
ICOM 4015: Advanced
Programming	

Lecture 10

Big Java by Cay Horstmann
Copyright © 2009 by John
Wiley & Sons. All rights
reserved.

Reading: Chapter Eleven: Input/Output and Exception
Handling

Chapter 11 – Input/Output and Exception Handling

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  To be able to read and write text files

•  To learn how to throw exceptions

•  To be able to design your own exception classes

•  To understand the difference between checked and unchecked
exceptions

•  To know when and where to catch an exception

Chapter Goals

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Simplest way to read text: Use Scanner class

•  To read from a disk file, construct a FileReader

•  Then, use the FileReader to construct a Scanner object

 FileReader reader = new FileReader("input.txt");
 Scanner in = new Scanner(reader);

•  Use the Scanner methods to read data from file

• next, nextLine, nextInt, and nextDouble

Reading Text Files

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  To write to a file, construct a PrintWriter object:
 PrintWriter out = new PrintWriter("output.txt");

•  If file already exists, it is emptied before the new data are written
into it

•  If file doesn’t exist, an empty file is created

•  Use print and println to write into a PrintWriter:
 out.println(29.95);
 out.println(new Rectangle(5, 10, 15, 25));
 out.println("Hello, World!");

•  You must close a file when you are done processing it:
 out.close();

 Otherwise, not all of the output may be written to the disk file

Writing Text Files

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

• When the input or output file doesn’t exist, a
FileNotFoundException can occur

• To handle the exception, label the main method like this:
 public static void main(String[] args) throws
 FileNotFoundException

FileNotFoundException

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Reads all lines of a file and sends them to the output file,
preceded by line numbers

•  Sample input file:

 Mary had a little lamb
 Whose fleece was white as snow.
 And everywhere that Mary went,
 The lamb was sure to go!

•  Program produces the output file:

 /* 1 */ Mary had a little lamb
 /* 2 */ Whose fleece was white as snow.
 /* 3 */ And everywhere that Mary went,
 /* 4 */ The lamb was sure to go!

•  Program can be used for numbering Java source files

A Sample Program

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 import java.io.File;
 import java.io.FileNotFoundException;
 import java.io.PrintWriter;
 import java.util.Scanner;

 /**
 This program applies line numbers to a file.
 */
 public class LineNumberer
 {
 public static void main(String[] args) throws FileNotFoundException
 {
 // Prompt for the input and output file names

 Scanner console = new Scanner(System.in);
 System.out.print("Input file: ");
 String inputFileName = console.next();
 System.out.print("Output file: ");
 String outputFileName = console.next();

ch11/lines/LineNumberer.java

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 // Construct the Scanner and PrintWriter objects for reading and writing

 File inputFile = new File(inputFileName);
 Scanner in = new Scanner(inputFile);
 PrintWriter out = new PrintWriter(outputFileName);
 int lineNumber = 1;

 // Read the input and write the output

 while (in.hasNextLine())
 {
 String line = in.nextLine();
 out.println("/* " + lineNumber + " */ " + line);
 lineNumber++;
 }

 in.close();
 out.close();
 }
 }

ch11/fileio/LineNumberer.java (cont.)

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

What happens when you supply the same name for the input and
output files to the LineNumberer program?

Answer: When the PrintWriter object is created, the
output file is emptied. Sadly, that is the same file as the input
file. The input file is now empty and the while loop exits
immediately.

Self Check 11.1

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

What happens when you supply the name of a nonexistent input
file to the LineNumberer program?

Answer: The program catches a FileNotFoundException,
prints an error message, and terminates.

Self Check 11.2

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

File Dialog Boxes

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

JFileChooser chooser = new JFileChooser();
FileReader in = null;
if (chooser.showOpenDialog(null) ==

 JFileChooser.APPROVE_OPTION)
{
 File selectedFile = chooser.getSelectedFile();
 reader = new FileReader(selectedFile);
 ...
}

File Dialog Boxes

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  The next method reads a word at a time:
while (in.hasNext())
{
 String input = in.next();
 System.out.println(input);
}

•  With our sample input, the output is:
Mary
had
a
little
lamb
…

•  A word is any sequence of characters that is not white space

Reading Text Input: Reading Words

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  To specify a pattern for word boundaries, call
Scanner.useDelimiter

•  Example: discard anything that isn't a letter:
Scanner in = new Scanner(. . .);
in.useDelimiter("[^A-Za-z]+");
...

•  The notation used for describing the character pattern is called
a regular expression

Reading Text Input: Reading Words

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  The nextLine method reads a line of input and consumes the
newline character at the end of the line:
String line = in.nextLine();

•  Example: process a file with population data from the
CIA Fact Book with lines like this:
China 1330044605
India 1147995898
United States 303824646
...

•  First read each input line into a string

Reading Text Input: Processing Lines

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Then use the isDigit and isWhitespace methods to find
out where the name ends and the number starts. E.g. locate the
first digit:
int i = 0;
while (!Character.isDigit(line.charAt(i))) { i++; }

•  Then extract the country name and population:
String countryName = line.substring(0, i);
String population = line.substring(i);

Reading Text Input: Processing Lines

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Use the trim method to remove spaces at the end of the
country name:
countryName = countryName.trim();

Reading Text Input: Processing Lines

•  To convert the population string to a number, first trim it, then call
the Integer.parseInt method:
int populationValue =
 Integer.parseInt(population.trim());

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Occasionally easier to construct a new Scanner object to read
the characters from a string:
Scanner lineScanner = new Scanner(line);

•  Then you can use lineScanner like any other Scanner
object, reading words and numbers:
String countryName = lineScanner.next();
while (!lineScanner.hasNextInt())
{
 countryName = countryName + " " +
lineScanner.next();

}
int populationValue = lineScanner.nextInt();

Reading Text Input: Processing Lines

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  nextInt and nextDouble methods consume white space and
the next number:
double value = in.nextDouble();

•  If there is no number in the input, then a
InputMismatchException occurs; e.g.

Reading Text Input: Reading Numbers

•  To avoid exceptions, use the hasNextDouble and
hasNextInt methods to screen the input:
if (in.hasNextDouble())
{
 double value = in.nextDouble();
 . . .
}

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  nextInt and nextDouble methods do not consume the white
space that follows a number

•  Example: file contains student IDs and names in this format:
1729
Harry Morgan
1730
Diana Lin
. . .

•  Read the file with these instructions:
while (in.hasNextInt())
{
 int studentID = in.nextInt();
 String name = in.nextLine();
 Process the student ID and name
}

Reading Text Input: Reading Numbers

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  The call to nextLine reads an empty string! The remedy is to
add a call to nextLine after reading the ID:
int studentID = in.nextInt();
in.nextLine(); // Consume the newline
String name = in.nextLine();

Reading Text Input: Reading Numbers

•  Initially, the input contains

•  After the first call to nextInt, the input contains

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  To read one character at a time, set the delimiter pattern to the
empty string:
Scanner in = new Scanner(. . .);
in.useDelimiter("");

•  Now each call to next returns a string consisting of a single
character

•  To process the characters:
while (in.hasNext())
{
 char ch = in.next().charAt(0);
 Process ch
}

Reading Text Input: Reading Characters

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose the input contains the characters 6,995.0. What is the
value of number and input after these statements?

int number = in.nextInt();
String input = in.next();

Answer: number is 6, input is ",995.0".

Self Check 11.3

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose the input contains the characters 6,995.00 12. What
is the value of price and quantity after these statements?

double price = in.nextDouble();
int quantity = in.nextInt();

Answer: price is set to 6 because the comma is not
considered a part of a floating-point number in Java. Then the
call to nextInt causes an exception, and quantity is not
set.

Self Check 11.4

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Your input file contains a sequence of numbers, but sometimes a
value is not available and marked as N/A. How can you read the
numbers and skip over the markers?

Answer: Read them as strings, and convert those strings to
numbers that are not equal to N/A:

String input = in.next();
if (!input.equals("N/A"))
{
 double value = Double.parseDouble(input);
 Process value
}

Self Check 11.5

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Throw an exception object to signal an exceptional condition

•  Example: IllegalArgumentException: Illegal parameter
value:

 IllegalArgumentException exception
 = new IllegalArgumentException("Amount exceeds
 balance");
throw exception;

•  No need to store exception object in a variable:

 throw new IllegalArgumentException("Amount exceeds
 balance");

•  When an exception is thrown, method terminates immediately
•  Execution continues with an exception handler

Throwing Exceptions

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

public class BankAccount
{
 public void withdraw(double amount)
 {
 if (amount > balance)
 {
 IllegalArgumentException exception
 = new IllegalArgumentException("Amount
 exceeds balance");
 throw exception;
 }
 balance = balance - amount;
 }
 ...
}

Example

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Hierarchy of Exception Classes

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Syntax 11.1 Throwing an Exception

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

How should you modify the deposit method to ensure that the
balance is never negative?

Answer: Throw an exception if the amount being deposited is
less than zero.

Self Check 11.6

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose you construct a new bank account object with a zero
balance and then call withdraw(10). What is the value of
balance afterwards?

Answer: The balance is still zero because the last statement
of the withdraw method was never executed.

Self Check 11.7

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Two types of exceptions:
•  Checked

o  The compiler checks that you don’t ignore them
o  Due to external circumstances that the programmer cannot prevent
o  Majority occur when dealing with input and output
o  For example, IOException

•  Unchecked
o  Extend the class RuntimeException or Error
o  They are the programmer’s fault
o  Examples of runtime exceptions:
 NumberFormatException
 IllegalArgumentException
 NullPointerException

o  Example of error:
 OutOfMemoryError

Checked and Unchecked Exceptions

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Categories aren’t perfect:
•  Scanner.nextInt throws unchecked InputMismatchException
•  Programmer cannot prevent users from entering incorrect input
•  This choice makes the class easy to use for beginning programmers

•  Deal with checked exceptions principally when programming
with files and streams

•  For example, use a Scanner to read a file:
 String filename = ...;
 FileReader reader = new FileReader(filename);
 Scanner in = new Scanner(reader);

•  But, FileReader constructor can throw a
FileNotFoundE`xception

Checked and Unchecked Exceptions

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Two choices:
1. Handle the exception
2. Tell compiler that you want method to be terminated when the exception

occurs
•  Use throws specifier so method can throw a checked exception

 public void read(String filename) throws
 FileNotFoundException
 {
 FileReader reader = new FileReader(filename);
 Scanner in = new Scanner(reader);
 ...
 }

•  For multiple exceptions:

 public void read(String filename)
 throws IOException, ClassNotFoundException

Checked and Unchecked Exceptions

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Keep in mind inheritance hierarchy: If method can throw an
IOException and FileNotFoundException, only use IOException

•  Better to declare exception than to handle it incompetently

Checked and Unchecked Exceptions (cont.)

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Syntax 11.2 throws Clause

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose a method calls the Scanner constructor, which can
throw a FileNotFoundException, and the nextInt method of
the Scanner class, which can cause a
NoSuchElementException or InputMismatchException.
Which exceptions should be included in the throws clause?

Answer: You must include the FileNotFoundException and
you may include the NoSuchElementException if you consider
it important for documentation purposes.
InputMismatchException is a subclass of
NoSuchElementException. It is your choice whether to include
it.

Self Check 11.8

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Why is a NullPointerException not a checked exception?

Answer: Because programmers should simply check for null
pointers instead of trying to handle a
NullPointerException.

Self Check 11.9

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Install an exception handler with try/catch statement

•  try block contains statements that may cause an exception

•  catch clause contains handler for an exception type

Catching Exceptions

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Example:
 try
 {
 String filename = ...;
 FileReader reader = new FileReader(filename);
 Scanner in = new Scanner(reader);
 String input = in.next();
 int value = Integer.parseInt(input);
 ...
 }
 catch (IOException exception)
 {
 exception.printStackTrace();
 }
 catch (NumberFormatException exception)
 {
 System.out.println("Input was not a number");
 }

Catching Exceptions

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Statements in try block are executed

•  If no exceptions occur, catch clauses are skipped

•  If exception of matching type occurs, execution jumps to catch
clause

•  If exception of another type occurs, it is thrown until it is caught
by another try block

•  catch (IOException exception) block

•  exception contains reference to the exception object that was thrown

•  catch clause can analyze object to find out more details

•  exception.printStackTrace(): Printout of chain of method calls that
lead to exception

Catching Exceptions

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Syntax 11.3 Catching Exceptions

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose the file with the given file name exists and has no
contents. Trace the flow of execution in the try block in this
section.

Answer: The FileReader constructor succeeds, and in is
constructed. Then the call in.next() throws a
NoSuchElementException, and the try block is aborted.
None of the catch clauses match, so none are executed. If
none of the enclosing method calls catch the exception, the
program terminates.

Self Check 11.10

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Is there a difference between catching checked and unchecked
exceptions?

Answer: No — you catch both exception types in the same
way, as you can see from the above code example. Recall that
IOException is a checked exception and
NumberFormatException is an unchecked exception.

Self Check 11.11

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Exception terminates current method

•  Danger: Can skip over essential code

•  Example:

 reader = new FileReader(filename);
 Scanner in = new Scanner(reader);
 readData(in);
 reader.close(); // May never get here

•  Must execute reader.close() even if exception happens

•  Use finally clause for code that must be executed “no matter
what”

The finally Clause

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

FileReader reader = new FileReader(filename);
try
{
 Scanner in = new Scanner(reader);
 readData(in);
}
finally
{
 reader.close();
 // if an exception occurs, finally clause
 // is also executed before exception
 // is passed to its handler
}

The finally Clause

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Executed when try block is exited in any of three ways:

1.  After last statement of try block

2.  After last statement of catch clause, if this try block caught an
exception

3.  When an exception was thrown in try block and not caught

•  Recommendation: Don’t mix catch and finally clauses in
same try block

The finally Clause

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Syntax 11.4 finally Clause

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose the file with the given name does not exist. Trace the
flow of execution of the code segment in this section.

Answer: The PrintWriter constructor throws an exception.
The assignment to out and the try block are skipped. The
finally clause is not executed. This is the correct behavior
because out has not been initialized.

Self Check 11.13

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Why was the out variable declared outside the try block?

Answer: If it had been declared inside the try block, its scope
would only have extended to the end of the try block, and the
finally clause could not have closed it.

Self Check 11.12

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  You can design your own exception types — subclasses of
Exception or RuntimeException

•  if (amount > balance)
{
 throw new InsufficientFundsException(
 "withdrawal of " + amount + " exceeds balance of "
 + balance);
}

•  Make it an unchecked exception — programmer could have
avoided it by calling getBalance first

•  Extend RuntimeException or one of its subclasses
•  Supply two constructors

1. Default constructor
2. A constructor that accepts a message string describing reason for

exception

Designing Your Own Exception Types

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

public class InsufficientFundsException
 extends RuntimeException
{
 public InsufficientFundsException() {}

 public InsufficientFundsException(String message)
 {
 super(message);
 }
}

Designing Your Own Exception Types

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

What is the purpose of the call super(message) in the second
InsufficientFundsException constructor?

Answer: To pass the exception message string to the
RuntimeException superclass.

Self Check 11.14

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose you read bank account data from a file. Contrary to your
expectation, the next input value is not of type double. You
decide to implement a BadDataException. Which exception
class should you extend?

Answer: Because file corruption is beyond the control of the
programmer, this should be a checked exception, so it would
be wrong to extend RuntimeException or
IllegalArgumentException. Because the error is related
to input, IOException would be a good choice.

Self Check 11.15

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Program
•  Asks user for name of file

•  File expected to contain data values

•  First line of file contains total number of values

•  Remaining lines contain the data

•  Typical input file:

 3
1.45
-2.1
0.05

Case Study: A Complete Example

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  What can go wrong?
•  File might not exist

•  File might have data in wrong format

•  Who can detect the faults?
•  FileReader constructor will throw an exception when file does not exist

•  Methods that process input need to throw exception if they find error in
data format

•  What exceptions can be thrown?
•  FileNotFoundException can be thrown by FileReader constructor

•  IOException can be thrown by close method of FileReader

•  BadDataException, a custom checked exception class

Case Study: A Complete Example

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Who can remedy the faults that the exceptions report?

•  Only the main method of DataSetTester program interacts with user

•  Catches exceptions

•  Prints appropriate error messages

•  Gives user another chance to enter a correct file

Case Study: A Complete Example

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 import java.io.FileNotFoundException;
 import java.io.IOException;
 import java.util.Scanner;

 /**
 This program reads a file containing numbers and analyzes its contents.
 If the file doesn't exist or contains strings that are not numbers, an
 error message is displayed.
 */
 public class DataAnalyzer
 {
 public static void main(String[] args)
 {
 Scanner in = new Scanner(System.in);
 DataSetReader reader = new DataSetReader();

 boolean done = false;
 while (!done)
 {

ch11/data/DataAnalyzer.java

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 try
 {
 System.out.println("Please enter the file name: ");
 String filename = in.next();

 double[] data = reader.readFile(filename);
 double sum = 0;
 for (double d : data) sum = sum + d;
 System.out.println("The sum is " + sum);
 done = true;
 }
 catch (FileNotFoundException exception)
 {
 System.out.println("File not found.");
 }
 catch (BadDataException exception)
 {
 System.out.println("Bad data: " + exception.getMessage());
 }
 catch (IOException exception)
 {
 exception.printStackTrace();
 }
 }
 }
 }

ch11/data/DataAnalyzer.java (cont.)

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Constructs Scanner object

•  Calls readData method

•  Completely unconcerned with any exceptions

The readFile Method of the DataSetReader Class

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  If there is a problem with input file, it simply passes the exception
to caller:

 public double[] readFile(String filename)
 throws IOException, BadDataException
 // FileNotFoundException is an IOException
{
 FileReader reader = new FileReader(filename);
 try
 {
 Scanner in = new Scanner(reader);
 readData(in);
 }
 finally
 {
 reader.close();
 }
 return data;
}

The readFile Method of the DataSetReader Class

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Reads the number of values
•  Constructs an array
•  Calls readValue for each data value:
 private void readData(Scanner in) throws BadDataException
{
 if (!in.hasNextInt())
 throw new BadDataException("Length expected");
 int numberOfValues = in.nextInt();
 data = new double[numberOfValues];

 for (int i = 0; i < numberOfValues; i++)
 readValue(in, i);

 if (in.hasNext())
 throw new BadDataException("End of file expected");
}

The readData Method of the DataSetReader Class

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Checks for two potential errors
1.  File might not start with an integer

2.  File might have additional data after reading all values
•  Makes no attempt to catch any exceptions

The readData Method of the DataSetReader Class

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

private void readValue(Scanner in, int i) throws
 BadDataException
{
 if (!in.hasNextDouble())
 throw new BadDataException("Data value expected");
 data[i] = in.nextDouble();
}

The readValue Method of the DataSetReader Class

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Animation 11.1: Exception Handling

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

1.  DataSetTester.main calls DataSetReader.readFile

2.  readFile calls readData

3.  readData calls readValue

4.  readValue doesn’t find expected value and throws
 BadDataException

5.  readValue has no handler for exception and terminates

6.  readData has no handler for exception and terminates

7.  readFile has no handler for exception and terminates after
executing finally clause

8.  DataSetTester.main has handler for
BadDataException; handler prints a message, and user is
given another chance to enter file name

Scenario

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch11/data/DataSetReader.java

 import java.io.File;
 import java.io.IOException;
 import java.util.Scanner;

 /**
 Reads a data set from a file. The file must have the format
 numberOfValues
 value1
 value2
 . . .
 */
 public class DataSetReader
 {
 private double[] data;

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch11/data/DataSetReader.java (cont.)

 /**
 Reads a data set.
 @param filename the name of the file holding the data
 @return the data in the file
 */
 public double[] readFile(String filename) throws IOException
 {
 File inFile = new File(filename);
 Scanner in = new Scanner(inFile);
 try
 {
 readData(in);
 return data;
 }
 finally
 {
 in.close();
 }
 }

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch11/data/DataSetReader.java (cont.)
 /**
 Reads all data.
 @param in the scanner that scans the data
 */
 private void readData(Scanner in) throws BadDataException
 {
 if (!in.hasNextInt())
 throw new BadDataException("Length expected");
 int numberOfValues = in.nextInt();
 data = new double[numberOfValues];

 for (int i = 0; i < numberOfValues; i++)
 readValue(in, i);

 if (in.hasNext())
 throw new BadDataException("End of file expected");
 }

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch11/data/DataSetReader.java (cont.)

 /**
 Reads one data value.
 @param in the scanner that scans the data
 @param i the position of the value to read
 */
 private void readValue(Scanner in, int i) throws BadDataException
 {
 if (!in.hasNextDouble())
 throw new BadDataException("Data value expected");
 data[i] = in.nextDouble();
 }
 }

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch11/data/BadDataException.java

 import java.io.IOException;

 /**
 This class reports bad input data.
 */
 public class BadDataException extends IOException
 {
 public BadDataException() {}
 public BadDataException(String message)
 {
 super(message);
 }
 }

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Why doesn’t the DataSetReader.readFile method catch
any exceptions?

Answer: It would not be able to do much with them. The
DataSetReader class is a reusable class that may be used
for systems with different languages and different user
interfaces. Thus, it cannot engage in a dialog with the program
user.

Self Check 11.16

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose the user specifies a file that exists and is empty. Trace
the flow of execution.

Answer: DataSetAnalyzer.main calls
DataSetReader.readFile, which calls readData. The call
in.hasNextInt() returns false, and readData throws a
BadDataException. The readFile method doesn’t catch
it, so it propagates back to main, where it is caught.

Self Check 11.17

