
1-1 

ICOM 4036 

Structure and Properties of  
Programming Languages 

Lecture 1 

Prof. Bienvenido Velez 
Fall 2009 

Some slides adapted from Sebesta’s Concepts of Programming Languages 



1-2 

Outline 

•  Motivation 
•  Programming Domains 
•  Language Evaluation Criteria 
•  Influences on Language Design 
•  Language Categories 
•  Language Design Trade-Offs 
•  Implementation Methods 
•  Milestones on PL Design 



1-3 

What is a Programming Language? 

•  A Programming Language … 
–  ... provides an encoding for algorithms 
–  …should express all possible algorithms 
–  ... must be decodable by an algorithm 
–  ... should support complex software 
–  …should be easy to read and understand 
–  ... should support efficient algorithms 
–  …should support rapid software development 



1-4 

Motivation: 
Why Study Programming Languages? 

•  Increased ability to express ideas 
•  Improved background for choosing appropriate 

languages 
•  Greater ability to learn new languages 
•  Understand significance of implementation 
•  Ability to design new languages 
•  Overall advancement of computing 



1-5 

Programming Domains 

•  Scientific applications 
–  Large number of floating point computations 

•  Business applications 
–  Produce reports, use decimal numbers and characters 

•  Artificial intelligence 
–  Symbols rather than numbers manipulated. Code = Data. 

•  Systems programming 
–  Need efficiency because of continuous use. Low-level control. 

•  Scripting languages 
–  Put a list of commands in a file to be executed. Glue apps. 

•  Special-purpose languages 
–  Simplest/fastest solution for a particular task. 



1-6 

•  Readability 
•  Write-ability  
•  Reliability 
•  Cost 
•  Others 

Language Evaluation Criteria 

The key to good language design consists of crafting 
the best possible compromise among these criteria 



1-7 

Language Evaluation Criteria 
 Readability  

•  Overall simplicity 
–  Too many features is bad 
–  Multiplicity of features is bad 

•  Orthogonality 
–  Makes the language easy to learn and read 
–  Meaning is context independent 
–  A relatively small set of primitive constructs can be combined in a 

relatively small number of ways 
–  Every possible combination is legal 
–  Lack of orthogonality leads to exceptions to rules 



1-8 

Language Evaluation Criteria 
 Write-ability 

•  Simplicity and orthogonality 
•  Support for abstraction 
•  Support for alternative paradigms 
•  Expressiveness 



1-9 

Language Evaluation Criteria 
 Reliability 

Some PL features that impact reliability: 
•  Type checking 
•  Exception handling 
•  Aliasing 



1-10 

Language Evaluation Criteria 
Cost 

What is the cost involved in: 
•  Training programmers to use language 
•  Writing programs 
•  Compiling programs 
•  Executing programs 
•  Using the language implementation system 
•  Risk involved in using unreliable language 
•  Maintaining programs 



1-11 

Language Evaluation Criteria 
Other 

•  Portability 
•  Generality 
•  Well-definedness 
•  Elegance  
•  Availability 
•  … 



1-12 

Some Language Design Trade-Offs 

•  Reliability vs. cost of execution 
•  Readability vs. writability 
•  Flexibility vs. safety 



1-13 

Influences on Language Design 
Through the Years 

•  Programming methodologies thru time: 
–  1950s and early 1960s:  

•  Simple applications; worry about machine efficiency 
–  Late 1960s:  

•  People efficiency became important;  
•  readability, better control structures 
•  Structured programming 
•  Top-down design and step-wise refinement 

–  Late 1970s: Process-oriented to data-oriented 
•  data abstraction 

–  Middle 1980s: Re-use, Moudularity 
•  Object-oriented programming 

–  Late 1990s: Portability, reliability, security 
•  Java,C# 



1-14 

Some Programming Paradigms 
•  Imperative 

–  Central features are variables, assignment statements, and iteration 
–  Examples: FORTRAN, C, Pascal 

•  Functional 
–  Main means of making computations is by applying functions to 

given parameters 
–  Examples: LISP, Scheme 

•  Logic 
–  Rule-based 
–  Rules are specified in no special order 
–  Examples: Prolog 

•  Object-oriented 
–  Encapsulate data objects with processing 
–  Inheritance and dynamic type binding 
–  Grew out of imperative languages 
–  Examples: C++, Java 

Languages typically support more than one paradigm although not equally well  



1-15 

Layered View of Computer 

Each Layer Implements a Virtual Machine 
with its own Programming Language  



1-16 

Virtual Machines (VM’s) 

Numeric, Binary 
Difficult for Humans 

bits, binary addresses load, store, add, branch MIPS, Intel 80x86 Machine-Level 
(ISA) 

registers, labelled 
memory cells 

arrays, structures 

cells, paragraphs, 
sections 

Data Elements 

directives, pseudo-
instructions, macros 

if-then-else, procedures, 
loops 

Drag & Drop, GUI ops, 
macros 

Instruction Elements 

Assembly-Level 

High-Level 
Language 

Application 
Programs 

 Type of Virtual 
Machine 

Symbolic Instructions/Data 
Hides some machine details like alignment, 

address calculations 
Exposes Machine ISA 

SPIM, MASM 

Modular, Structured, Model Human Language/
Thought 

General Purpose Abstractions 
Hides Lower Levels 

C, C++, Java, 
FORTRAN, 

Pascal 

Visual, Graphical, Interactive 
Application Specific Abstractions 

Easy for Humans 
Hides HLL Level 

Spreadsheet, 
Word Processor 

Comments Examples 



1-17 

Computing in Perspective 

Machine 
Language 

(ISA) 

Assembly 
Language 

High-Level 
Language 

Application 
Programs 

CS1/CS2, Programming, Data Structures 

Programming Languages, Compilers 

Computer Architecture 

Computer Human Interaction, User Interfaces 

People 

People computers 

Each layer implements an 
INTERPRETER  

for some programming language 

ICOM 

4036 



1-18 

Implementation Methods 
Compilation 

•  Translate high-level 
program to machine code 

•  Slow translation 

•  Fast execution 

Trivia: Who developed the first compiler? 



1-19 

Answer: Computing Pioneer Grace Murray Hopper 
developed the first compiler ever 

Learn more about Grace Murray Hopper @  wikipedia.org 

1984 picture 



1-20 

Implementation Methods 
Interpretation 

•  No translation 
•  Slow execution 
•  Common  in Scripting 

Languages 



1-21 

Implementation Methods 
Hybrid Approaches 

•  Small translation cost 
•  Medium execution speed 
•  Portability 

Examples of Intermediate Languages: 
•   Java Bytecodes  
•   .NET MSIL 

Java VM 



1-22 

Software Development Environments 
(SDE’s) 

•  The collection of tools used in software development 
•  GNU/FSF Tools  

–  Emacs, GCC, GDB, Make 

•  Eclipse 
–  An integrated development environment for Java 

•  Microsoft Visual Studio.NET 
–  A large, complex visual environment 
–  Used to program in C#, Visual BASIC.NET, Jscript, J#, or C++ 

•  IBM WebSphere Studio 
–  Specialized with many wizards to support webapp development 



1-23 

Genealogy of High-Level Languages 



1-24 

Machine Code – Computer’s Native Language 

26 00 011 0 44 

1008 00 100 0 42 

1 00 111 0 40 

1008 00 101 0 38 

1000 00 100 0 36 

1 00 111 0 34 

unused 00 000 0 32 

1004 00 101 0 30 

46 00 010 0 28 

1000 00 101 0 26 

46 00 010 0 24 

1000 00 111 1 22 

1 00 111 0 20 

unused 00 000 0 18 

1004 00 101 0 16 

1008 00 100 0 14 

0 00 110 0 12 

1004 00 100 0 10 

4 00 111 0 8 

0 00 110 0 6 

1000 00 100 0 4 

12 00 111 0 2 

0 00 110 0 0 

X 
(base 10) 

Opcode 
(binary) 

I Bit Address 

•  Binary encoded 
instruction sequence  

•  Architecture specific 

•  Interpreted by the     
processor 

•  Hard to read and debug 

int a = 12; 
int b = 4; 
int result = 0; 
main () { 
  if (a >= b) { 
    while (a > 0) { 
      a = a - b; 
      result ++;       
    } 
  } 
} 

Machine Code Instruction: 
00011100000011002 

1C0C16 



1-25 

Assembly Language 
Improvements 

•  Symbolic names for each 
machine instruction 

•  Symbolic addresses 

•  Macros 

But 

•  Requires translation step 

•  Still architecture specific 

0:  andi   0   # AC = 0 
 addi   12 
 storei 1000  # a = 12 (a stored @ 1000) 
 andi   0   # AC = 0 
 addi   4 
 storei 1004  # b = 4  (b stored @ 1004) 
 andi   0   # AC = 0 
 storei 1008  # result = 0 (result @ 1008)  

main:  loadi  1004  # compute a – b in AC 
 comp   # using 2’s complement add 
 addi   1    
 add    1000 
 brni   exit  # exit if AC negative 

loop:  loadi  1000 
 brni   endloop 
 loadi  1004  # compute a – b in AC 
 comp   # using 2’s complement add 
 addi   1    
 add    1000  # Uses indirect bit I = 1 
 storei 1000 
 loadi  1008  # result = result + 1 
 addi   1 
 storei 1008 
 jumpi  loop 

endloop: 
exit: 

int a = 12; 
int b = 4; 
int result = 0; 
main () { 
  if (a >= b) { 
    while (a > 0) { 
      a = a - b; 
      result ++;       
    } 
  } 
} 



1-26 

Genealogy of High-Level Languages 



1-27 

IBM 704 and the 
FORmula TRANslation Language 

•  State of computing technology at the time 
–  Computers were resource limited and unreliable 
–  Applications were scientific 
–  No programming methodology or tools 
–  Machine efficiency was most important 
–  Programs written in key-punched cards  

•  As a consequence 
–  Little need for dynamic storage 
–  Need good array handling and counting loops 
–  No string handling, decimal arithmetic, or powerful input/

output (commercial stuff) 
–  Inflexible lexical/syntactic structure 



1-28 

FORTRAN 
Example 

 subroutine checksum(buffer,length,sum32) 

C       Calculate a 32-bit 1's complement checksum of the input buffer, adding 
C       it to the value of sum32.  This algorithm assumes that the buffer 
C       length is a multiple of 4 bytes. 

C       a double precision value (which has at least 48 bits of precision) 
C       is used to accumulate the checksum because standard Fortran does not  
C       support an unsigned integer datatype. 

C       buffer  - integer buffer to be summed 
C       length  - number of bytes in the buffer (must be multiple of 4) 
C       sum32   - double precision checksum value (The calculated checksum 
C                 is added to the input value of sum32 to produce the  
C                 output value of sum32) 

        integer buffer(*),length,i,hibits  
        double precision sum32,word32 
        parameter (word32=4.294967296D+09) 
C                 (word32 is equal to 2**32) 

C       LENGTH must be less than 2**15, otherwise precision may be lost 
C       in the sum 
        if (length .gt. 32768)then 
            print *, 'Error: size of block to sum is too large' 
            return 
        end if 

        do i=1,length/4 
            if (buffer(i) .ge. 0)then 
                sum32=sum32+buffer(i) 
            else 
C               sign bit is set, so add the equivalent unsigned value 
                sum32=sum32+(word32+buffer(i)) 
            end if 
        end do 

C       fold any overflow bits beyond 32 back into the word 
10      hibits=sum32/word32 
        if (hibits .gt. 0)then 
            sum32=sum32-(hibits*word32)+hibits 
            go to 10 
        end if 

        end 

Some Improvements: 
•  Architecture independence 
•  Static Checking 
•  Algebraic syntax 
•  Functions/Procedures 
•  Arrays 
•  Better support for Structured 

Programming 
•  Device Independent I/O 
•  Formatted I/O 



1-29 

FORTRAN I (1957) 
•  First implemented version of FORTRAN  
•  Compiler released in April 1957 (18 worker-years 

of effort) 
•  Language Highlights 

–  Names could have up to six characters 
–  Post-test counting loop (DO) 
–  Formatted I/O 
–  User-defined subprograms 
–  Three-way selection statement (arithmetic IF) 
–  No data typing statements 
–  No separate compilation 
–  Code was very fast 
–  Quickly became widely used 

Many of these features are still dominant in current PLs 

John W. Backus 



1-30 

All 
Languages  

Evolve 

•  FORTRAN 0 (1954) 
•  FORTRAN I (1957)  
•  FORTRAN II (1958)  

–  Independent or separate compilation 
–  Fixed compiler bugs 

•  FORTRAN IV (1960-62) 
–  Explicit type declarations 
–  Logical selection statement 
–  Subprogram names could be parameters 
–  ANSI standard in 1966 

•  FORTRAN 77 (1978) 
–  Character string handling 
–  Logical loop control statement 
–  IF-THEN-ELSE statement 
–  Still no recursion 

•  FORTRAN 90 (1990) 
–  Modules 
–  Dynamic arrays 
–  Pointers 
–  Recursion 
–  CASE statement 
–  Parameter type checking 

Fifty years and still one of  
the most widely used 

languages in the planet! 



1-31 

Genealogy of High-Level Languages 



1-32 

LISP - 1959 
•  LISt Processing language 
   (Designed at MIT by McCarthy) 
•  AI research needed a language that: 

–  Process data in lists (rather than arrays) 
–  Symbolic computation (rather than numeric) 

•  Only two data types: atoms and lists 
•  Syntax is based on lambda calculus 
•  Pioneered functional programming 

–  No need for variables or assignment 
–  Control via recursion and conditional expressions 

•  Same syntax for data and code 

The original LISP paper is here 



1-33 

Representation of Two LISP Lists 

(A B C D) 

(A (B C) D (E (F G))) 



1-34 

Scheme Example 
;;; From: Structure and Interpretation of Computer Programs 
;;; (Harold Abelson and Gerald Jay Sussman with Julie Sussman) 

;;; Added by Bjoern Hoefling (for usage with MIT-Scheme) 

(define (atom? x) 
  (or (number? x) 
      (string? x) 
      (symbol? x) 
      (null? x) 
      (eq? x #t))) 

;;; Section 2.2.4 -- Symbolic differentiation 

(define (deriv exp var) 
  (cond ((constant? exp) 0) 
        ((variable? exp) 
         (if (same-variable? exp var) 1 0)) 
        ((sum? exp) 
         (make-sum (deriv (addend exp) var) 
                   (deriv (augend exp) var))) 
        ((product? exp) 
         (make-sum 
           (make-product (multiplier exp) 
                         (deriv (multiplicand exp) var)) 
           (make-product (deriv (multiplier exp) var) 
                         (multiplicand exp)))))) 

(define (constant? x) (number? x)) 

(define (variable? x) (symbol? x)) 

(define (same-variable? v1 v2) 
  (and (variable? v1) (variable? v2) (eq? v1 v2))) 

(define (make-sum a1 a2) (list '+ a1 a2)) 

(define (make-product m1 m2) (list '* m1 m2)) 

(define (sum? x) 
  (if (not (atom? x)) (eq? (car x) '+) nil)) 

(define (addend s) (cadr s)) 

(define (augend s) (caddr s)) 

(define (product? x) 
  (if (not (atom? x)) (eq? (car x) '*) nil)) 

(define (multiplier p) (cadr p)) 

(define (multiplicand p) (caddr p)) 

;;; examples from the textbook 

(deriv '(+ x 3) 'x) 
;Value 1: (+ 1 0) 
(deriv '(* x y) 'y) 
;Value 2: (+ (* x 1) (* 0 y)) 
(deriv '(* (* x y) (+ x 3)) 'x) 
;Value 3: (+ (* (* x y) (+ 1 0)) (* (+ (* x 0) (* 1 y)) (+ x 3))) 

;;; Better versions of make-sum and make-product 

(define (make-sum a1 a2) 
  (cond ((and (number? a1) (number? a2)) (+ a1 a2)) 
        ((number? a1) (if (= a1 0) a2 (list '+ a1 a2))) 
        ((number? a2) (if (= a2 0) a1 (list '+ a1 a2))) 
        (else (list '+ a1 a2)))) 

(define (make-product m1 m2) 
  (cond ((and (number? m1) (number? m2)) (* m1 m2)) 
        ((number? m1) 
         (cond ((= m1 0) 0) 
               ((= m1 1) m2) 
               (else (list '* m1 m2)))) 
        ((number? m2) 
         (cond ((= m2 0) 0) 
               ((= m2 1) m1) 
               (else (list '* m1 m2)))) 
        (else (list '* m1 m2)))) 

;;; same examples as above 

(deriv '(+ x 3) 'x) 
;Value: 1 
(deriv '(* x y) 'y) 
;Value: x 
(deriv '(* (* x y) (+ x 3)) 'x) 
;Value 4: (+ (* x y) (* y (+ x 3))) 



1-35 

Genealogy of High-Level Languages 



1-36 

ALGOL 58 and 60 

•  State of Affairs 
–  FORTRAN had (barely) arrived for IBM 70x 
–  Many other languages were being developed, all for specific 

machines 
–  No portable language; all were machine-dependent 
–  No universal language for communicating algorithms 

•  ACM and GAMM met for four days for design 
•  Goals of the language: 

–  Close to mathematical notation 
–  Good for describing algorithms 
–  Must be translatable to machine code 



1-37 

ALGOL 58 
•  New language features: 

–  Concept of type was formalized 
–  Names could have any length 
–  Arrays could have any number of subscripts 
–  Parameters were separated by mode (in & out) 
–  Subscripts were placed in brackets 
–  Compound statements (begin ... end) 
–  Semicolon as a statement separator. Free format syntax. 
–  Assignment operator was := 
–  if had an else-if clause 
–  No I/O - “would make it machine dependent” 



1-38 

ALGOL 60 
•  Modified ALGOL 58 at 6-day meeting in Paris 
•  New language features: 

–  Block structure (local scope) 
–  Two parameter passing methods 
–  Subprogram recursion 
–  Stack-dynamic arrays 
–  Still no I/O and no string handling 

•  Successes: 
–  It was the standard way to publish algorithms for over 20 years 
–  All subsequent imperative languages are based on it 
–  First machine-independent language 
–  First language whose syntax was formally defined (BNF) 



1-39 

ALGOL 60 

•  Failure: 
–  Never widely used, especially in U.S. 

•  Possible Reasons: 
–  No I/O and the character set made programs non-

portable 
–  Too flexible--hard to implement 
–  Entrenchment of FORTRAN 
–  Formal syntax description 
–  Lack of support of IBM 

Good isn’t always popular  



1-40 

Algol 60 Example 
'begin' 

 'comment' 
  create some random numbers, print them and 
  print the average. 
 ; 

 'integer' NN; 

 NN := 20; 

 'begin' 
  'integer' i; 
  'real' sum; 

  vprint ("random numbers:"); 

  sum := 0; 
  'for' i := 1 'step' 1 'until' NN 'do' 'begin' 
   'real' x; 
   x := rand; 
   sum := sum + x; 
   vprint (i, x) 
  'end'; 

  vprint ("average is:", sum / NN) 
 'end' 

'end' 



1-41 

Genealogy of High-Level Languages 



1-42 

COBOL 
•  Contributions: 

–  First macro facility in a high-level language 
–  Hierarchical data structures (records) 
–  Nested selection statements 
–  Long names (up to 30 characters), with hyphens 
–  Separate data division 

•  Comments: 
–  First language required by DoD 
–  Still the most widely used business applications 

language 



1-43 

Cobol  
Example 

$ SET SOURCEFORMAT"FREE" 

IDENTIFICATION DIVISION. 

PROGRAM-ID.  Iteration-If. 

AUTHOR.  Michael Coughlan. 

DATA DIVISION. 

WORKING-STORAGE SECTION. 

01  Num1           PIC 9  VALUE ZEROS. 

01  Num2           PIC 9  VALUE ZEROS. 

01  Result         PIC 99 VALUE ZEROS. 

01  Operator       PIC X  VALUE SPACE. 

PROCEDURE DIVISION. 

Calculator. 

    PERFORM 3 TIMES 

       DISPLAY "Enter First Number      : " WITH NO ADVANCING 

       ACCEPT Num1 

       DISPLAY "Enter Second Number     : " WITH NO ADVANCING 

       ACCEPT Num2 

       DISPLAY "Enter operator (+ or *) : " WITH NO ADVANCING 

       ACCEPT Operator 

       IF Operator = "+" THEN 

          ADD Num1, Num2 GIVING Result 

       END-IF 

       IF Operator = "*" THEN 

          MULTIPLY Num1 BY Num2 GIVING Result 

       END-IF 

       DISPLAY "Result is = ", Result 

    END-PERFORM. 

    STOP RUN. 

http://www.csis.ul.ie/COBOL/examples/ 



1-44 

Genealogy of High-Level Languages 



1-45 

BASIC - 1964 

•  Designed by Kemeny & Kurtz at Dartmouth 
•  Design Goals: 

–  Easy to learn and use for non-science students 
–  Must be “pleasant and friendly” 
–  Fast turnaround for homework 
–  Free and private access 
–  User time is more important than computer time 

•  Current popular dialect:  Visual BASIC    
•  First widely used language with time sharing    



1-46 

Basic 
Example 

1 DIM A(9) 
10 PRINT "          TIC-TAC-TOE" 
20 PRINT 
30 PRINT "WE NUMBER THE SQUARES LIKE THIS:" 
40 PRINT 
50 PRINT 1,2,3 
55 PRINT: PRINT 
60 PRINT 4,5,6 
70 PRINT 7,8,9 
75 PRINT 
80 FOR I=1 TO 9 
90 A(I)=0 
95 NEXT I 
97 C=0 
100 IF RND (2)=1 THEN 150                (flip a coin for first move) 
110 PRINT "I'LL GO FIRST THIS TIME" 
120 C=1 
125 A(5)=1                               (computer always takes 
130 PRINT                                   the center) 
135 GOSUB 1000 
140 goto 170 
150 print "YOU MOVE FIRST" 
160 PRINT 
170 INPUT "WHICH SPACE DO YOU WANT",B 
180 IF A(B)=0 THEN 195 
185 PRINT "ILLEGAL MOVE" 
190 GOTO 170 
195 C=C+1                                (C is the move counter) 
200 A(B)=1 
205 GOSUB 1700 
209 IF G=0 THEN 270                      (G is the flag signaling 
211 IF C=9 THEN 260                         a win) 
213 GOSUB 1500 
215 C=C+1 
220 GOSUB 1000 
230 GOSUB 1700 
235 IF G=0 THEN 270 
250 IF C&lt;9 THEN 170 
260 PRINT "TIE GAME!!!!" 
265 PRINT 
270 INPUT "PLAY GAIN (Y OR N)",A$ 
275 IF A$="Y" THEN 80                    (No need to Dimension a string 
280 PRINT "SO LONG"                      with lengh of one) 
285 END 
995 REM *PRINT THE BOARD* 
1000 FOR J=1 TO 3 
1010 TAB 6 
1020 PRINT "*"; 
1030 TAB 12 



1-47 

Genealogy of High-Level Languages 



1-48 

PL/I - 1965 
•  Designed by IBM and SHARE 
•  Computing situation in 1964 (IBM's point of view) 

–  Scientific computing 
•  IBM 1620 and 7090 computers 
•  FORTRAN 
•  SHARE user group 

–  Business computing 
•  IBM 1401, 7080 computers 
•  COBOL 
•  GUIDE user group 

–  Compilers expensive and hard to maintain 



1-49 

PL/I 
•  By 1963, however,  

–  Scientific users began to need more elaborate I/O, 
like COBOL had;  Business users began to need 
floating point and arrays (MIS) 

–  It looked like many shops would begin to need two 
kinds of computers, languages, and support staff--
too costly 

•  The obvious solution: 
–  Build a new computer to do both kinds of 

applications 
–  Design a new language to do both kinds of 

applications 



1-50 

PL/I 

•  Designed in five months by the 3 X 3 Committee 
•  PL/I contributions: 

–  First unit-level concurrency 
–  First exception handling 
–  Switch-selectable recursion 
–  First pointer data type 
–  First array cross sections 

•  Comments: 
–  Many new features were poorly designed 
–  Too large and too complex 
–  Was (and still is) actually used for both scientific and 

business applications 



1-51 

Genealogy of High-Level Languages 



1-52 

APL (1962) 

•  Characterized by dynamic typing and dynamic 
storage allocation 

•  APL (A Programming Language) 1962 
–  Designed as a hardware description language (at 

IBM by Ken Iverson) 
–  Highly expressive (many operators, for both  

scalars and arrays of various dimensions) 
–  Programs are very difficult to read 



1-53 

Genealogy of High-Level Languages 



1-54 

SNOBOL (1964) 

•  A string manipulation special purpose 
language 

•   Designed as language at Bell Labs by Farber, 
Griswold, and Polensky 

•  Powerful operators for string pattern matching 



1-55 

Genealogy of High-Level Languages 



1-56 

SIMULA 67 (1967) 

•  Designed primarily for system simulation           
(in Norway by Nygaard and Dahl) 

•  Based on ALGOL 60 and SIMULA I 
•  Primary Contribution: 

–  Co-routines - a kind of subprogram 
–  Implemented in a structure called a class 
–  Classes are the basis for data abstraction 
–  Classes are structures that include both local data and 

functionality 
–  Supported objects and inheritance 



1-57 

Genealogy of High-Level Languages 



1-58 

ALGOL 68 (1968) 

•  Derived from, but not a superset of Algol 60 
•  Design goal is orthogonality 
•  Contributions: 

–  User-defined data structures 
–  Reference types 
–  Dynamic arrays (called flex arrays) 

•  Comments: 
–  Had even less usage than ALGOL 60 
–  Had strong influence on subsequent languages, especially 

Pascal, C, and Ada 



1-59 

Important ALGOL Descendants I 

•  Pascal - 1971 (Wirth) 
–  Designed by Wirth, who quit the ALGOL 68 

committee (didn't like the direction of that work) 
–  Designed for teaching structured programming 
–  Small, simple, nothing really new 
–  From mid-1970s until the late 1990s, it was the  most 

widely used language for teaching programming in 
colleges 

•  C – 1972 (Dennis Richie) 
–  Designed for systems programming  
–  Evolved primarily from B, but also ALGOL 68 
–  Powerful set of operators, but poor type checking 
–  Initially spread through UNIX 



1-60 

Important ALGOL Descendants II 

•  Modula-2  - mid-1970s (Wirth) 
–  Pascal plus modules and some low-level features designed 

for systems programming 

•  Modula-3 - late 1980s (Digital & Olivetti) 
–  Modula-2 plus classes, exception handling, garbage 

collection, and concurrency 

•  Oberon - late 1980s  (Wirth) 
–  Adds support for OOP to Modula-2  
–  Many Modula-2 features were deleted (e.g., for statement, 

enumeration types, with statement, noninteger array 
indices) 



1-61 

Prolog - 1972 

•  Developed at the University of Aix-Marseille, 
by Comerauer and Roussel, with some help 
from Kowalski at the University of Edinburgh 

•  Based on formal logic 
•  Non-procedural 
•  Can be summarized as being an intelligent 

database system that uses an inference  
process to infer the truth of given queries 



1-62 

Prolog Examples 

fac1(0,1).  
fac1(M,N) :- M1 is M-1, fac1(M1,N1), N is M*N1.  

fac2(M,1) :- M =<0.  
fac2(M,N) :- M1 is M-1, fac2(M1,N1), N is M*N1.  

fac3(M,1) :- M =<0, !.  
fac3(M,N) :- M1 is M-1, fac3(M1,N1), N is M*N1.  



1-63 

Genealogy of High-Level Languages 



1-64 

Smalltalk - 1972-1980 
•  Developed at Xerox PARC, initially by Alan 

Kay, later by Adele Goldberg 
•  First full implementation of an object-oriented 

language (data abstraction, inheritance, and 
dynamic type binding) 

•  Pioneered the graphical user interface 
everyone now uses 



1-65 

Smalltalk - 1972-1980 



1-66 

Genealogy of High-Level Languages 



1-67 

Scheme (1970’s) 

•  MIT’s dear programming language 
•  Designed by Gerald J. Sussman and Guy Steele Jr 
•  LISP with static scoping and closures 
•  Compiled code coexists with interpreted code 
•  Garbage collection 
•  Tail recursion 
•  Explicit Continuations 

Sussman Steele 



1-68 

Genealogy of High-Level Languages 



1-69 

Ada - 1983 (began in mid-1970s) 

•  Huge design effort, involving hundreds of people, much money, and 
about eight years 

•  Environment: More than 450 different languages being used for DOD 
embedded systems (no software reuse and no development tools) 

•  Contributions: 
–  Packages - support for data abstraction 
–  Exception handling - elaborate  
–  Generic program units 
–  Concurrency - through the tasking model 

•  Comments: 
–  Competitive design 
–  Included all that was then known about software engineering and language 

design 
–  First compilers were very difficult; the first really usable compiler came 

nearly five years after the language design was completed 



1-70 

Genealogy of High-Level Languages 



1-71 

C++ (1985) 

•  Developed at Bell Labs by Bjarne Stroustrup 
•  Evolved from C and SIMULA 67  
•  Facilities for object-oriented programming, taken 

partially from SIMULA 67, were added to C 
•  Also has exception handling 
•  A large and complex language, in part because it 

supports both procedural and OO programming 
•  Rapidly grew in popularity, along with OOP 
•  ANSI standard approved in November, 1997 



1-72 

C++ Related Languages 

•  Eiffel - a related language that supports OOP 
–  (Designed by Bertrand Meyer - 1992) 
–  Not directly derived from any other language 
–  Smaller and simpler than C++, but still has most of the 

power 

•  Delphi (Borland) 
–  Pascal plus features to support OOP 
–  More elegant and safer than C++ 



1-73 

Genealogy of High-Level Languages 



1-74 

Java (1995) 

•  Developed at Sun in the early 1990s 
•  Based on C++ 

–  Significantly simplified (does not include struct, 
union, enum, pointer arithmetic, and half of the 
assignment coercions of C++)  

–  Supports only OOP 
–  No multiple inheritance 
–  Has references, but not pointers 
–  Includes support for applets and a form of  concurrency 
–  Portability was “Job #1” 



1-75 

Scripting Languages for the Web 

•  JavaScript 
–  Used in Web programming (client-side) to create 

dynamic HTML documents 
–  Related to Java only through similar syntax 

•  PHP 
–  Used for Web applications (server-side); produces 

HTML code as output 

•  Perl 
•  JSP 
•  Python 



1-76 

C# 

•  Part of the .NET development platform 
•  Based on C++ and Java 
•  Provides a language for component-based 

software development 
•  All .NET languages (C#, Visual BASIC.NET, 

Managed C++, J#.NET, and Jscript.NET) use 
Common Type System (CTS), which provides 
a common class library 

•  Likely to become widely used 



1-77 

Some Important  
Special Purpose Languages 

•  SQL 
–  Relational Databases 

•  LaTeX 
–  Document processing and typesetting 

•  HTML 
–  Web page 

•  XML 
–  Platform independent data representation 

•  UML 
–  Software system specification 

•  VHDL 
–  Hardware description language 



1-78 

Website with lots of examples in 
different programming languages old 
and new 

http://www.ntecs.de/old-hp/uu9r/lang/html/lang.en.html#_link_sather 

Strongly 
recommended  

for the curious mind! 



1-79 

END OF LECTURE 1 



1-80 

EXTRA SLIDES 



1-81 

Influences on Language Design 

•  Computer architecture: Von Neumann  
•  We use imperative languages, at least in part, 

because we use von Neumann machines 
–  Data and programs stored in same memory 
–  Memory is separate from CPU 
–  Instructions and data are piped from memory to 

CPU 
•  Basis for imperative languages 

–  Variables model memory cells 
–  Assignment statements model piping 
–  Iteration is efficient 



1-82 

Von Neumann Architecture 



1-83 

LISP 

•  Pioneered functional programming 
–  No need for variables or assignment 
–  Control via recursion and conditional expressions 

•  Still the dominant language for AI 
•  COMMON LISP and Scheme are contemporary 

dialects of LISP 
•  ML, Miranda, and Haskell are related languages 



1-84 

Zuse’s Plankalkül - 1945 

•  Never implemented 
•  Advanced data structures 

–  floating point, arrays, records 

•  Invariants 



1-85 

Plankalkül 

•  Notation: 

       A[7] = 5 * B[6] 

              |   5  *  B  =>  A 
        V   |   6                 7            (subscripts) 
         S   |   1.n              1.n         (data types) 



1-86 

Pseudocodes - 1949 

•  What was wrong with using machine code? 
–  Poor readability 
–  Poor modifiability 
–  Expression coding was tedious 
–  Machine deficiencies--no indexing or floating point 



1-87 

Pseudocodes  

•  Short code; 1949; BINAC; Mauchly 
–  Expressions were coded, left to right 
–  Some operations: 

            1n => (n+2)nd power 
            2n => (n+2)nd root 
            07 => addition 



1-88 

Pseudocodes 

•  Speedcoding; 1954; IBM 701, Backus 
–  Pseudo ops for arithmetic and math functions 
–  Conditional and unconditional branching 
–  Autoincrement registers for array access 
–  Slow! 
–  Only 700 words left for user program 



1-89 

Pseudocodes 

•  Laning and Zierler System - 1953 
–  Implemented on the MIT Whirlwind computer 
–  First "algebraic" compiler system 
–  Subscripted variables, function calls, expression 

translation 
–  Never ported to any other machine 



1-90 

ALGOL 58 

•  Comments: 
–  Not meant to be implemented, but variations         of it 

were (MAD, JOVIAL) 
–  Although IBM was initially enthusiastic, all support was 

dropped by mid-1959 



1-91 

COBOL - 1960 

•  Sate of affairs 
–  UNIVAC was beginning to use FLOW-MATIC 
–  USAF was beginning to use AIMACO 
–  IBM was developing COMTRAN 



1-92 

COBOL 
•  Based on FLOW-MATIC 
•  FLOW-MATIC features: 

–  Names up to 12 characters, with embedded 
hyphens 

–  English names for arithmetic operators (no 
arithmetic expressions) 

–  Data and code were completely separate 
–  Verbs were first word in every statement 



1-93 

COBOL 
•  First Design Meeting (Pentagon) - May 1959 
•  Design goals: 

–  Must look like simple English 
–  Must be easy to use, even if that means it will be less 

powerful 
–  Must broaden the base of computer users 
–  Must not be biased by current compiler problems 

•  Design committee members were all from computer 
manufacturers and DoD branches 

•  Design Problems: arithmetic expressions? subscripts?  
Fights among manufacturers 



1-94 

Ada 95 

•  Ada 95 (began in 1988) 
–  Support for OOP through type derivation 
–  Better control mechanisms for shared data  (new 

concurrency features) 
–  More flexible libraries 


