
Adapted from Prof. Necula UCB CS 164 1

Overview of COOL

ICOM 4029
Lecture 2

ICOM 4029 Fall 2008

Adapted from Prof. Necula UCB CS 164 2

Lecture Outline

•  Cool

•  The Course Project

•  Programming Assignment 1

ICOM 4029 Fall 2008

Adapted from Prof. Necula UCB CS 164 3

Cool Overview

•  Classroom Object Oriented Language
•  Designed to

–  Be implementable in one semester
–  Give a taste of implementation of modern

• Abstraction
• Static typing
• Reuse (inheritance)
• Memory management
• And more …

•  But many things are left out
ICOM 4029 Fall 2008

Adapted from Prof. Necula UCB CS 164 4

A Simple Example

•  Cool programs are sets of class definitions
– A special class Main with a special method main
– No separate notion of subroutine

•  class = a collection of attributes and methods
•  Instances of a class are objects

class Point {
 x : Int ← 0;
 y : Int ← 0;
};

ICOM 4029 Fall 2008

Adapted from Prof. Necula UCB CS 164 5

Cool Objects

•  An object can be thought of as a record
with a slot for each attribute

class Point {
 x : Int ← 0;
 y : Int; (* use default value *)
};

x y
0 0

•  The expression “new Point” creates a new
object of class Point

ICOM 4029 Fall 2008

Adapted from Prof. Necula UCB CS 164 6

Methods

•  Methods can refer to the current object using self

class Point {
 x : Int ← 0;
 y : Int ← 0;
 movePoint(newx : Int, newy : Int): Point {
 { x ← newx;
 y ← newy;
 self;
 } -- close block expression
 }; -- close method
}; -- close class

•  A class can also define methods for manipulating
the attributes

ICOM 4029 Fall 2008

Adapted from Prof. Necula UCB CS 164 7

Information Hiding in Cool

•  Methods are global

•  Attributes are local to a class
–  They can only be accessed by the class’s methods

•  Example:
class Point {
 . . .
 x () : Int { x };
 setx (newx : Int) : Int { x ← newx };
};

ICOM 4029 Fall 2008

Adapted from Prof. Necula UCB CS 164 8

Methods

•  Each object knows how to access the code of a
method

•  As if the object contains a slot pointing to the code

•  In reality implementations save space by sharing
these pointers among instances of the same class

x y
0 0

movePoint
*

x y
0 0

methods

movePoint
*

ICOM 4029 Fall 2008

Adapted from Prof. Necula UCB CS 164 9

Inheritance

•  We can extend points to colored points using
subclassing => class hierarchy

class ColorPoint inherits Point {
 color : Int ← 0;
 movePoint(newx : Int, newy : Int): Point {
 { color ← 0;
 x ← newx; y ← newy;
 self;
 }
 };
}; x y

0 0
color
0

 movePoint
*

ICOM 4029 Fall 2008

Adapted from Prof. Necula UCB CS 164 10

Cool Types

•  Every class is a type
•  Base classes:

–  Int for integers
–  Bool for boolean values: true, false
–  String for strings
– Object root of the class hierarchy

•  All variables must be declared
–  compiler infers types for expressions

ICOM 4029 Fall 2008

Adapted from Prof. Necula UCB CS 164 11

Cool Type Checking

•  Is well typed if P is an ancestor of C in the
class hierarchy
– Anywhere an P is expected a C can be used

•  Type safety:
– A well-typed program cannot result in runtime type

errors

x : P;
x ← new C;

ICOM 4029 Fall 2008

Adapted from Prof. Necula UCB CS 164 12

Method Invocation and Inheritance

•  Methods are invoked by dispatch
•  Understanding dispatch in the presence of

inheritance is a subtle aspect of OO languages
p : Point;
p ← new ColorPoint;
p.movePoint(1,2);

  p has static type Point
  p has dynamic type ColorPoint
  p.movePoint must invoke the ColorPoint version

ICOM 4029 Fall 2008

Adapted from Prof. Necula UCB CS 164 13

Method Invocation

•  Example: invoke one-argument method m
e.m(e’)

…
2

…
1

m: self ←
x ←
<method code>

4

5

5

6

1. Eval. argum e’

3. Find class of e
4. Find code of m

2. Eval. e

5. Bind self and x
6. Run method

…

…

3

method
table

ICOM 4029 Fall 2008

Adapted from Prof. Necula UCB CS 164 14

Other Expressions

•  Expression language (every expression has a
type and a value)
–  Conditionals if E then E else E fi
–  Loops: while E loop E pool
–  Case statement case E of x : Type ⇒ E; … esac
–  Arithmetic, logical operations
–  Assignment x ← E
–  Primitive I/O out_string(s), in_string(), …

•  Missing features:
– Arrays, Floating point operations, Interfaces,

Exceptions,…
ICOM 4029 Fall 2008

Adapted from Prof. Necula UCB CS 164 15

Cool Memory Management

•  Memory is allocated every time new is invoked

•  Memory is deallocated automatically when an
object is not reachable anymore
–  Done by the garbage collector (GC)
–  There is a Cool GC

ICOM 4029 Fall 2008

Adapted from Prof. Necula UCB CS 164 16

Course Project

•  A complete compiler
–  Cool ==> MIPS assembly language
– No optimizations

•  Split in 5 programming assignments (PAs)
•  There is adequate time to complete

assignments
–  But start early and please follow directions
–  Turn in early to test the turn-in procedure

•  Team (max. 2 students)

ICOM 4029 Fall 2008

Adapted from Prof. Necula UCB CS 164 17

Programming Assignment I

•  Write an interpreter for a stack machine …
•  … in Cool
•  Due in 2 weeks
•  Must be completed individually

ICOM 4029 Fall 2008

Adapted from Prof. Necula UCB CS 164 18

Homework for Next Week

•  Work on Programming Assignment I

•  Read Chapters 1-2 of Textbook

•  Continue learning Jlex

ICOM 4029 Fall 2008

