
ICOM 4015 Fall 2008 Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ICOM 4015: Advanced
Programming

Lecture 10

Chapter Ten: Inheritance

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Chapter Ten: Inheritance

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  To learn about inheritance

•  To understand how to inherit and override superclass methods

•  To be able to invoke superclass constructors

•  To learn about protected and package access control

•  To understand the common superclass Object and to override
its toString and equals methods

•  To use inheritance for customizing user interfaces

Chapter Goals

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Inheritance: extend classes by adding methods and fields

•  Example: Savings account = bank account with interest
class SavingsAccount extends BankAccount
{
 new methods
 new instance fields
}

• SavingsAccount automatically inherits all methods and instance
fields of BankAccount
SavingsAccount collegeFund = new SavingsAccount(10);
// Savings account with 10% interest
collegeFund.deposit(500);
// OK to use BankAccount method with SavingsAccount
 object

An Introduction to Inheritance

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Extended class = superclass (BankAccount), extending class =
subclass (Savings)

•  Inheriting from class ≠ implementing interface: subclass inherits
behavior and state

•  One advantage of inheritance is code reuse

An Introduction to Inheritance (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Every class extends the Object class either directly or indirectly

An Inheritance Diagram

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  In subclass, specify added instance fields, added methods, and
changed or overridden methods
public class SavingsAccount extends BankAccount
{
 public SavingsAccount(double rate)
 {
 interestRate = rate;
 }

 public void addInterest()
 {
 double interest = getBalance() * interestRate /
 100;
 deposit(interest);
 }

An Introduction to Inheritance

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

 private double interestRate;
}

•  Encapsulation: addInterest calls getBalance rather than
updating the balance field of the superclass (field is private)

•  Note that addInterest calls getBalance without specifying an
implicit parameter (the calls apply to the same object)

An Introduction to Inheritance

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

SavingsAccount object inherits the balance instance field from
 BankAccount, and gains one additional instance field:
 interestRate:

Layout of a Subclass Object

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

class SubclassName extends SuperclassName
{
 methods
 instance fields
}

Example:
public class SavingsAccount extends BankAccount
{
 public SavingsAccount(double rate)
 {
 interestRate = rate;
 }

Syntax 10.1 Inheritance

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

 public void addInterest()
 {
 double interest = getBalance() * interestRate / 100;
 deposit(interest);
 }

 private double interestRate;
}

Purpose:

To define a new class that inherits from an existing class, and
define the methods and instance fields that are added in the new
class.

Syntax 10.1 Inheritance

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Which instance fields does an object of class SavingsAccount
have?

 Answer: Two instance fields: balance and interestRate.

Self Check 10.1

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Name four methods that you can apply to SavingsAccount objects.

 Answer: deposit, withdraw, getBalance, and addInterest.

Self Check 10.2

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

If the class Manager extends the class Employee, which class is the
superclass and which is the subclass?

 Answer: Manager is the subclass; Employee is the
 superclass.

Self Check 10.3

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Sets of classes can form complex inheritance hierarchies

•  Example:

Inheritance Hierarchies

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Superclass JComponent has methods getWidth, getHeight

•  AbstractButton class
has methods to set/get
button text and icon

Inheritance Hierarchies Example: Swing Hierarchy

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Consider a bank that offers its customers the following account
types:

1. Checking account: no interest; small number of free transactions per
month, additional transactions are charged a small fee

2. Savings account: earns interest that compounds monthly
•  Inheritance hierarchy:

•  All bank accounts support the getBalance method

•  All bank accounts support the deposit and withdraw methods,
but the implementations differ

•  Checking account needs a method deductFees; savings account
needs a method addInterest

A Simpler Example: Hierarchy of Bank Accounts

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

What is the purpose of the JTextComponent class in Figure 4?

 Answer: To express the common behavior of text fields and text
 components.

Self Check 10.4

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Which instance field will we need to add to the CheckingAccount
class?

 Answer: We need a counter that counts the number of
 withdrawals and deposits.

Self Check 10.5

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Override method:
• Supply a different implementation of a method that exists in the
superclass

• Must have same signature (same name and same parameter types)
•  If method is applied to an object of the subclass type, the overriding

method is executed

•  Inherit method:
• Don't supply a new implementation of a method that exists in
superclass

• Superclass method can be applied to the subclass objects

•  Add method:
• Supply a new method that doesn't exist in the superclass
• New method can be applied only to subclass objects

Inheriting Methods

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Can't override fields

•  Inherit field: All fields from the superclass are automatically
inherited

•  Add field: Supply a new field that doesn't exist in the superclass

•  What if you define a new field with the same name as a
superclass field?

•  Each object would have two instance fields of the same name
•  Fields can hold different values
•  Legal but extremely undesirable

Inheriting Instance Fields

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Overrides deposit and withdraw to increment the transaction
count:

 public class CheckingAccount extends BankAccount
{
public void deposit(double amount) { . . . }
public void withdraw(double amount) { . . . }
public void deductFees() { . . . }
// new method private int transactionCount; // new
 instance field }

•  Each CheckingAccount object has two instance fields:
• balance (inherited from BankAccount)
• transactionCount (new to CheckingAccount)

Implementing the CheckingAccount Class

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  You can apply four methods to CheckingAccount objects:
• getBalance() (inherited from BankAccount)
• deposit(double amount) (overrides BankAccount method)
• withdraw(double amount) (overrides BankAccount method)
• deductFees() (new to CheckingAccount)

Implementing the CheckingAccount Class (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Consider deposit method of CheckingAccount
 public void deposit(double amount)
 {
 transactionCount++;
 // now add amount to balance
 . . .
}

•  Can't just add amount to balance

•  balance is a private field of the superclass

•  A subclass has no access to private fields of its superclass

•  Subclass must use public interface

Inherited Fields are Private

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Can't just call
 deposit(amount)
 in deposit method of CheckingAccount
•  That is the same as
this.deposit(amount)

•  Calls the same method (infinite recursion)

•  Instead, invoke superclass method
super.deposit(amount)

•  Now calls deposit method of BankAccount class

Invoking a Superclass Method

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Complete method:
public void deposit(double amount)
{
 transactionCount++;
 // Now add amount to balance
 super.deposit(amount);
}

Invoking a Superclass Method (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Animation 10.1 –

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

super.methodName(parameters)

Example:
public void deposit(double amount)
{
 transactionCount++;
 super.deposit(amount);

}

Purpose:

To call a method of the superclass instead of the method of the
current class.

Syntax 10.2 Calling a Superclass Method

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

public class CheckingAccount extends BankAccount
{
 . . .
 public void withdraw(double amount)
 {
 transactionCount++;
 // Now subtract amount from balance
 super.withdraw(amount);
 }

 public void deductFees()
 {
 if (transactionCount > FREE_TRANSACTIONS)
 {
 double fees = TRANSACTION_FEE
 * (transactionCount - FREE_TRANSACTIONS);
 super.withdraw(fees);
 }

Implementing Remaining Methods

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

 transactionCount = 0;
 }
 . . .
 private static final
 int FREE_TRANSACTIONS = 3;
 private static final double TRANSACTION_FEE = 2.0;
}

Implementing Remaining Methods (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Why does the withdraw method of the CheckingAccount class call
super.withdraw?

 Answer: It needs to reduce the balance, and it cannot access
 the balance field directly.

Self Check 10.6

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Why does the deductFees method set the transaction count to
zero?

 Answer: So that the count can reflect the number of
 transactions for the following month.

Self Check 10.7

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  A subclass has no access to the private instance fields of the
superclass

•  Beginner's error: "solve" this problem by adding another
instance field with same name:
public class CheckingAccount extends BankAccount
{
 public void deposit(double amount)
 {
 transactionCount++;
 balance = balance + amount;
 }
 . . .
 private double balance; // Don't
}

Common Error: Shadowing Instance Fields

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Now the deposit method compiles, but it doesn't update the
correct balance!

Common Error: Shadowing Instance Fields (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• super followed by a parenthesis indicates a call to the
superclass constructor
public class CheckingAccount extends BankAccount
{
 public CheckingAccount(double initialBalance)
 {
 // Construct superclass
 super(initialBalance);
 // Initialize transaction count
 transactionCount = 0;
 }
 . . .
}

•  Must be the first statement in subclass constructor

Subclass Construction

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  If subclass constructor doesn't call superclass constructor,
default superclass constructor is used

• Default constructor: constructor with no parameters
•  If all constructors of the superclass require parameters, then the compiler

reports an error

Subclass Construction (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ClassName(parameters)
{
 super(parameters);
 . . .
}

Example:
public CheckingAccount(double initialBalance)
{
 super(initialBalance);
 transactionCount = 0;

}

Purpose:

To invoke a constructor of the superclass. Note that this statement
must be the first statement of the subclass constructor.

Syntax 10.3 Calling a Superclass Constructor

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Why didn't the SavingsAccount constructor in Section 10.1 call its
superclass constructor?

 Answer: It was content to use the default constructor of the
 superclass, which sets the balance to zero.

Self Check 10.8

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

When you invoke a superclass method with the super keyword,
does the call have to be the first statement of the subclass
method?

 Answer: No – this is a requirement only for constructors. For
 example, the SavingsAccount.deposit method first
 increments the transaction count, then calls the superclass
 method.

Self Check 10.9

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Ok to convert subclass reference to superclass reference
SavingsAccount collegeFund = new SavingsAccount(10);
BankAccount anAccount = collegeFund;

Object anObject = collegeFund;

•  The three object references stored in collegeFund, anAccount,
and anObject all refer to the same object of type
SavingsAccount

Converting Between Subclass and Superclass Types

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Converting Between Subclass and Superclass Types (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Superclass references don't know the full story:
anAccount.deposit(1000); // OK
anAccount.addInterest();
// No--not a method of the class to which anAccount

 belongs

•  When you convert between a subclass object to its
superclass type:

•  The value of the reference stays the same – it is the memory location of
the object

•  But, less information is known about the object

Converting Between Subclass and Superclass Types

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Why would anyone want to know less about an object?
•  Reuse code that knows about the superclass but not the subclass:

public void transfer(double amount, BankAccount other)
{
 withdraw(amount);
 other.deposit(amount);
}

Can be used to transfer money from any type of
BankAccount

Converting Between Subclass and Superclass Types (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Occasionally you need to convert from a superclass reference
 to a subclass reference
 BankAccount anAccount = (BankAccount) anObject;

•  This cast is dangerous: if you are wrong, an exception is thrown

•  Solution: use the instanceof operator

•  instanceof: tests whether an object belongs to a particular type
if (anObject instanceof BankAccount)
{
 BankAccount anAccount = (BankAccount) anObject;
 . . .
}

Converting Between Subclass and Superclass Types

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

object instanceof TypeName

Example:
if (anObject instanceof BankAccount)
{
 BankAccount anAccount = (BankAccount) anObject;
 . . .
}

Purpose:

To return true if the object is an instance of TypeName (or one of
its subtypes), and false otherwise.

Syntax 10.4 The instanceof Operator

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Why did the second parameter of the transfer method have to be
of type BankAccount and not, for example, SavingsAccount?

 Answer: We want to use the method for all kinds of bank
 accounts. Had we used a parameter of type SavingsAccount,
 we couldn't have called the method with a CheckingAccount
 object.

Self Check 10.10

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Why can't we change the second parameter of the transfer
method to the type Object?

 Answer: We cannot invoke the deposit method on a variable
 of type Object.

Self Check 10.11

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  In Java, type of a variable doesn't completely determine type of
object to which it refers
BankAccount aBankAccount = new SavingsAccount(1000); //
aBankAccount holds a reference to a SavingsAccount

•  Method calls are determined by type of actual object, not type of
object reference
BankAccount anAccount = new CheckingAccount();
anAccount.deposit(1000); // Calls "deposit" from
 CheckingAccount

•  Compiler needs to check that only legal methods are invoked
Object anObject = new BankAccount();
anObject.deposit(1000); // Wrong!

Polymorphism

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Polymorphism: ability to refer to objects of multiple types with
varying behavior

•  Polymorphism at work:
public void transfer(double amount, BankAccount other)
{
 withdraw(amount); // Shortcut for
 this.withdraw(amount)
 other.deposit(amount);

}

•  Depending on types of amount and other, different versions of
withdraw and deposit are called

Polymorphism

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: /**
02: This program tests the BankAccount class and
03: its subclasses.
04: */
05: public class AccountTester
06: {
07: public static void main(String[] args)
08: {
09: SavingsAccount momsSavings
10: = new SavingsAccount(0.5);
11:
12: CheckingAccount harrysChecking
13: = new CheckingAccount(100);
14:
15: momsSavings.deposit(10000);
16:
17: momsSavings.transfer(2000, harrysChecking);
18: harrysChecking.withdraw(1500);
19: harrysChecking.withdraw(80);
20:

ch10/accounts/AccountTester.java

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

21: momsSavings.transfer(1000, harrysChecking);
22: harrysChecking.withdraw(400);
23:
24: // Simulate end of month
25: momsSavings.addInterest();
26: harrysChecking.deductFees();
27:
28: System.out.println("Mom's savings balance: "
29: + momsSavings.getBalance());
30: System.out.println("Expected: 7035");
31:
32: System.out.println("Harry's checking balance: "
33: + harrysChecking.getBalance());
34: System.out.println("Expected: 1116");
35: }
36: }

ch10/accounts/AccountTester.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: /**
02: A checking account that charges transaction fees.
03: */
04: public class CheckingAccount extends BankAccount
05: {
06: /**
07: Constructs a checking account with a given balance.
08: @param initialBalance the initial balance
09: */
10: public CheckingAccount(double initialBalance)
11: {
12: // Construct superclass
13: super(initialBalance);
14:
15: // Initialize transaction count
16: transactionCount = 0;
17: }
18:
19: public void deposit(double amount)
20: {
21: transactionCount++;

ch10/accounts/CheckingAccount.java

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

22: // Now add amount to balance
23: super.deposit(amount);
24: }
25:
26: public void withdraw(double amount)
27: {
28: transactionCount++;
29: // Now subtract amount from balance
30: super.withdraw(amount);
31: }
32:
33: /**
34: Deducts the accumulated fees and resets the
35: transaction count.
36: */
37: public void deductFees()
38: {
39: if (transactionCount > FREE_TRANSACTIONS)
40: {
41: double fees = TRANSACTION_FEE *
42: (transactionCount - FREE_TRANSACTIONS);
43: super.withdraw(fees);
44: }

ch10/accounts/CheckingAccount.java (cont.)

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

45: transactionCount = 0;
46: }
47:
48: private int transactionCount;
49:
50: private static final int FREE_TRANSACTIONS = 3;
51: private static final double TRANSACTION_FEE = 2.0;
52: }

ch10/accounts/CheckingAccount.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: /**
02: A bank account has a balance that can be changed by
03: deposits and withdrawals.
04: */
05: public class BankAccount
06: {
07: /**
08: Constructs a bank account with a zero balance.
09: */
10: public BankAccount()
11: {
12: balance = 0;
13: }
14:
15: /**
16: Constructs a bank account with a given balance.
17: @param initialBalance the initial balance
18: */
19: public BankAccount(double initialBalance)
20: {
21: balance = initialBalance;
22: }
23:

ch10/accounts/BankAccount.java

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

24: /**
25: Deposits money into the bank account.
26: @param amount the amount to deposit
27: */
28: public void deposit(double amount)
29: {
30: balance = balance + amount;
31: }
32:
33: /**
34: Withdraws money from the bank account.
35: @param amount the amount to withdraw
36: */
37: public void withdraw(double amount)
38: {
39: balance = balance - amount;
40: }
41:
42: /**
43: Gets the current balance of the bank account.
44: @return the current balance
45: */

ch10/accounts/BankAccount.java (cont.)

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

46: public double getBalance()
47: {
48: return balance;
49: }
50:
51: /**
52: Transfers money from the bank account to another account
53: @param amount the amount to transfer
54: @param other the other account
55: */
56: public void transfer(double amount, BankAccount other)
57: {
58: withdraw(amount);
59: other.deposit(amount);
60: }
61:
62: private double balance;
63: }

ch10/accounts/BankAccount.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: /**
02: An account that earns interest at a fixed rate.
03: */
04: public class SavingsAccount extends BankAccount
05: {
06: /**
07: Constructs a bank account with a given interest rate.
08: @param rate the interest rate
09: */
10: public SavingsAccount(double rate)
11: {
12: interestRate = rate;
13: }
14:
15: /**
16: Adds the earned interest to the account balance.
17: */

ch10/accounts/SavingsAccount.java

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Output:
Mom's savings balance: 7035.0
Expected: 7035
Harry's checking balance: 1116.0
Expected: 1116

18: public void addInterest()
19: {
20: double interest = getBalance() * interestRate / 100;
21: deposit(interest);
22: }
23:
24: private double interestRate;
25: }

ch10/accounts/SavingsAccount.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

If a is a variable of type BankAccount that holds a non-null
reference, what do you know about the object to which a refers?

 Answer: The object is an instance of BankAccount or one of
 its subclasses.

Self Check 10.12

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

If a refers to a checking account, what is the effect of calling
a.transfer(1000, a)?

 Answer: The balance of a is unchanged, and the transaction
 count is incremented twice.

Self Check 10.13

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Java has four levels of controlling access to fields, methods, and
classes:

• public access
o Can be accessed by methods of all classes

• private access
o Can be accessed only by the methods of their own class

• protected access
o See Advanced Topic 10.3

•  package access
o The default, when no access modifier is given
o Can be accessed by all classes in the same package
o Good default for classes, but extremely unfortunate for fields

Access Control

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Instance and static fields: Always private. Exceptions:
• public static final constants are useful and safe
•  Some objects, such as System.out, need to be accessible to all

programs (public)
•  Occasionally, classes in a package must collaborate very closely (give

some fields package access); inner classes are usually better

•  Methods: public or private

•  Classes and interfaces: public or package
•  Better alternative to package access: inner classes

•  In general, inner classes should not be public (some exceptions
exist, e.g., Ellipse2D.Double)

•  Beware of accidental package access (forgetting public or
private)

Recommended Access Levels

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

What is a common reason for defining package-visible instance
fields?

 Answer: Accidentally forgetting the private modifier.

Self Check 10.14

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

If a class with a public constructor has package access, who can
construct objects of it?

 Answer: Any methods of classes in the same package.

Self Check 10.15

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• All classes defined without an explicit extends clause
automatically extend Object

Object: The Cosmic Superclass

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Object: The Cosmic Superclass

•  All classes defined without an explicit extends clause
automatically extend Object

•  Most useful methods:
• String toString()
• boolean equals(Object otherObject)
• Object clone()

•  Good idea to override these methods in your classes

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Returns a string representation of the object

•  Useful for debugging:
Rectangle box = new Rectangle(5, 10, 20, 30);
String s = box.toString();
// Sets s to java.awt.Rectangle[x=5,y=10,width=20,
 height=30]"

• toString is called whenever you concatenate a string with an
object:
"box=" + box;
// Result: "box=java.awt.Rectangle[x=5,y=10,width=20,
 height=30]"

Overriding the toString Method

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Object.toString prints class name and the hash code of the
object
BankAccount momsSavings = new BankAccount(5000);
String s = momsSavings.toString();
// Sets s to something like "BankAccount@d24606bf"

Overriding the toString Method (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  To provide a nicer representation of an object, override
toString:

public String toString()
{
 return "BankAccount[balance=" + balance + "]";
}

•  This works better:
BankAccount momsSavings = new BankAccount(5000);
String s = momsSavings.toString();
// Sets s to "BankAccount[balance=5000]"

Overriding the toString Method

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Overriding the equals Method

• Equals tests for equal contents

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Overriding the equals Method (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Define the equals method to test whether two objects have
equal state

•  When redefining equals method, you cannot change object
signature; use a cast instead:

public class Coin
{
 . . .
 public boolean equals(Object otherObject)
 {
 Coin other = (Coin) otherObject;
 return name.equals(other.name) && value ==
 other.value;
 }
 . . .
}

Overriding the equals Method

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  You should also override the hashCode method so that equal
objects have the same hash code

Overriding the equals Method (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Should the call x.equals(x) always return true?

 Answer: It certainly should – unless, of course, x is null.

Self Check 10.16

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Can you implement equals in terms of toString? Should you?

 Answer: If toString returns a string that describes all
 instance fields, you can simply call toString on the implicit
 and explicit parameters, and compare the results. However,
 comparing the fields is more efficient than converting them into
 strings.

Self Check 10.17

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Copying an object reference gives two references to same
object
BankAccount account2 = account;

•  Sometimes, need to make a copy of the object

Overriding the clone Method

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Overriding the clone Method (cont.)

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Define clone method to make new object (see Advanced Topic
10.6)

•  Use clone:
BankAccount clonedAccount =

 (BankAccount)account.clone();

•  Must cast return value because return type is Object

Overriding the clone Method (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

The Object.clone method

•  Creates shallow copies

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Does not systematically clone all subobjects

•  Must be used with caution

•  It is declared as protected; prevents from accidentally calling
x.clone() if the class to which x belongs hasn't redefined clone
to be public

•  You should override the clone method with care (see Advanced
Topic 10.6)

The Object.clone method (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Scripting Languages

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Use inheritance for complex frames to make programs easier to
understand

•  Design a subclass of JFrame

•  Store the components as instance fields

•  Initialize them in the constructor of your subclass

•  If initialization code gets complex, simply add some helper
methods

Using Inheritance to Customize Frames

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Lauren – I’m not sure what is supposed to
go here.

Example: Investment Viewer Program

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Of course, we still need a class with a main method:

Lauren – I’m not sure what is supposed to
go here.

Example: Investment Viewer Program

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Example: Investment Viewer Program (cont.)

Lauren – I’m not sure what is supposed to
go here.

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

How many Java source files are required by the investment viewer
application when we use inheritance to define the frame class?

Answer: Three: InvestmentFrameViewer, InvestmentFrame, and
BankAccount.

Self Check 10.18

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Why does the InvestmentFrame constructor call
setSize(FRAME_WIDTH, FRAME_HEIGHT), whereas the main method
of the investment viewer class in Chapter 9 called
frame.setSize(FRAME_WIDTH, FRAME_HEIGHT)?

 Answer: The InvestmentFrame constructor adds the panel to
 itself.

Self Check 10.19

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Use JTextField components to provide space for user input

final int FIELD_WIDTH = 10; // In characters
 final JTextField rateField = new

 JTextField(FIELD_WIDTH);

•  Place a JLabel next to each text field

JLabel rateLabel = new JLabel("Interest Rate: ");

Processing Text Input

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Supply a button that the user can press to indicate that the input
 is ready for processing

Processing Text Input

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  The button's actionPerformed method reads the user input from
 the text fields (use getText)

Class AddInterestListener implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 double rate =
 Double.parseDouble(rateField.getText());
 . . .
 }
}

Processing Text Input (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: import javax.swing.JFrame;
02:
03: /**
04: This program displays the growth of an investment.
05: */
06: public class InvestmentViewer3
07: {
08: public static void main(String[] args)
09: {
10: JFrame frame = new InvestmentFrame();
11: frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12: frame.setVisible(true);
13: }
14: }

ch10/textfield/InvestmentViewer3.java

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: import java.awt.event.ActionEvent;
02: import java.awt.event.ActionListener;
03: import javax.swing.JButton;
04: import javax.swing.JFrame;
05: import javax.swing.JLabel;
06: import javax.swing.JPanel;
07: import javax.swing.JTextField;
08:
09: /**
10: A frame that shows the growth of an investment with variable
interest.
11: */
12: public class InvestmentFrame extends JFrame
13: {
14: public InvestmentFrame()
15: {
16: account = new BankAccount(INITIAL_BALANCE);
17:
18: // Use instance fields for components
19: resultLabel = new JLabel("balance: " + account.getBalance());
20:

ch10/textfield/InvestmentFrame.java

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

21: // Use helper methods
22: createTextField();
23: createButton();
24: createPanel();
25:
26: setSize(FRAME_WIDTH, FRAME_HEIGHT);
27: }
28:
29: private void createTextField()
30: {
31: rateLabel = new JLabel("Interest Rate: ");
32:
33: final int FIELD_WIDTH = 10;
34: rateField = new JTextField(FIELD_WIDTH);
35: rateField.setText("" + DEFAULT_RATE);
36: }
37:
38: private void createButton()
39: {
40: button = new JButton("Add Interest");
41:

ch10/textfield/InvestmentFrame.java (cont.)

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

42: class AddInterestListener implements ActionListener
43: {
44: public void actionPerformed(ActionEvent event)
45: {
46: double rate = Double.parseDouble(
47: rateField.getText());
48: double interest = account.getBalance()
49: * rate / 100;
50: account.deposit(interest);
51: resultLabel.setText(
52: "balance: " + account.getBalance());
53: }
54: }
55:
56: ActionListener listener = new AddInterestListener();
57: button.addActionListener(listener);
58: }
59:
60: private void createPanel()

ch10/textfield/InvestmentFrame.java (cont.)

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

61: {
62: panel = new JPanel();
63: panel.add(rateLabel);
64: panel.add(rateField);
65: panel.add(button);
66: panel.add(resultLabel);
67: add(panel);
68: }
69:
70: private JLabel rateLabel;
71: private JTextField rateField;
72: private JButton button;
73: private JLabel resultLabel;
74: private JPanel panel;
75: private BankAccount account;
76:
77: private static final int FRAME_WIDTH = 450;
78: private static final int FRAME_HEIGHT = 100;
79:
80: private static final double DEFAULT_RATE = 5;
81: private static final double INITIAL_BALANCE = 1000;
82: }

ch10/textfield/InvestmentFrame.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

What happens if you omit the first JLabel object?

 Answer: Then the text field is not labeled, and the user will not
 know its purpose.

Self Check 10.20

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

If a text field holds an integer, what expression do you use to read
its contents?

 Answer: Integer.parseInt(textField.getText())

Self Check 10.21

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Use a JTextArea to show multiple lines of text

•  You can specify the number of rows and columns:
 final int ROWS = 10;
 final int COLUMNS = 30;

 JTextArea textArea = new JTextArea(ROWS, COLUMNS);

•  setText: to set the text of a text field or text area

•  append: to add text to the end of a text area

•  Use newline characters to separate lines:
 textArea.append(account.getBalance() + "\n");

•  To use for display purposes only:
 textArea.setEditable(false); // program can call setText
 and append to change it

Text Areas

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  To add scroll bars to a text area:

JTextArea textArea = new JTextArea(ROWS, COLUMNS);
JScrollPane scrollPane = new JScrollPane(textArea);

Text Areas

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: import java.awt.event.ActionEvent;
02: import java.awt.event.ActionListener;
03: import javax.swing.JButton;
04: import javax.swing.JFrame;
05: import javax.swing.JLabel;
06: import javax.swing.JPanel;
07: import javax.swing.JScrollPane;
08: import javax.swing.JTextArea;
09: import javax.swing.JTextField;
10:
11: /**
12: A frame that shows the growth of an investment with variable
interest.
13: */
14: public class InvestmentFrame extends JFrame
15: {
16: public InvestmentFrame()
17: {
18: account = new BankAccount(INITIAL_BALANCE);
19: resultArea = new JTextArea(AREA_ROWS, AREA_COLUMNS);
20: resultArea.setEditable(false);
21:

ch10/textarea/InvestmentFrame.java

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

22: // Use helper methods
23: createTextField();
24: createButton();
25: createPanel();
26:
27: setSize(FRAME_WIDTH, FRAME_HEIGHT);
28: }
29:
30: private void createTextField()
31: {
32: rateLabel = new JLabel("Interest Rate: ");
33:
34: final int FIELD_WIDTH = 10;
35: rateField = new JTextField(FIELD_WIDTH);
36: rateField.setText("" + DEFAULT_RATE);
37: }
38:
39: private void createButton()
40: {
41: button = new JButton("Add Interest");
42:

ch10/textarea/InvestmentFrame.java (cont.)

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

43: class AddInterestListener implements ActionListener
44: {
45: public void actionPerformed(ActionEvent event)
46: {
47: double rate = Double.parseDouble(
48: rateField.getText());
49: double interest = account.getBalance()
50: * rate / 100;
51: account.deposit(interest);
52: resultArea.append(account.getBalance() + "\n");
53: }
54: }
55:
56: ActionListener listener = new AddInterestListener();
57: button.addActionListener(listener);
58: }
59:
60: private void createPanel()
61: {
62: panel = new JPanel();
63: panel.add(rateLabel);
64: panel.add(rateField);
65: panel.add(button);

ch10/textarea/InvestmentFrame.java (cont.)

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

66: JScrollPane scrollPane = new JScrollPane(resultArea);
67: panel.add(scrollPane);
68: add(panel);
69: }
70:
71: private JLabel rateLabel;
72: private JTextField rateField;
73: private JButton button;
74: private JTextArea resultArea;
75: private JPanel panel;
76: private BankAccount account;
77:
78: private static final int FRAME_WIDTH = 400;
79: private static final int FRAME_HEIGHT = 250;
80:
81: private static final int AREA_ROWS = 10;
82: private static final int AREA_COLUMNS = 30;
83:
84: private static final double DEFAULT_RATE = 5;
85: private static final double INITIAL_BALANCE = 1000;
86: }

ch10/textarea/InvestmentFrame.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

What is the difference between a text field and a text area?

 Answer: A text field holds a single line of text; a text area holds
 multiple lines.

Self Check 10.22

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Why did the InvestmentFrame program call
resultArea.setEditable(false)?

 Answer: The text area is intended to display the program
 output. It does not collect user input.

Self Check 10.23

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

How would you modify the InvestmentFrame program if you didn't
want to use scroll bars?

 Answer: Don't construct a JScrollPane and add the
 resultArea object directly to the frame.

Self Check 10.24

