
ICOM 4015: Advanced 
Programming	  

Lecture 6 
 
 

Big Java by Cay Horstmann 
Copyright © 2009 by John 
Wiley & Sons.  All rights 
reserved. 

Reading: Chapter Six: Iteration 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

Chapter Six - Iteration 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

•  To be able to program loops with the while and for statements  

•  To avoid infinite loops and off-by-one errors 

•  To be able to use common loop algorithms  

•  To understand nested loops  

•  To implement simulations  

T To learn about the debugger  

Chapter Goals 



Iteration Statements 
•  While <CONDITION> <STMT> 

•  FOR(<INIT>; <CONDITION>; <STMT>) <STMT> 

Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

•  A while statement executes a block of code repeatedly  

•  A condition controls how often the loop is executed  

  while (condition)  
     statement  

•  Most commonly, the statement is a block statement (set of 
statements delimited by { })  

while Loops 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

•  Want to know when has the bank account reached a particular 
balance: 

  while (balance < targetBalance)  
  { 
     years++;  
     double interest = balance * rate / 100;  
     balance = balance + interest;  
  } 

Calculating the Growth of an Investment 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

Execution of a while Loop 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

  1  /** 
  2     A class to monitor the growth of an investment that  
  3     accumulates interest at a fixed annual rate. 
  4  */ 
  5  public class Investment 
  6  { 
  7     private double balance; 
  8     private double rate; 
  9     private int years; 
 10   
 11     /** 
 12        Constructs an Investment object from a starting balance and 
 13        interest rate. 
 14        @param aBalance the starting balance 
 15        @param aRate the interest rate in percent 
 16     */ 
 17     public Investment(double aBalance, double aRate) 
 18     { 
 19        balance = aBalance; 
 20        rate = aRate; 
 21        years = 0; 
 22     } 
 23  

ch06/invest1/Investment.java 

Continued 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

 24     /** 
 25        Keeps accumulating interest until a target balance has 
 26        been reached. 
 27        @param targetBalance the desired balance 
 28     */ 
 29     public void waitForBalance(double targetBalance) 
 30     { 
 31        while (balance < targetBalance) 
 32        { 
 33           years++;    
 34           double interest = balance * rate / 100; 
 35           balance = balance + interest; 
 36        } 
 37     } 
 38   
 39     /** 
 40        Gets the current investment balance. 
 41        @return the current balance 
 42     */ 
 43     public double getBalance() 
 44     { 
 45        return balance; 
 46     } 
 47  

ch06/invest1/Investment.java (cont.) 

Continued 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

 48     /** 
 49        Gets the number of years this investment has accumulated 
 50        interest. 
 51        @return the number of years since the start of the investment 
 52     */ 
 53     public int getYears() 
 54     { 
 55        return years; 
 56     } 
 57  } 

ch06/invest1/Investment.java (cont.) 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

  1  /** 
  2     This program computes how long it takes for an investment 
  3     to double. 
  4  */ 
  5  public class InvestmentRunner 
  6  { 
  7     public static void main(String[] args) 
  8     { 
  9        final double INITIAL_BALANCE = 10000; 
 10        final double RATE = 5; 
 11        Investment invest = new Investment(INITIAL_BALANCE, RATE); 
 12        invest.waitForBalance(2 * INITIAL_BALANCE); 
 13        int years = invest.getYears(); 
 14        System.out.println("The investment doubled after " 
 15              + years + " years"); 
 16     }    
 17  } 

ch06/invest1/InvestmentRunner.java 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

Program Run: 
The investment doubled after 15 years 

ch06/invest1/InvestmentRunner.java (cont.) 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

Animation 6.1: Tracing a Loop 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

   while Loop Flowchart  



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

while Loop Examples 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

Syntax 6.1 The while Statement 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

How often is the following statement in the loop executed? 
while (false) statement; 

   Answer: Never.  

Self Check 6.1 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

What would happen if RATE was set to 0 in the main method of the 
InvestmentRunner program?  

   Answer: The waitForBalance method would never return due to  
   an infinite loop. 

Self Check 6.2 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

•  Example: 
int years = 0;  
while (years < 20)  
{ 
   double interest = balance * rate / 100;  
   balance = balance + interest;  
} 

 
•  Loop runs forever — must kill program  

Common Error: Infinite Loops 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

•  Example: 
int years = 20;  
while (years > 0)  
{ 
   years++; // Oops, should have been years--  
   double interest = balance * rate / 100;  
   balance = balance + interest;  
} 

 
•  Loop runs forever — must kill program  

Common Error: Infinite Loops 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

•  Off-by-one error: a loop executes one too few, or one too 
many, times 

•  Example: 
int years = 0;  
while (balance < 2 * initialBalance)  
{ 
   years++;  
   double interest = balance * rate / 100;  
   balance = balance + interest;  
} 
System.out.println("The investment reached the target after " + 
years + " years.");  

•  Should years start at 0 or 1?  

•  Should the test be < or <=?  

Common Error: Off-by-One Errors 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

•  Look at a scenario with simple values: 
initial balance: $100 
interest rate: 50% 
after year 1, the balance is $150 
after year 2 it is $225, or over $200 
so the investment doubled after 2 years 
the loop executed two times, incrementing years each time 
Therefore: years must start at 0, not at 1.  

•  interest rate: 100% 
after one year: balance is 2 * initialBalance 
loop should stop 
Therefore: must use <  

•  Think, don’t compile and try at random 

Avoiding Off-by-One Error 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

•  Example: 
for (int i = 1; i <= n; i++)  
{ 
   double interest = balance * rate / 100;  
   balance = balance + interest; 
} 

•  Use a for loop when a variable runs from a starting value to an 
ending value with a constant increment or decrement  

for Loops 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

Syntax 6.2 The for Statement 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

for Loop Flowchart 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

Execution of a for Loop 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

Animation 6.2: The for Loop 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

  1  /** 
  2     A class to monitor the growth of an investment that  
  3     accumulates interest at a fixed annual rate 
  4  */ 
  5  public class Investment 
  6  { 
  7     private double balance; 
  8     private double rate; 
  9     private int years; 
 10   
 11     /** 
 12        Constructs an Investment object from a starting balance and 
 13        interest rate. 
 14        @param aBalance the starting balance 
 15        @param aRate the interest rate in percent 
 16     */ 
 17     public Investment(double aBalance, double aRate) 
 18     { 
 19        balance = aBalance; 
 20        rate = aRate; 
 21        years = 0; 
 22     } 
 23  

ch06/invest2/Investment.java 

Continued 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

 24     /** 
 25        Keeps accumulating interest until a target balance has 
 26        been reached. 
 27        @param targetBalance the desired balance 
 28     */ 
 29     public void waitForBalance(double targetBalance) 
 30     { 
 31        while (balance < targetBalance) 
 32        { 
 33           years++;    
 34           double interest = balance * rate / 100; 
 35           balance = balance + interest; 
 36        } 
 37     } 
 38   
 39     /** 
 40        Keeps accumulating interest for a given number of years. 
 41        @param numberOfYears the number of years to wait 
 42     */ 
 43     public void waitYears(int numberOfYears) 
 44     { 
 45        for (int i = 1; i <= numberOfYears; i++) 
 46        { 
 47           double interest = balance * rate / 100; 
 48           balance = balance + interest; 
 49        } 
 50        years = years + n; 
 51     } 

ch06/invest2/Investment.java (cont.) 

Continued 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

 52   
 53     /** 
 54        Gets the current investment balance. 
 55        @return the current balance 
 56     */ 
 57     public double getBalance() 
 58     { 
 59        return balance; 
 60     } 
 61   
 62     /** 
 63        Gets the number of years this investment has accumulated 
 64        interest. 
 65        @return the number of years since the start of the investment 
 66     */ 
 67     public int getYears() 
 68     { 
 69        return years; 
 70     } 
 71  } 

ch06/invest2/Investment.java (cont.) 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

  1  /** 
  2     This program computes how much an investment grows in 
  3     a given number of years. 
  4  */ 
  5  public class InvestmentRunner 
  6  { 
  7     public static void main(String[] args) 
  8     { 
  9        final double INITIAL_BALANCE = 10000; 
 10        final double RATE = 5; 
 11        final int YEARS = 20; 
 12        Investment invest = new Investment(INITIAL_BALANCE, RATE); 
 13        invest.waitYears(YEARS); 
 14        double balance = invest.getBalance(); 
 15        System.out.printf("The balance after %d years is %.2f\n",  
 16              YEARS, balance); 
 17     }    
 18  } 

Program Run:  
The balance after 20 years is 26532.98 

ch06/invest2/InvestmentRunner.java 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

Rewrite the for loop in the waitYears method as a while loop.  

   Answer:  

 int i = 1;  
 while (i <= n)  
 {  
    double interest = balance * rate / 100;  
    balance = balance + interest;  
    i++;  
 } 

Self Check 6.3 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

How many times does the following for loop execute?  
for (i = 0; i <= 10; i++)  
   System.out.println(i * i);  

   Answer: 11 times.  

Self Check 6.4 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

for Loop Examples 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

•  A missing semicolon: 
 for (years = 1;  
  (balance = balance + balance * rate / 100) < targetBalance; 

    years++)  
      System.out.println(years);  

•  A semicolon that shouldn’t be there: 
sum = 0; 
for (i = 1; i <= 10; i++); 
   sum = sum + i; 
System.out.println(sum); 

Common Errors: Semicolons 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

•  Example — keep a running total: a variable to which you add 
each input value: 

double total = 0; 
while (in.hasNextDouble()) 
{ 
   double input = in.nextDouble(); 
   total = total + input; 
} 

Common Loop Algorithm: Computing a Total 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

•  Example — count how many uppercase letters are in a string: 

int upperCaseLetters = 0; 
for (int i = 0; i < str.length(); i++) 
{ 
   char ch = str.charAt(i); 
   if (Character.isUpperCase(ch)) 
   { 
      upperCaseLetters++; 
   } 
} 

Common Loop Algorithm: Counting Matches 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

•  Example — find the first lowercase letter in a string: 
boolean found = false; 
char ch = '?'; 
int position = 0; 
while (!found && position < str.length()) 
{ 
   ch = str.charAt(position); 
   if (Character.isLowerCase(ch)) { found = true; } 
   else { position++; } 
} 

Common Loop Algorithm: Finding the First Match 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

•  Example — Keep asking the user to enter a positive value < 100 
until the user provides a correct input: 
boolean valid = false; 
double input; 
while (!valid) 
{ 
   System.out.print("Please enter a positive value < 100: "); 
   input = in.nextDouble(); 
   if (0 < input && input < 100) { valid = true; } 
   else { System.out.println("Invalid input."); } 
} 

Common Loop Algorithm: Prompting Until a Match is 
Found 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

•  Example — check whether a sequence of inputs contains 
adjacent duplicates such as 1 7 2 9 9 4 9: 
double input = in.nextDouble(); 
while (in.hasNextDouble()) 
{ 
   double previous = input; 
   input = in.nextDouble(); 
   if (input == previous) { System.out.println("Duplicate input"); } 
} 

Common Loop Algorithm: Comparing Adjacent Values 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

•  Example — process a set of values 

•  Sentinel value: Can be used for indicating the end of a data set 

• 0 or -1 make poor sentinels; better to use Q: 

System.out.print("Enter value, Q to quit: "); 
String input = in.next(); 
if (input.equalsIgnoreCase("Q")) 
   We are done 
else 
{ 
   double x = Double.parseDouble(input); 
   . . . 
} 

Common Loop Algorithm: Processing Input with Sentinel 
Values 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

•  Sometimes termination condition of a loop can only be evaluated 
in the middle of the loop  

•  Then, introduce a boolean variable to control the loop:  

 boolean done = false; 
while (!done) 
{ 
   Print prompt 
   String input = read input; 
   if (end of input indicated) 
      done = true; 
   else 
   { 
      Process input 
   } 
}    

Loop and a Half 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

  

  1  import java.util.Scanner; 
  2   
  3  /** 
  4     This program computes the average and maximum of a set 
  5     of input values. 
  6  */ 
  7  public class DataAnalyzer 
  8  {   
  9     public static void main(String[] args) 
 10     {   
 11        Scanner in = new Scanner(System.in); 
 12        DataSet data = new DataSet(); 
 13   
 14        boolean done = false; 
 15        while (!done) 
 16        {   
 17           System.out.print("Enter value, Q to quit: "); 
 18           String input = in.next();  
 19           if (input.equalsIgnoreCase("Q")) 
 20              done = true; 
 21           else 
 22           {   
 23              double x = Double.parseDouble(input); 
 24              data.add(x); 
 25           } 
 26        } 
 27  

ch06/dataset/DataAnalyzer.java 

Continued 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

 28        System.out.println("Average = " + data.getAverage()); 
 29        System.out.println("Maximum = " + data.getMaximum()); 
 30     } 
 31  } 

ch06/dataset/DataAnalyzer.java  (cont.) 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

  

  1  /** 
  2     Computes information about a set of data values. 
  3  */ 
  4  public class DataSet 
  5  { 
  6     private double sum; 
  7     private double maximum; 
  8     private int count; 
  9   
 10     /** 
 11        Constructs an empty data set. 
 12     */ 
 13     public DataSet() 
 14     { 
 15        sum = 0; 
 16        count = 0; 
 17        maximum = 0; 
 18     } 
 19  

ch06/dataset/DataSet.java 

Continued 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

  

 20     /** 
 21        Adds a data value to the data set 
 22        @param x a data value 
 23     */ 
 24     public void add(double x) 
 25     { 
 26        sum = sum + x; 
 27        if (count == 0 || maximum < x) maximum = x; 
 28        count++; 
 29     } 
 30   
 31     /** 
 32        Gets the average of the added data. 
 33        @return the average or 0 if no data has been added 
 34     */ 
 35     public double getAverage() 
 36     { 
 37        if (count == 0) return 0; 
 38        else return sum / count; 
 39     } 
 40  

ch06/dataset/DataSet.java (cont.) 

Continued 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

  

 41     /** 
 42        Gets the largest of the added data. 
 43        @return the maximum or 0 if no data has been added 
 44     */ 
 45     public double getMaximum() 
 46     { 
 47        return maximum; 
 48     } 
 49  } 

ch06/dataset/DataSet.java (cont.) 

Program Run:  
Enter value, Q to quit: 10 
Enter value, Q to quit: 0 
Enter value, Q to quit: -1 
Enter value, Q to quit: Q 
Average = 3.0 
Maximum = 10.0 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

How do you compute the total of all positive inputs? 

   Answer: 

double total = 0; 
while (in.hasNextDouble()) 
{ 
   double input = in.nextDouble(); 
   if (value > 0) total = total + input; 
} 

Self Check 6.5 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

What happens with the algorithm in Section 6.3.5, Comparing 
Adjacent Values, when no input is provided at all? How can you 
overcome that problem? 

   Answer: The initial call to in.nextDouble() fails, terminating 
the program. One solution is to do all input in the loop and 
introduce a Boolean variable that checks whether the loop is 
entered for the first time.  

double input = 0; 
boolean first = true; 
while (in.hasNextDouble()) 
{ 
   double previous = input; 
   input = nextDouble(); 
   if (first) { first = false; } 
   else if (input == previous) { System.out.println("Duplicate input"); } 
} 

Self Check 6.6 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

Why does the DataAnalyzer class call in.next and not 
in.nextDouble? 

Answer: Because we don't know whether the next input is a 
number or the letter Q. 

Self Check 6.7 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

Would the DataSet class still compute the correct maximum if 
you simplified the update of the maximum field in the add method 
to the following statement? 

if (maximum < x) maximum = x; 

Answer: No. If all input values are negative, the maximum is also 
negative. However, the maximum field is initialized with 0. With 
this simplification, the maximum would be falsely computed as 0.  

Self Check 6.8 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

•  Create triangle shape: 
[]  
[][]  
[][][]  
[][][][]  

•  Loop through rows: 
for (int i = 1; i <= n; i++) 
{ 
   // make triangle row 
} 

•  Make triangle row is another loop: 
for (int j = 1; j <= i; j++) 
   r = r + "[]"; 
r = r + "\n";  

•  Put loops together → Nested loops  

Nested Loops 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

  1  /** 
  2     This class describes triangle objects that can be displayed 
  3     as shapes like this: 
  4     [] 
  5     [][] 
  6     [][][] 
  7  */ 
  8  public class Triangle 
  9  { 
 10     private int width; 
 11   
 12     /** 
 13        Constructs a triangle. 
 14        @param aWidth the number of [] in the last row of the triangle. 
 15     */ 
 16     public Triangle(int aWidth) 
 17     { 
 18        width = aWidth; 
 19     } 
 20  

ch06/triangle1/Triangle.java 

Continued 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

 21     /** 
 22        Computes a string representing the triangle. 
 23        @return a string consisting of [] and newline characters 
 24     */ 
 25     public String toString() 
 26     { 
 27        String r = ""; 
 28        for (int i = 1; i <= width; i++) 
 29        {   
 30           // Make triangle row 
 31           for (int j = 1; j <= i; j++) 
 32              r = r + "[]"; 
 33           r = r + "\n"; 
 34        } 
 35        return r; 
 36     } 
 37  } 

ch06/triangle1/Triangle.java (cont.) 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

  1  /** 
  2     This program prints two triangles. 
  3  */ 
  4  public class TriangleRunner 
  5  { 
  6     public static void main(String[] args) 
  7     { 
  8        Triangle small = new Triangle(3); 
  9        System.out.println(small.toString()); 
 10   
 11        Triangle large = new Triangle(15); 
 12        System.out.println(large.toString()); 
 13     } 
 14  } 

ch06/triangle1/TriangleRunner.java 

Continued 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

Program Run: 
[]  
[][]  
[][][]  
 
[]  
[][]  
[][][]  
[][][][]  
[][][][][]  
[][][][][][]  
[][][][][][][]  
[][][][][][][][]  
[][][][][][][][][] [][][][][][][][][]
[] [][][][][][][][][][][] [][][][][]
[][][][][][][] [][][][][][][][][][][]
[][] 
[][][][][][][][][][][][][][] [][][][]
[][][][][][][][][][][] 

ch06/triangle1/TriangleRunner.java (cont.) 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

Nested Loop Examples 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

Nested Loop Examples 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

How would you modify the nested loops so that you print a square 
instead of a triangle?  

   Answer: Change the inner loop to 

for (int j = 1; j <= width; j++)  

Self Check 6.9 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

What is the value of n after the following nested loops?  
int n = 0;  
for (int i = 1; i <= 5; i++)  
   for (int j = 0; j < i; j++)  
      n = n + j;  

   Answer: 20.  

Self Check 6.10 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

•  In a simulation, you repeatedly generate random numbers and 
use them to simulate an activity  

•  Random number generator 
Random generator = new Random(); 
int n = generator.nextInt(a); // 0 < = n < a 
double x = generator.nextDouble(); // 0 <= x < 1  

•  Throw die (random number between 1 and 6) 
int d = 1 + generator.nextInt(6); 

Random Numbers and Simulations 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

  1  import java.util.Random; 
  2   
  3  /** 
  4     This class models a die that, when cast, lands on a random 
  5     face. 
  6  */ 
  7  public class Die 
  8  { 
  9     private Random generator; 
 10     private int sides; 
 11   
 12     /** 
 13        Constructs a die with a given number of sides. 
 14        @param s the number of sides, e.g. 6 for a normal die 
 15     */ 
 16     public Die(int s) 
 17     { 
 18        sides = s; 
 19        generator = new Random(); 
 20     } 
 21  

ch06/random1/Die.java 

Continued 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

 22     /** 
 23        Simulates a throw of the die 
 24        @return the face of the die  
 25     */ 
 26     public int cast() 
 27     { 
 28        return 1 + generator.nextInt(sides); 
 29     } 
 30  } 

ch06/random1/Die.java (cont.) 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

  1  /** 
  2     This program simulates casting a die ten times. 
  3  */ 
  4  public class DieSimulator 
  5  { 
  6     public static void main(String[] args) 
  7     { 
  8        Die d = new Die(6); 
  9        final int TRIES = 10; 
 10        for (int i = 1; i <= TRIES; i++) 
 11        {   
 12           int n = d.cast(); 
 13           System.out.print(n + " "); 
 14        } 
 15        System.out.println(); 
 16     } 
 17  } 

ch06/random1/DieSimulator.java 

Continued 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

Output:  

   6 5 6 3 2 6 3 4 4 1 

  Second Run:  
   3 2 2 1 6 5 3 4 1 2 

ch06/random1/DieSimulator.java (cont.) 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

Buffon Needle Experiment 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

Buffon Needle Experiment 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

•  Needle length = 1, distance between lines = 2 

•  Generate random ylow  between 0 and 2  

•  Generate random angle α between 0 and 180 degrees  

•  yhigh  = ylow  + sin( α)  

•  Hit if  yhigh ≥ 2  

Needle Position 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

  1  import java.util.Random; 
  2   
  3  /** 
  4     This class simulates a needle in the Buffon needle experiment. 
  5  */ 
  6  public class Needle 
  7  { 
  8     private Random generator; 
  9     private int hits; 
 10     private int tries; 
 11   
 12     /** 
 13        Constructs a needle. 
 14     */ 
 15     public Needle() 
 16     { 
 17        hits = 0; 
 18        tries = 0; 
 19        generator = new Random(); 
 20     } 
 21  

ch06/random2/Needle.java 

Continued 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

 22     /** 
 23        Drops the needle on the grid of lines and  
 24        remembers whether the needle hit a line. 
 25     */ 
 26     public void drop() 
 27     { 
 28        double ylow = 2 * generator.nextDouble(); 
 29        double angle = 180 * generator.nextDouble(); 
 30         
 31        // Computes high point of needle 
 32         
 33        double yhigh = ylow + Math.sin(Math.toRadians(angle)); 
 34        if (yhigh >= 2) hits++;     
 35        tries++; 
 36     } 
 37   
 38     /** 
 39        Gets the number of times the needle hit a line. 
 40        @return the hit count 
 41     */ 
 42     public int getHits() 
 43     { 
 44        return hits; 
 45     } 

ch06/random2/Needle.java (cont.) 

Continued 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

 46   
 47     /** 
 48        Gets the total number of times the needle was dropped. 
 49        @return the try count 
 50     */ 
 51     public int getTries() 
 52     { 
 53        return tries; 
 54     }        
 55  } 

ch06/random2/Needle.java (cont.) 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

  1  /** 
  2     This program simulates the Buffon needle experiment  
  3     and prints the resulting approximations of pi. 
  4  */ 
  5  public class NeedleSimulator 
  6  { 
  7     public static void main(String[] args) 
  8     { 
  9        Needle n = new Needle(); 
 10        final int TRIES1 = 10000; 
 11        final int TRIES2 = 1000000; 
 12   
 13        for (int i = 1; i <= TRIES1; i++) 
 14           n.drop(); 
 15        System.out.printf("Tries = %d, Tries / Hits = %8.5f\n", 
 16              TRIES1, (double) n.getTries() / n.getHits()); 
 17   
 18        for (int i = TRIES1 + 1; i <= TRIES2; i++) 
 19           n.drop(); 
 20        System.out.printf("Tries = %d, Tries / Hits = %8.5f\n", 
 21              TRIES2, (double) n.getTries() / n.getHits()); 
 22     } 
 23  } 

ch06/random2/NeedleSimulator.java 

Continued 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

Program Run:  
Tries = 10000, Tries / Hits = 3.08928 
Tries = 1000000, Tries / Hits = 3.14204 

ch06/random2/NeedleSimulator.java (cont.) 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

How do you use a random number generator to simulate the toss 
of a coin?  

   Answer: int n = generator.nextInt(2); // 0 = heads, 1 = tails  

Self Check 6.11 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

Why is the NeedleSimulator program not an efficient method for 
computing π?  

   Answer: The program repeatedly calls Math.toRadians(angle).  
   You could simply call Math.toRadians(180) to compute π.  

Self Check 6.12 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

•  Debugger: a program to execute your program and analyze its 
run-time behavior  

•  A debugger lets you stop and restart your program, see contents 
of variables, and step through it  

•  The larger your programs, the harder to debug them simply by 
inserting print commands  

•  Debuggers can be part of your IDE (e.g. Eclipse, BlueJ) or 
separate programs (e.g. JSwat)  

•  Three key concepts:  
•  Breakpoints  
•  Single-stepping  
•  Inspecting variables 

Using a Debugger 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

    The Debugger Stopping at a Breakpoint  



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

Inspecting Variables 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

•  Execution is suspended whenever a breakpoint is reached  

•  In a debugger, a program runs at full speed until it reaches a 
breakpoint  

•  When execution stops you can:  
•  Inspect variables  
•  Step through the program a line at a time  
•  Or, continue running the program at full speed until it reaches the next 

breakpoint  

•  When program terminates, debugger stops as well  

•  Breakpoints stay active until you remove them  

•  Two variations of single-step command:  
•  Step Over: Skips method calls  
•  Step Into: Steps inside method calls  

Debugging 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

•  Current line: 

 String input = in.next();  
Word w = new Word(input);  
int syllables = w.countSyllables(); 
System.out.println("Syllables in " + input + ": " +  
   syllables);  

•  When you step over method calls, you get to the next line:  
 String input = in.next();  

Word w = new Word(input);  
int syllables = w.countSyllables(); 
System.out.println("Syllables in " + input + ": " +  
   syllables);  

Single-step Example 

Continued 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

•  However, if you step into method calls, you enter the first line of 
the countSyllables method:  
 public int countSyllables()  
{  
   int count = 0;  
   int end = text.length() - 1;  
   ...  
} 

Single-step Example (cont.) 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

In the debugger, you are reaching a call to System.out.println. 
Should you step into the method or step over it?  

   Answer: You should step over it because you are not interested  
   in debugging the internals of the println method.  

Self Check 6.13 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

In the debugger, you are reaching the beginning of a long method 
with a couple of loops inside. You want to find out the return value 
that is computed at the end of the method. Should you set a 
breakpoint, or should you step through the method?  

   Answer: You should set a breakpoint. Stepping through loops  
   can be tedious.  

Self Check 6.14 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

     The First Bug 


