
MARC: Developing Bioinformatics Programs
July 2009

Alex Ropelewski
PSC-NRBSC

Bienvenido Vélez
UPR Mayaguez

Reference: How to Think Like a Computer Scientist: Learning with Python

Introduction to Python programming
 for biologists

1

• The following material is the result of a curriculum development effort to provide a set
of courses to support bioinformatics efforts involving students from the biological
sciences, computer science, and mathematics departments. They have been
developed as a part of the NIH funded project “Assisting Bioinformatics Efforts at
Minority Schools” (2T36 GM008789). The people involved with the curriculum
development effort include:

• Dr. Hugh B. Nicholas, Dr. Troy Wymore, Mr. Alexander Ropelewski and Dr. David
Deerfield II, National Resource for Biomedical Supercomputing, Pittsburgh
Supercomputing Center, Carnegie Mellon University.

• Dr. Ricardo González Méndez, University of Puerto Rico Medical Sciences Campus.
• Dr. Alade Tokuta, North Carolina Central University.
• Dr. Jaime Seguel and Dr. Bienvenido Vélez, University of Puerto Rico at Mayagüez.
• Dr. Satish Bhalla, Johnson C. Smith University.

• Unless otherwise specified, all the information contained within is Copyrighted © by
Carnegie Mellon University. Permission is granted for use, modify, and reproduce
these materials for teaching purposes.

• Most recent versions of these presentations can be found at http://marc.psc.edu/

 Introduction to Programming (Today)
 Why learn to Program?
 The Python Interpreter
 Software Development Process
 Numbers, Strings, Operators, Expressions

 Control structures, decisions, iteration and
recursion

Outline

3

US Department of Labor, Bureau of Labor Statistics
Engineers, Life and Physical Scientists and Related Occupations.

Occupational Outlook Handbook, 2008-09 Edition.

Biological scientists “…usually study allied disciplines
such as mathematics, physics, engineering and

computer science. Computer courses are beneficial for
modeling and simulating biological processes, operating
some laboratory equipment and performing research in

the emerging field of bioinformatics”

Why Learn to Program?

4

Why Learn to Program?

5

 Need to compare output from a new run with an old run. (new hits in
database search)

 Need to compare results of runs using different parameters. (Pam120
vs Blosum62)

 Need to compare results of different programs (Fasta, Blast, Smith-
Waterman)

 Need to modify existing scripts to work with new/updated programs and
web sites.

 Need to use an existing program's output as input to a different
program, not designed for that program:

 Database search -> Multiple Alignment
 Multiple Alignment -> Pattern search
 Need to Organize your data

Bioinformatics Assembly Analyst
Responsibilities:
 Assembling genome sequence data using a variety of tools and parameters and performing the

experiments needed to evaluate sequencing strategies
 Using existing software and databases to analyze genomic data and correlating assemblies and

sequences with a variety of genetic and physical maps and other biological information
 Identifying problems and serving as point of contact for various groups to propose and

implement solutions
 Proposing and implementing upgrades to existing tools and processes to enhance analysis

techniques and quality of results
 Developing and implementing scripts to manipulate, format, parse, analyze, and display

genome sequence data; and developing new strategies for analysis and presentation of results.
Requirements:
 A bachelor's degree in biology or related field
 At least three years of experience in DNA sequencing and sequence analysis.
 Must possess solid knowledge of sequencing software and public sequencing databases.
 Knowledge of bioinformatics tools helpful.

Why Learn to Program?

6

 C/C++
 Language of choice for most large development projects

 FORTRAN
 Excellent language for math, not used much anymore

 Java
 Popular modern object oriented language

 PERL
 Excellent language for text-processing (bioperl.org)

 PHP
 Popular language used to program web interfaces

 Python
 Language easy to pick up and learn (biopython.org)

 SQL
 Language used to communicate with a relational database

Good Languages to Learn
In no particular order….

7

 “Object Oriented” is simply a convenient way to organize your
data and the functions that operate on that data
 A biological example of organizing data:

 Human.CytochromeC.protein.sequence
 Human.CytochromeC.RNA.sequence
 Human.CytochromeC.DNA.sequence

 Some things only make sense in the context that they are used:
 Human,CytochromeC.DNA.intron
 Human.CytochromeC.DNA.exon
 Human.CytochromeC.DNA.sequence
 Human.CytochromeC.protein.sequence
 Human.CytochromeC.protein.intron
 Human.CytochromeC.protein.exon

Python is Object Oriented

8

Meaningful

Meaningless

 Go to www.python.org
 Go to DOWNLOAD section
 Click on Python 2.6.2 Windows installer
 Save ~10MB file into your hard drive
 Double click on file to install
 Follow instructions
 Start -> All Programs -> Python 2.6 -> Idle

Downloading and Installing Python

9

Idle: The Python Shell

10

Python as a Number Cruncher

11

>>> print 1 + 3
4
>>> print 6 * 7
42
>>> print 6 * 7 + 2
44
>>> print 2 + 6 * 7
44
>>> print 6 - 2 - 3
1
>>> print 6 - (2 - 3)
7
>>> print 1 / 3
0
>>>

/ and * higher precedence than + and -

integer division truncates fractional part

Operators are left associative

Parenthesis can override precedence

Floating Point Expressions

12

>>> print 1.0 / 3.0
0.333333333333
>>> print 1.0 + 2
3.0

>>> print 3.3 * 4.23
13.959
>>> print 3.3e23 * 2
6.6e+023
>>> print float(1) /3
0.333333333333

>>>

Mixed operations converted to float

Scientific notation allowed

12 decimal digits default precision

Explicit conversion

String Expressions

13

>>> print "aaa"
aaa
>>> print "aaa" + "ccc"
aaaccc
>>> len("aaa")
3
>>> len ("aaa" + "ccc")
6
>>> print "aaa" * 4
aaaaaaaaaaaa
>>> "aaa"
'aaa'
>>> "c" in "atc"
True
>>> "g" in "atc"
False
>>>

+ concatenates string

len is a function that returns the length
of its argument string

any expression can be an argument

* replicates strings

a value is an expression that yields itself

in operator finds a string inside another
And returns a boolean result

14

>>> numAminoAcids = 20
>>> eValue = 6.022e23
>>> prompt = "Enter a sequence ->"
>>> print numAminoAcids
20
>>> print eValue
6.022e+023
>>> print prompt
Enter a sequence ->
>>> print "prompt"
prompt
>>>
>>> prompt = 5
>>> print prompt
5
>>>

= binds a name to a value

prints the value bound to a name

= can change the value associated
with a name even to a different type

use Camel case for compound names

Values Have Types

15

>>> type("hello")

<type 'str'>

>>> type(3)

<type 'int'>

>>> type(3.0)

<type 'float'>

>>> type(eValue)

<type 'float'>

>>> type (prompt)

<type 'int'>

>>> type(numAminoAcids)

<type 'float'>

>>>

type is another function

the type of a name is the type of the
value bound to it

the “type” is itself a value

In Bioinformatics Words …

16

>>> codon=“atg”

>>> codon * 3

’atgatgatg’

>>> seq1 =“agcgccttgaattcggcaccaggcaaatctcaaggagaagttccggggagaaggtgaaga”

>>> seq2 = “cggggagtggggagttgagtcgcaagatgagcgagcggatgtccactatgagcgataata”
>>> seq = seq1 + seq2

>>> seq
'agcgccttgaattcggcaccaggcaaatctcaaggagaagttccggggagaaggtgaagacggggagtggggagttgagtc
gcaagatgagcgagcggatgtccactatgagcgataata‘
>>> seq[1]
'g'
>>> seq[0]
'a'
>>> “a” in seq
True
>>> len(seq1)
60
>>> len(seq)
120

First nucleotide starts at 0

More Bioinformatics
Extracting Information from Sequences

17

>>> seq[0] + seq[1] + seq[2]
’agc’
>>> seq[0:3]
’agc’
>>> seq[3:6]
’gcc’
>>> seq.count(’a’)
35
>>> seq.count(’c’)
21
>>> seq.count(’g’)
44
>>> seq.count(’t’)
12
>>> long = len(seq)
>>> pctA = seq.count(’a’)
>>> float(pctA) / long * 100
29.166666666666668

Find the first codon from the sequence

get ’slices’ from strings:

How many of each base does
this sequence contain?

Count the percentage of
each base on the sequence.

Additional Note About Python Strings

18

>>> seq=“ACGT”
>>> print seq
ACGT

>>> seq=“TATATA”
>>> print seq
TATATA

>>> seq[0] = seq[1]
Traceback (most recent call last):
 File "<pyshell#33>", line 1, in <module>
 seq[0]=seq[1]
TypeError: 'str' object does not support item assignment

seq = seq[1] + seq[1:]

Can replace
one whole
string with
another
whole string

Can NOT
simply replace
a sequence
character with
another
sequence
character, but…

Can replace a whole string using substrings

 How?
 Precede comment with # sign
 Interpreter ignores rest of the line

 Why?
 Make code more readable by others AND yourself?

 When?
 When code by itself is not evident

compute the percentage of the hour that has elapsed
percentage = (minute * 100) / 60

 Need to say something but Python cannot express it, such as
documenting code changes

percentage = (minute * 100) / 60 # FIX: handle float division

Commenting Your Code!

19

Please do not over do it X = 5 # Assign 5 to x

 Problem Identification
 What is the problem that we are solving

 Algorithm Development
 How can we solve the problem in a step-by-step manner?

 Coding
 Place algorithm into a computer language

 Testing/Debugging
 Make sure the code works on data that you already know the
answer to

 Run Program
 Use program with data that you do not already know the answer to.

Software Development Cycle

20

 First, lets learn to SAVE our programs in a file:
 From Python Shell: File -> New Window
 From New Window: File->Save

 Then, To run the program in the new window:
 From New Window: Run->Run Module

Lets Try It With Some Examples!

21

 What is the percentage composition of a nucleic
acid sequence
 DNA sequences have four residues, A, C, G,
and T
 Percentage composition means the percentage
of the residues that make up of the sequence

Problem Identification

22

 Print the sequence
 Count characters to determine how many A, C, G
and T’s make up the sequence
 Divide the individual counts by the length of the
sequence and take this result and multiply it by
100 to get the percentage
 Print the results

Algorithm Development

23

Coding

24

seq="ACTGTCGTAT"
print seq
Acount= seq.count('A')
Ccount= seq.count('C')
Gcount= seq.count('G')
Tcount= seq.count('T')
Total = len(seq)
APct = int((Acount/Total) * 100)
print 'A percent = %d ' % APct
CPct = int((Ccount/Total) * 100)
print 'C percent = %d ' % CPct
GPct = int((Gcount/Total) * 100)
print 'G percent = %d ' % GPct
TPct = int((Tcount/Total) * 100)
print 'T percent = %d ' % TPct

 First SAVE the program:
 From New Window: File->Save

Let’s Test The Program

25

 Six Common Python Coding Errors:
 Delimiter mismatch: check for matches and proper use.

 Single and double quotes: ‘ ’ “ ”
 Parenthesis and brackets: { } [] ()

 Spelling errors:
 Among keywords
 Among variables
 Among function names

 Improper indentation
 Import statement missing
 Function calling parameters are mismatched
 Math errors:

 Automatic type conversion: Integer vs floating point
 Incorrect order of operations – always use parenthesis.

Testing / Debugging

26

seq='ACTGTCGTAT"
print seq;

Acount= seq.count('A')

Ccount= seq.count('C')

Gcount= seq.count('G')
Tcount= seq,count('T')

Total = Len(seq)

APct = int((Acount/Total) * 100)

print 'A percent = %d ' % APct

CPct = int((Ccount/Total) * 100)
print 'C percent = %d ' % Cpct

GPct = int(Gcount/Total) * 100)

primt 'G percent = %d ' % GPct

TPct = int((Tcount/Total) * 100)
print 'T percent = %d ' % TPct

Testing / Debugging

27

 First, re-SAVE the program:
  File->Save

 Then RUN the program:
  Run->Run Module

 Then LOOK at the Python Shell Window:
 If successful, the results are displayed
 If unsuccessful, error messages will be
displayed

Let’s Test The Program

28

 The program says that the composition is:
 0%A, 0%C, 0%G, 0%T

 The real answer should be:
 20%A, 20%C, 20%G, 40%T

 The problem is in the coding step:
 Integer math is causing undesired rounding!

Testing/Debugging

29

seq="ACTGTCGTAT"
print seq
Acount= seq.count('A')
Ccount= seq.count('C')
Gcount= seq.count('G')
Tcount= seq.count('T')
Total = float(len(seq))
APct = int((Acount/Total) * 100)
print 'A percent = %d ' % APct
CPct = int((Ccount/Total) * 100)
print 'C percent = %d ' % CPct
GPct = int((Gcount/Total) * 100)
print 'G percent = %d ' % GPct
TPct = int((Tcount/Total) * 100)
print 'T percent = %d ' % TPct

Testing/Debugging

30

 If the first line was changed to:
 seq = “ACUGCUGUAU”

 Would we get the desired result?

Let’s change the nucleic acid sequence from
DNA to RNA…

31

 The program says that the composition is:
 20%A, 20%C, 20%G, 0%T

 The real answer should be:
 20%A, 20%C, 20%G, 40%U

 The problem is that we have not defined the problem
correctly!
 We designed our code assuming input would be
DNA sequences

 We fed the program RNA sequences

Testing/Debugging

32

 What is the percentage composition of a nucleic
acid sequence
 DNA sequences have four residues, A, C, G,
and T
 In RNA sequences “U” is used in place of “T”
 Percentage composition means the percentage
of the residues that make up of the sequence

Problem Identification

33

 Print the sequence
 Count characters to determine how many A, C, G,
T and U’s make up the sequence
 Divide the individual A,C,G counts and the sum of
T’s and U’s by the length of the sequence and take
this result and multiply it by 100 to get the
percentage
 Print the results

Algorithm Development

34

Testing/Debugging

35

seq="ACUGUCGUAU"
print seq
Acount= seq.count('A')
Ccount= seq.count('C')
Gcount= seq.count('G')
TUcount= seq.count('T') + seq.count(‘U')
Total = float(len(seq))
APct = int((Acount/Total) * 100)
print 'A percent = %d ' % APct
CPct = int((Ccount/Total) * 100)
print 'C percent = %d ' % CPct
GPct = int((Gcount/Total) * 100)
print 'G percent = %d ' % GPct
TUPct = int((TUcount/Total) * 100)
print 'T/U percent = %d ' % TUPct

 Extend your code to handle the nucleic acid
ambiguous sequence characters “N” and “X”
 Extend your code to handle protein sequences

What’s Next

36

