \, = \, (T_1\,',\ldots,T_n\,',SELF\_TYPE) \\ & T_i \leq T_i\,' \qquad 1 \leq i \leq n \\ \hline & O,M,C \ \hat{\ } e_0 @T.f(e_1,\ldots,e_n) \, : \, T_0 \end{array}
```

Static Dispatch

- Why is this rule correct?
- If we dispatch a method returning SELF_TYPE in class T, don't we get back a T?
- No. SELF_TYPE is the type of the self parameter, which may be a subtype of the class in which the method appears
- The static dispatch class cannot be SELF_TYPE

Prof. Necula CS 164 Lectures 10-13

New Rules

• There are two new rules using SELF_TYPE

O,M,C ` self : SELF_TYPE_C

O,M,C ` new SELF_TYPE : SELF_TYPE_C

 There are a number of other places where SELF_TYPE is used

Where SELF_TYPE Cannot Appear in COOL?

m(x : T) : T' { ... }

. . .

. . .

Only T' can be SELF_TYPE !

What could go wrong if T were SELF_TYPE?

class A { comp(x : SELF_TYPE) : Bool {...}; }; class B inherits A { b : int;

comp(x : SELF_TYPE) : Bool { ... x.b ...}; };

let x : A \leftarrow new B in ... x.comp(new A); ...

Summary of SELF_TYPE

- The extended < and lub operations can do a lot of the work. Implement them to handle SELF_TYPE
- SELF_TYPE can be used only in a few places.
 Be sure it isn't used anywhere else.
- A use of SELF_TYPE always refers to any subtype in the current class
 - The exception is the type checking of dispatch.
 - SELF_TYPE as the return type in an invoked method might have nothing to do with the current class Prof. Necula CS 164 Lectures 10-13 119

Why Cover SELF_TYPE ?

- SELF_TYPE is a research idea
 - It adds more expressiveness to the type system
- SELF_TYPE is itself not so important
 - except for the project
- Rather, SELF_TYPE is meant to illustrate that type checking can be quite subtle
- In practice, there should be a balance between the complexity of the type system and its expressiveness

Type Systems

- The rules in these lecture were COOL-specific
 - Other languages have very different rules
 - We'll survey a few more type systems later
- General themes
 - Type rules are defined on the structure of expressions
 - Types of variables are modeled by an environment
- Types are a play between flexibility and safety