Code Generation (I)

ICOM4029
 Lecture 9

Lecture Outline

- Stack machines
- The MIPS assembly language
- A simple source language
- Stack-machine implementation of the simple language

Stack Machines

- A simple evaluation model
- No variables or registers
- A stack of values for intermediate results

Example of a Stack Machine Program

- Consider two instructions
- push i - place the integer i on top of the stack
- add - pop two elements, add them and put the result back on the stack
- A program to compute $7+5$:
push 7
push 5
add

Stack Machine. Example

- Each instruction:
- Takes its operands from the top of the stack
- Removes those operands from the stack
- Computes the required operation on them
- Pushes the result on the stack

Why Use a Stack Machine?

- Each operation takes operands from the same place and puts results in the same place
- This means a uniform compilation scheme
- And therefore a simpler compiler

Why Use a Stack Machine?

- Location of the operands is implicit
- Always on the top of the stack
- No need to specify operands explicitly
- No need to specify the location of the result
- Instruction "add" as opposed to "add r_{1}, r_{2} "
\Rightarrow Smaller encoding of instructions
\Rightarrow More compact programs
- This is one reason why Java Bytecodes use a stack evaluation model

Optimizing the Stack Machine

- The add instruction does 3 memory operations
- Two reads and one write to the stack
- The top of the stack is frequently accessed
- Idea: keep the top of the stack in a register (called accumulator)
- Register accesses are faster
- The "add" instruction is now

$$
a c c \leftarrow a c c+\text { top_of_stack }
$$

- Only one memory operation!

Stack Machine with Accumulator

Invariants

- The result of computing an expression is always in the accumulator
- For an operation op $\left(e_{1}, \ldots, e_{n}\right)$ push the accumulator on the stack after computing each of e_{1}, \ldots, e_{n-1}
- The result of e_{n} is in the accumulator before op
- After the operation pop $\mathrm{n}-1$ values
- After computing an expression the stack is as before

Stack Machine with Accumulator. Example

- Compute $7+5$ using an accumulator

A Bigger Example: $3+(7+5)$

Code	Acc	Stack
acc $\leftarrow 3$	3	<init>
push acc	3	3, <init>
acc $\leftarrow 7$	7	3 , <init>
push acc	7	7,3, <init>
acc $\leftarrow 5$	5	7,3, <init>
acc \leftarrow acc + top_of_stack	12	7,3, <init>
pop	12	3, <init>
acc \leftarrow acc + top_of_stack	15	3, <init>
pop	15	<init>

Notes

- It is very important that the stack is preserved across the evaluation of a subexpression
- Stack before the evaluation of $7+5$ is 3 , <init>
- Stack after the evaluation of $7+5$ is 3 , <init>
- The first operand is on top of the stack

From Stack Machines to MIPS

- The compiler generates code for a stack machine with accumulator
- We want to run the resulting code on the MIPS processor (or simulator)
- We implement stack machine instructions using MIPS instructions and registers

Simulating a Stack Machine...

- The accumulator is kept in MIPS register $\$ a 0$
- The stack is kept in memory
- The stack grows towards lower addresses
- Standard convention on the MIPS architecture
- The address of the next location on the stack is kept in MIPS register \$sp
- The top of the stack is at address \$sp + 4

MIPS Assembly

MIPS architecture

- Prototypical Reduced Instruction Set Computer (RISC) architecture
- Arithmetic operations use registers for operands and results
- Must use load and store instructions to use operands and results in memory
- 32 general purpose registers (32 bits each)
- We will use \$sp, \$a0 and \$+1 (a temporary register)
- Read the SPIM handout for more details

A Sample of MIPS Instructions

- Iw reg offset(reg ${ }_{2}$)
- Load 32-bit word from address reg ${ }_{2}$ offset into reg
- add reg reg $_{2}$ reg $_{3}$
- $r e g_{1} \leftarrow r e g_{2}+r e g_{3}$
- sw reg offset(reg re $_{1}$)
- Store 32-bit word in reg ${ }_{1}$ at address reg + offset
- addiu reg reg $_{2} \mathrm{imm}$
- $\mathrm{reg}_{1} \leftarrow \mathrm{reg}_{2}+\mathrm{imm}$
- "u" means overflow is not checked
- li reg imm
- reg $\leftarrow \mathrm{imm}$

MIPS Assembly. Example.

- The stack-machine code for $7+5$ in MIPS:

acc $\leftarrow 7$	li	$\$ a 07$
push acc	sw	$\$ a 00(\$ s p)$
	addiu $\$$ sp $\$$ sp -4	
$a c c \leftarrow 5$	li	$\$ a 05$
$a c c \leftarrow a c c+$ top_of_stack	Iw	$\$+14(\$ s p)$
pop	add $\$ a 0 \$ a 0 \$+1$	
	addiu $\$$ sp $\$$ sp 4	

- We now generalize this to a simple language...

Some Useful Macros

- We define the following abbreviation
- push \$ \dagger
sw $\$+0(\$ s p)$
addiu \$sp \$sp -4
- pop
addiu \$sp \$sp 4
- $\$ \dagger \leftarrow$ top

Iw $\quad \$+4(\$ s p)$

A Small Language

- A language with integers and integer operations

$$
\begin{aligned}
P & \rightarrow D ; P \mid D \\
D & \rightarrow \text { def id(ARGS })=E ; \\
A R G S & \rightarrow \text { id, } A R G S \mid \text { id } \\
E & \rightarrow \text { int } \mid \text { id } \mid \text { if } E_{1}=E_{2} \text { then } E_{3} \text { else } E_{4} \\
& \left|E_{1}+E_{2}\right| E_{1}-E_{2} \mid \text { id }\left(E_{1}, \ldots, E_{n}\right)
\end{aligned}
$$

A Small Language (Cont.)

- The first function definition f is the "main" routine
- Running the program on input i means computing f(i)
- Program for computing the Fibonacci numbers:

$$
\begin{aligned}
\text { def } \mathrm{fib}(x)= & \text { if } x=1 \text { then } 0 \text { else } \\
& \text { if } x=2 \text { then } 1 \text { else } \\
& f i b(x-1)+\mathrm{fib}(x-2)
\end{aligned}
$$

Code Generation Strategy

- For each expression e we generate MIPS code that:
- Computes the value of e in $\$ a 0$
- Preserves \$sp and the contents of the stack
- We define a code generation function cgen(e) whose result is the code generated for e

Code Generation for Constants

- The code to evaluate a constant simply copies it into the accumulator:

$$
\operatorname{cgen}(i)=1 i \$ a 0 i
$$

- Note that this also preserves the stack, as required

Code Generation for Add

$$
\begin{aligned}
& \operatorname{cgen}\left(e_{1}+e_{2}\right)= \\
& \quad \operatorname{cgen}\left(e_{1}\right) \\
& \text { push } \$ a 0 \\
& \operatorname{cgen}\left(e_{2}\right) \\
& \$+1 \leftarrow \text { top } \\
& \text { add } \$ a 0 \$+1 \$ a 0 \\
& \text { pop }
\end{aligned}
$$

- Possible optimization: Put the result of e_{1} directly in register \$ $\$ 1$?

Code Generation for Add. Wrong!

- Optimization: Put the result of e_{1} directly in $\$+1$?

$$
\begin{aligned}
& \operatorname{cgen}\left(e_{1}+e_{2}\right)= \\
& \quad \operatorname{cgen}\left(e_{1}\right) \\
& \quad \text { move } \$+1 \$ a 0 \\
& \quad \operatorname{cgen}\left(e_{2}\right) \\
& \quad \text { add } \$ a 0 \$+1 \$ a 0
\end{aligned}
$$

- Try to generate code for : $3+(7+5)$

Code Generation Notes

- The code for + is a template with "holes" for code for evaluating e_{1} and e_{2}
- Stack-machine code generation is recursive
- Code for $e_{1}+e_{2}$ consists of code for e_{1} and e_{2} glued together
- Code generation can be written as a recursivedescent of the AST
- At least for expressions

Code Generation for Sub and Constants

- New instruction: sub reg reg $_{2}$ reg $_{3}$
- Implements reg ${ }_{1} \leftarrow$ reg $_{2}-$ reg $_{3}$

$$
\operatorname{cgen}\left(e_{1}-e_{2}\right)=
$$

$\operatorname{cgen}\left(e_{1}\right)$
push \$a0
cgen $\left(e_{2}\right)$
$\$+1 \leftarrow$ top
sub \$a0 \$ +1 \$a0
pop

Code Generation for Conditional

- We need flow control instructions
- New instruction: beq reg reg $_{2}$ label
- Branch to label if reg $_{1}=$ reg $_{2}$
- New instruction: b label
- Unconditional jump to label

Code Generation for If (Cont.)

$\operatorname{cgen}\left(\right.$ if $e_{1}=e_{2}$ then e_{3} else $\left.e_{4}\right)=$
$\operatorname{cgen}\left(e_{1}\right)$
push \$a0
$\operatorname{cgen}\left(e_{2}\right)$
$\$+1 \leftarrow$ top
pop
beq \$a0 \$+1 true_branch
false_branch:
$\operatorname{cgen}\left(e_{4}\right)$
bend_if
true_branch:
$\operatorname{cgen}\left(e_{3}\right)$
end_if:

The Activation Record

- Code for function calls and function definitions depends on the layout of the activation record (AR)
- A very simple AR suffices for this language:
- The result is always in the accumulator
- No need to store the result in the AR
- The activation record holds actual parameters
- For $f\left(x_{1}, \ldots, x_{n}\right)$ push $x_{n} \ldots, x_{1}$ on the stack
- These are the only variables in this language

The Activation Record (Cont.)

- The stack discipline guarantees that on function exit \$sp is the same as it was on function entry
- No need to save \$sp
- We need the return address
- It's handy to have a pointer to start of the current activation
- This pointer lives in register \$fp (frame pointer)
- Reason for frame pointer will be clear shortly

The Activation Record

- Summary: For this language, an AR with the caller's frame pointer, the actual parameters, and the return address suffices
- Picture: Consider a call to $f(x, y)$, The AR will be:

Code Generation for Function Call

- The calling sequence is the instructions (of both caller and callee) to set up a function invocation
- New instruction: jal label
- Jump to label, save address of next instruction in \$ra
- On other architectures the return address is stored on the stack by the "call" instruction

Code Generation for Function Call (Cont.)

$\operatorname{cgen}\left(f\left(e_{1}, \ldots, e_{n}\right)\right)=$ push $\$ \mathrm{fp}$
cgen $\left(e_{n}\right)$
push \$a0
$\operatorname{cgen}\left(e_{1}\right)$
push \$a0
jal f_entry

- The caller saves its value of the frame pointer
- Then it saves the actual parameters in reverse order
- The caller saves the return address in register \$ra
- The AR so far is $4 * n+4$ bytes long

Code Generation for Function Definition

- New instruction: jr reg
- Jump to address in register reg
$\operatorname{cgen}\left(\operatorname{def} f\left(x_{1}, \ldots, x_{n}\right)=e\right)=$. Note: The frame pointer move \$fp \$sp
push \$ra
cgen(e)
$\$ \mathrm{ra} \leftarrow$ top
addiu \$sp \$sp z
Iw \$fp O(\$sp)
jr \$ra points to the top, not bottom of the frame
- The callee pops the return address, the actual arguments and the saved value of the frame pointer
- $z=4^{*} n+8$

Calling Sequence. Example for $f(x, y)$.

Code Generation for Variables

- Variable references are the last construct
- The "variables" of a function are just its parameters
- They are all in the AR
- Pushed by the caller
- Problem: Because the stack grows when intermediate results are saved, the variables are not at a fixed offset from \$sp

Code Generation for Variables (Cont.)

- Solution: use a frame pointer
- Always points to the return address on the stack
- Since it does not move it can be used to find the variables
- Let x_{i} be the $i^{\text {th }}(i=1, \ldots, n)$ formal parameter of the function for which code is being generated

Code Generation for Variables (Cont.)

- Example: For a function def $f\left(x_{1}, x_{2}\right)=e$ the activation and frame pointer are set up as follows:

$$
\begin{aligned}
& x_{1} \text { is at } f p+4 \\
& x_{2} \text { is at } f p+8
\end{aligned}
$$

- Thus:
$\operatorname{cgen}\left(x_{i}\right)=\operatorname{lw} \$ a 0 z(\$ f p)$
($z=4^{\star} \mathrm{i}$)
What if we had global variables?

Summary

- The activation record must be designed together with the code generator
- Code generation can be done by recursive traversal of the AST
- We recommend you use a stack machine for your Cool compiler (it's simple)

Summary

- See the Web page for a large code generation example
- Production compilers do different things
- Emphasis is on keeping values (esp. current stack frame) in registers
- Intermediate results are laid out in the AR, not pushed and popped from the stack

Code Generation for Object-Oriented Languages

Required in BOTH
ICOM 4029 and CIIC 8015

Object Layout

- OO implementation = Stuff from last lecture + More stuff
- OO Slogan: If B is a subclass of A, then an object of class B can be used wherever an object of class A is expected
- This means that code in class A works unmodified for an object of class B

Two Issues

- How are objects represented in memory?
- How is dynamic dispatch implemented?

Object Layout Example

```
Class A {
    a: Int <- 0;
    d: Int <- 1;
    f(): Int {a<-a+d};
};
```

Class B inherits A \{
b: Int <- 2;
f(): Int \{ a \}; // Override
g(): $\operatorname{Int}\{a<-a-b\} ;$
\};

Class C inherits A \{
c: Int <- 3;
$h():$ Int $\left\{a<-a^{*} c\right\} ;$
\}:

Object Layout (Cont.)

- Attributes a and d are inherited by classes B and C
- All methods in all classes refer to a
- For A methods to work correctly in A, B, and C objects, attribute a must be in the same "place" in each object

Object Layout (Cont.)

An object is like a struct in C. The reference

foo.field

is an index into a foo struct at an offset corresponding to field

Objects in Cool are implemented similarly

- Objects are laid out in contiguous memory
- Each attribute stored at a fixed offset in object
- When a method is invoked, the object is self and the fields are the object's attributes

Cool Object Layout

- The first 3 words of Cool objects contain header information:
Offset

Class Tag	0
Object Size	4
Dispatch Ptr	8
Attribute 1	12
Attribute 2	16
. .	

Cool Object Layout (Cont.)

- Class tag is an integer
- Identifies class of the object
- Object size is an integer
- Size of the object in words
- Dispatch ptr is a pointer to a table of methods
- More later
- Attributes in subsequent slots
- Lay out in contiguous memory

Subclasses

Observation: Given a layout for class A, a layout for subclass B can be defined by extending the layout of A with additional slots for the additional attributes of B

Leaves the layout of A unchanged (B is an extension)

Layout Picture

Qffset Class	0	4	8	12	16	20
A	Atag	5	$*$	a	d	
B	Btag	6	$*$	a	d	b
C	Ctag	6	$*$	a	d	c

Subclasses (Cont.)

- The offset for an attribute is the same in a class and all of its subclasses
- Any method for an A_{1} can be used on a subclass A_{2}
- Consider layout for $A_{n} \cdot \ldots \cdot A_{3} \cdot A_{2} \cdot A_{1}$

Dynamic Dispatch

- Consider again our example

```
Class A {
    a: Int<- 0;
    d: Int <- 1;
    f(): Int {a<- a + d };
};
```

Class B inherits A \{
b: Int <-2;
$f(): \operatorname{Int}\{a\} ;$
g(): $\operatorname{Int}\{a<-a-b\} ;$
\};

Class C inherits A \{
c: Int <- 3;
$h():$ Int $\left\{a<-a^{*} c\right\} ;$
\}:

Dynamic Dispatch Example

- e.g()
- g refers to method in B if e is a B
- e.f()
- f refers to method in A if f is an A or C (inherited in the case of C)
- f refers to method in B for a B object
- The implementation of methods and dynamic dispatch strongly resembles the implementation of attributes

Dispatch Tables

- Every class has a fixed set of methods (including inherited methods)
- A dispatch table indexes these methods
- An array of method entry points
- A method f lives at a fixed offset in the dispatch table for a class and all of its subclasses

Dispatch Table Example

Offset	0	4
Class		
A	$f A$	
B	$f B$	9
C	$f A$	h

- The dispatch table for class A has only 1 method
- The tables for B and C extend the table for A to the right
- Because methods can be overridden, the method for f is not the same in every class, but is always at the same offset

Using Dispatch Tables

- The dispatch pointer in an object of class X points to the dispatch table for class X
- Every method f of class X is assigned an offset O_{f} in the dispatch table at compile time

Using Dispatch Tables (Cont.)

- Every method must know what object is "self"
- "self" is passed as the first argument to all methods
- To implement a dynamic dispatch e.f() we
- Evaluate e, obtaining an object x
- Find D by reading the dispatch-table field of x
- Call D[$\left.O_{f}\right](x)$
- D is the dispatch table for x
- In the call, self is bound to x

Allocating Temporaries in the AR

Optional in ICOM 4029
Required in CIIC 8015

Review

- The stack machine has activation records and intermediate results interleaved on the stack

AR
Intermediates
AR
Intermediates

Review (Cont.)

- Advantage: Very simple code generation
- Disadvantage: Very slow code
- Storing/loading temporaries requires a store/load and \$sp adjustment

A Better Way

- Idea: Keep temporaries in the AR
- The code generator must assign a location in the AR for each temporary

Example

$$
\begin{gathered}
\text { def } \mathrm{fib}(x)=\text { if } x=1 \text { then } 0 \text { else } \\
\text { if } x=2 \text { then } 1 \text { else } \\
\text { fib }(x-1)+\mathrm{fib}(x-2)
\end{gathered}
$$

- What intermediate values are placed on the stack?
- How many slots are needed in the AR to hold these values?

How Many Temporaries?

- Let $N T(e)=\#$ of temps needed to evaluate e
- NT $\left(e_{1}+e_{2}\right)$
- Needs at least as many temporaries as NT $\left(e_{1}\right)$
- Needs at least as many temporaries as NT $\left(e_{2}\right)+1$
- Space used for temporaries in e_{1} can be reused for temporaries in e_{2}

The Equations

$$
\begin{aligned}
& N T\left(e_{1}+e_{2}\right)=\max \left(N T\left(e_{1}\right), 1+N T\left(e_{2}\right)\right) \\
& N T\left(e_{1}-e_{2}\right)=\max \left(N T\left(e_{1}\right), 1+N T\left(e_{2}\right)\right)
\end{aligned}
$$

$N T$ (if $e_{1}=e_{2}$ then e_{3} else $\left.e_{4}\right)=\max \left(N T\left(e_{1}\right), 1+N T\left(e_{2}\right), N T\left(e_{3}\right), N T\left(e_{4}\right)\right)$

$$
\begin{gathered}
N T\left(i d\left(e_{1}, \ldots, e_{n}\right)=\max \left(N T\left(e_{1}\right), \ldots, N T\left(e_{n}\right)\right)\right. \\
N T(i n t)=0 \\
N T(i d)=0
\end{gathered}
$$

Is this bottom-up or top-down? What is NT(...code for fib...)?

The Revised AR

- For a function definition $f\left(x_{1}, \ldots, x_{n}\right)=e$ the AR has $2+n+N T(e)$ elements
- Return address
- Frame pointer
- n arguments
- NT(e) locations for intermediate results

Picture

CS 164 Lecture 15

Revised Code Generation

- Code generation must know how many temporaries are in use at each point
- Add a new argument to code generation: the position of the next available temporary

Code Generation for + (original)

$\operatorname{cgen}\left(e_{1}+e_{2}\right)=$
$\operatorname{cgen}\left(e_{1}\right)$
sw \$a0 O(\$sp)
addiu \$sp \$sp-4
$\operatorname{cgen}\left(e_{2}\right)$
Iw \$+1 4(\$sp)
add $\$ a 0$ \$t1 \$a0
addiu \$sp \$sp 4

Code Generation for + (revised)

$\operatorname{cgen}\left(e_{1}+e_{2}, n t\right)=$
$\operatorname{cgen}\left(e_{1}, n t\right)$
sw \$a0-nt(\$fp)
$\operatorname{cgen}\left(e_{2}, n t+4\right)$
lw \$+1-nt(\$fp)
add $\$ a 0 \$+1 \$ a 0$

Notes

- The temporary area is used like a small, fixedsize stack
- Exercise: Write out cgen for other constructs

