
Prof. Necula CS 164 Lecture 17 1

Operational Semantics of Cool

ICOM 4029
Lecture 10

Prof. Necula CS 164 Lecture 17 2

Lecture Outline

• COOL operational semantics

• Motivation

• Notation

• The rules

Prof. Necula CS 164 Lecture 17 3

Motivation

• We must specify for every Cool expression
what happens when it is evaluated
– This is the “meaning” of an expression

• The definition of a programming language:
– The tokens ⇒ lexical analysis
– The grammar ⇒ syntactic analysis
– The typing rules ⇒ semantic analysis
– The evaluation rules

⇒ code generation and optimization

Prof. Necula CS 164 Lecture 17 4

Evaluation Rules So Far

• So far, we specified the evaluation rules
indirectly
– We specified the compilation of Cool to a stack

machine
– And we specified the evaluation rules of the stack

machine

• This is a complete description
• Why isn’t it good enough?

Prof. Necula CS 164 Lecture 17 5

Assembly Language Description of Semantics

• Assembly-language descriptions of language
implementation have too many irrelevant
details
– Whether to use a stack machine or not
– Which way the stack grows
– How integers are represented on a particular

machine
– The particular instruction set of the architecture

• We need a complete but not overly restrictive
specification

Prof. Necula CS 164 Lecture 17 6

Programming Language Semantics

• There are many ways to specify programming
language semantics

• They are all equivalent but some are more
suitable to various tasks than others

• Operational semantics
– Describes the evaluation of programs on an

abstract machine
– Most useful for specifying implementations
– This is what we will use for Cool

Prof. Necula CS 164 Lecture 17 7

Other Kinds of Semantics

• Denotational semantics
– The meaning of a program is expressed as a

mathematical object
– Elegant but quite complicated

• Axiomatic semantics
– Useful for checking that programs satisfy certain

correctness properties
• e.g., that the quick sort function sorts an array

– The foundation of many program verification
systems

Prof. Necula CS 164 Lecture 17 8

Introduction to Operational Semantics

• Once, again we introduce a formal notation
– Using logical rules of inference, just like for typing

• Recall the typing judgment
Context ` e : C

(in the given context, expression e has type C)

• We try something similar for evaluation
Context ` e : v

(in the given context, expression e evaluates to
value v)

Prof. Necula CS 164 Lecture 17 9

Example of Inference Rule for Operational
Semantics

• Example:

• In general the result of evaluating an
expression depends on the result of evaluating
its subexpressions

• The logical rules specify everything that is
needed to evaluate an expression

Context ` e1 + e2 : 12

Context ` e1 : 5
Context ` e2 : 7

Prof. Necula CS 164 Lecture 17 10

What Contexts Are Needed?

• Obs.: Contexts are needed to handle variables
• Consider the evaluation of y ← x + 1

– We need to keep track of values of variables
– We need to allow variables to change their values

during the evaluation
• We track variables and their values with:

– An environment : tells us at what address in
memory is the value of a variable stored

– A store : tells us what is the contents of a memory
location

Prof. Necula CS 164 Lecture 17 11

Variable Environments

• A variable environment is a map from variable
names to locations

• Tells in what memory location the value of a
variable is stored

• Keeps track of which variables are in scope
• Example:

E = [a : l1, b : l2]
• To lookup a variable a in environment E we

write E(a)

Prof. Necula CS 164 Lecture 17 12

Stores

• A store maps memory locations to values
• Example:

S = [l1 → 5, l2 → 7]
• To lookup the contents of a location l1 in store

S we write S(l1)
• To perform an assignment of 12 to location l1

we write S[12 /l1]
– This denotes a store S’ such that

S’(l1) = 12 and S’(l) = S(l) if l ≠ l1

Prof. Necula CS 164 Lecture 17 13

Cool Values

• All values in Cool are objects
– All objects are instances of some class (the

dynamic type of the object)
• To denote a Cool object we use the notation

X(a1 = l1, …, an = ln) where
– X is the dynamic type of the object
– ai are the attributes (including those inherited)
– li are the locations where the values of attributes

are stored

Prof. Necula CS 164 Lecture 17 14

Cool Values (Cont.)

• Special cases (classes without attributes)
Int(5) the integer 5
Bool(true) the boolean true
String(4, “Cool”) the string “Cool” of length 4

• There is a special value void that is a member
of all types
– No operations can be performed on it
– Except for the test isvoid
– Concrete implementations might use NULL here

Prof. Necula CS 164 Lecture 17 15

Operational Rules of Cool

• The evaluation judgment is
so, E, S ` e : v, S’

read:
– Given so the current value of the self object
– And E the current variable environment
– And S the current store
– If the evaluation of e terminates then
– The returned value is v
– And the new store is S’

Prof. Necula CS 164 Lecture 17 16

Notes

• The “result” of evaluating an expression is a
value and a new store

• Changes to the store model the side-effects
• The variable environment does not change
• Nor does the value of “self”
• The operational semantics allows for non-

terminating evaluations
• We define one rule for each kind of expression

Prof. Necula CS 164 Lecture 17 17

Operational Semantics for Base Values

• No side effects in these cases
(the store does not change)

so, E, S ` i : Int(i), S

i is an integer literal

so, E, S ` true : Bool(true), S so, E, S ` false : Bool(false), S

so, E, S ` s : String(n,s), S

s is a string literal
n is the length of s

Prof. Necula CS 164 Lecture 17 18

Operational Semantics of Variable References

• Note the double lookup of variables
– First from name to location
– Then from location to value

• The store does not change
• A special case:

so, E, S ` id : v, S

E(id) = lid
S(lid) = v

so, E, S ` self : so, S

Prof. Necula CS 164 Lecture 17 19

Operational Semantics of Assignment

• A three step process
– Evaluate the right hand side

⇒ a value and a new store S1

– Fetch the location of the assigned variable
– The result is the value v and an updated store

• The environment does not change

so, E, S ` id ← e : v, S2

so, E, S ` e : v, S1
E(id) = lid

S2 = S1[v/lid]

Prof. Necula CS 164 Lecture 17 20

Operational Semantics of Conditionals

• The “threading” of the store enforces an
evaluation sequence
– e1 must be evaluated first to produce S1
– Then e2 can be evaluated

• The result of evaluating e1 is a boolean object
– The typing rules ensure this
– There is another, similar, rule for Bool(false)

so, E, S ` if e1 then e2 else e3 : v, S2

so, E, S ` e1 : Bool(true), S1
so, E, S1 ` e2 : v, S2

Prof. Necula CS 164 Lecture 17 21

Operational Semantics of Sequences

• Again the threading of the store expresses
the intended evaluation sequence

• Only the last value is used
• But all the side-effects are collected

so, E, S ` { e1; …; en; } : vn, Sn

so, E, S ` e1 : v1, S1
so, E, S1 ` e2 : v2, S2

…
so, E, Sn-1 ` en : vn , Sn

Prof. Necula CS 164 Lecture 17 22

Operational Semantics of while (I)

• If e1 evaluates to Bool(false) then the loop
terminates immediately
– With the side-effects from the evaluation of e1

– And with result value void
• The typing rules ensure that e1 evaluates to a

boolean object

so, E, S ` while e1 loop e2 pool : void, S1

so, E, S ` e1 : Bool(false), S1

Prof. Necula CS 164 Lecture 17 23

Operational Semantics of while (II)

• Note the sequencing (S → S1 → S2 → S3)
• Note how looping is expressed

– Evaluation of “while …” is expressed in terms of the
evaluation of itself in another state

• The result of evaluating e2 is discarded
– Only the side-effect is preserved

so, E, S ` while e1 loop e2 pool : void, S3

so, E, S ` e1 : Bool(true), S1
so, E, S1 ` e2 : v, S2

so, E, S2 ` while e1 loop e2 pool : void, S3

Prof. Necula CS 164 Lecture 17 24

Operational Semantics of let Expressions (I)

• What is the context in which e2 must be
evaluated?
– Environment like E but with a new binding of id to a

fresh location lnew

– Store like S1 but with lnew mapped to v1

so, E, S ` let id : T ← e1 in e2 : v2, S2

so, E, S ` e1 : v1, S1
so, ?, ? ` e2 : v, S2

Prof. Necula CS 164 Lecture 17 25

Operational Semantics of let Expressions (II)

• We write lnew = newloc(S) to say that lnew is a
location that is not already used in S
– Think of newloc as the dynamic memory allocation

function
• The operational rule for let:

so, E, S ` let id : T ← e1 in e2 : v2, S2

so, E, S ` e1 : v1, S1
lnew = newloc(S1)
so, E[lnew/id] , S1[v1/lnew] ` e2 : v2, S2

Prof. Necula CS 164 Lecture 17 26

Operational Semantics of new

• Consider the expression new T
• Informal semantics

– Allocate new locations to hold the values for all
attributes of an object of class T

• Essentially, allocate a new object
– Initialize those locations with the default values of

attributes
– Evaluate the initializers and set the resulting

attribute values
– Return the newly allocated object

Prof. Necula CS 164 Lecture 17 27

Default Values

• For each class A there is a default value
denoted by DA
– Dint = Int(0)
– Dbool = Bool(false)
– Dstring = String(0, “”)
– DA = void (for another class A)

Prof. Necula CS 164 Lecture 17 28

More Notation

• For a class A we write
class(A) = (a1 : T1 ← e1, …, an : Tn ← en) where

– ai are the attributes (including the inherited ones)
– Ti are their declared types
– ei are the initializers

Prof. Necula CS 164 Lecture 17 29

Operational Semantics of new

• Observation: new SELF_TYPE allocates an
object with the same dynamic type as self

so, E, S ` new T : v, S2

T0 = if T == SELF_TYPE and so = X(…) then X else T
class(T0) = (a1 : T1 ← e1,…, an : Tn ← en)
li = newloc(S) for i = 1,…,n
v = T0(a1= l1,…,an= ln)
E’ = [a1 : l1, …, an : ln]
S1 = S[DT1/l1,…,DTn/ln]
v, E’, S1 ` { a1 ← e1; …; an ← en; } : vn, S2

Prof. Necula CS 164 Lecture 17 30

Operational Semantics of new. Notes.

• The first three lines allocate the object
• The rest of the lines initialize it

– By evaluating a sequence of assignments
• State in which the initializers are evaluated

– Self is the current object
– Only the attributes are in scope (same as in typing)
– Starting value of attributes are the default ones

• The side-effect of initialization is preserved

Prof. Necula CS 164 Lecture 17 31

Operational Semantics of Method Dispatch

• Consider the expression e0.f(e1,…,en)
• Informal semantics:

– Evaluate the arguments in order e1,…,en

– Evaluate e0 to the target object
– Let X be the dynamic type of the target object
– Fetch from X the definition of f (with n args.)
– Create n new locations and an environment that

maps f’s formal arguments to those locations
– Initialize the locations with the actual arguments
– Set self to the target object and evaluate f’s body

Prof. Necula CS 164 Lecture 17 32

More Notation

• For a class A and a method f of A (possibly
inherited) we write:

impl(A, f) = (x1, …, xn, ebody) where
– xi are the names of the formal arguments
– ebody is the body of the method

Prof. Necula CS 164 Lecture 17 33

Operational Semantics of Dispatch

so, E, S ` e0.f(e1,…,en) : v, Sn+3

so, E, S ` e1 : v1 , S1
so, E, S1 ` e2 : v2 , S2

…
so, E, Sn-1 ` en : vn , Sn
so, E, Sn ` e0 : v0, Sn+1

v0 = X(a1 = l1,…, am = lm)
impl(X, f) = (x1,…, xn, ebody)
lxi = newloc(Sn+1) for i = 1,…,n
E’ = [x1 : lx1, …, xn : lxn, a1 : l1,…,am : lm]
Sn+2 = Sn+1[v1/lx1,…,vn/lxn]
v0 , E’, Sn+2 ` ebody : v, Sn+3

Prof. Necula CS 164 Lecture 17 34

Operational Semantics of Dispatch. Notes.

• The body of the method is invoked with
– E mapping formal arguments and self’s attributes
– S like the caller’s except with actual arguments

bound to the locations allocated for formals
• The notion of the activation frame is implicit

– New locations are allocated for actual arguments
• The semantics of static dispatch is similar

except the implementation of f is taken from
the specified class

Prof. Necula CS 164 Lecture 17 35

Runtime Errors

Operational rules do not cover all cases
Consider for example the rule for dispatch:

What happens if impl(X, f) is not defined?
Cannot happen in a well-typed program (Type

safety theorem)

so, E, S ` e0.f(e1,…,en) : v, Sn+3

…
so, E, Sn ` e0 : v0,Sn+1

v0 = X(a1 = l1,…, am = lm)
impl(X, f) = (x1,…, xn, ebody)
…

Prof. Necula CS 164 Lecture 17 36

Runtime Errors (Cont.)

• There are some runtime errors that the type
checker does not try to prevent
– A dispatch on void
– Division by zero
– Substring out of range
– Heap overflow

• In such case the execution must abort
gracefully
– With an error message not with segfault

Prof. Necula CS 164 Lecture 17 37

Conclusions

• Operational rules are very precise
– Nothing is left unspecified

• Operational rules contain a lot of details
– Read them carefully

• Most languages do not have a well specified
operational semantics

• When portability is important an operational
semantics becomes essential
– But not always using the notation we used for Cool

