
MARC: Developing Bioinformatics
Programs
July 2009

Alex Ropelewski
PSC-NRBSC

Bienvenido Vélez
UPR Mayaguez

1

Bioinformatics Data Management
Lecture 3

Structured Databases

• The following material is the result of a curriculum development effort to provide a set
of courses to support bioinformatics efforts involving students from the biological
sciences, computer science, and mathematics departments. They have been
developed as a part of the NIH funded project “Assisting Bioinformatics Efforts at
Minority Schools” (2T36 GM008789). The people involved with the curriculum
development effort include:

• Dr. Hugh B. Nicholas, Dr. Troy Wymore, Mr. Alexander Ropelewski and Dr. David
Deerfield II, National Resource for Biomedical Supercomputing, Pittsburgh
Supercomputing Center, Carnegie Mellon University.

• Dr. Ricardo González Méndez, University of Puerto Rico Medical Sciences Campus.
• Dr. Alade Tokuta, North Carolina Central University.
• Dr. Jaime Seguel and Dr. Bienvenido Vélez, University of Puerto Rico at Mayagüez.
• Dr. Satish Bhalla, Johnson C. Smith University.

• Unless otherwise specified, all the information contained within is Copyrighted © by
Carnegie Mellon University. Permission is granted for use, modify, and reproduce
these materials for teaching purposes.

• Most recent versions of these presentations can be found at http://marc.psc.edu/

Bioinformatics Data Management

Structured Databases: Outline
•  Structured Databases at a Glance -

Characteristics
•  Advantages of Structured Databases
•  Data Independence
•  Disadvantages of Structured Databases
•  Examples of Structured Databases

–  Hierarchical Databases
–  Networked Databases
–  Relational Databases
–  XML Databases

Structured Databases at a Glance
•  All information organized in same way (Data Model)
•  Language available to

–  describe (create) the database
–  insert data
–  manipulate data
–  update

•  Language establishes an abstract data model: Data
Independence

•  Programs using language can work across systems
•  Facilitates communication and sharing data

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 4

Data Independence

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 5

Application

Data Model

Shield apps from changes in “physical” platform specific layers

OS and File System

Tables, relations

Files, directories

Objective:

Disadvantages of Structured Databases

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

6

Model may not fit data needs
Example: How to represent proteins in table format

Approach #1 – Store one residue per column
AccNum Name AA1 AA2 AA3 … AA517

AAA16331 G-gamma globin M G H

AAA51693 Aldehyde
Dehydrogenase

M L R … S

Wasted
space

Must make number of columns = max length of any possible sequence

What is this number?

Disadvantages of Structured Databases

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 7

Model may not fit data needs
Approach #2 – Store one residue per rows

AccNum AAPos AA Name

AAA16331 1 M G-gamma globin

AAA16331 2 M G-gamma globin

… … … …

AAA51693 1 M Aldehyde Dehydrogenase

… … … …

Difficult to recover sequence in string form using DML

Disadvantages of Structured Databases

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 8

Model may not fit data needs

Approach #3 – Put aminoacid sequence in one attribute
AccNum Name Sequence

AAA16331 G-gamma globin “MGHFTEEDKA….”

AAA51693 Aldehyde Dehydrogenase “MLRAAARFPGP….”

… …

Must analyze sequence using program outside SQL
Loose some benefits of Data Model

A Simple Relational Example

•  Intuitively model consists of tables
– Rows are objects or “entities”
– Columns are “attributes” of entities
– Attributes cross reference other tables

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 9

Accessio
nNum

Name DiscBy SeqBy

P201 2 3

Q303 2 1

R32 3 NULL

Num Name Last Country

1 John Doe England

2 Jane Doe England

3 Hugh Nicholas USA

Proteins Scientists

Intuitively:
 Protein P201 discovered by Jane Doe
 Hugh discovered R2 and sequenced P201

Primary
key

Primary
key

Structured Databases: Other examples
•  XML Databases

•  Query language = XPATH/XQUERY

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 10

Relational Databases: Outline
•  Introduction and Examples
•  Relational Database Design by Example

•  entities and relational diagrams
•  normal forms

•  SQL (Sequel) Language
•  SQL Data Manipulation

–  Select
–  Joins
–  Updates and deletes
–  Inserts

Relational Databases: Timeline

•  Originally proposed by E.F. Codd in 1970
•  First research prototypes in early 80’s:

–  Ingres @ UC Berkeley
– System R @ IBM

•  Today the market exceeds $20B annually

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 12

Edgar F. Codd

Relational Databases Products

•  Commercial
– Oracle
– MS SQL Server
–  IBM DB2

•  Open Source
– MySQL
– Postgres
– SQLite

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 13

Example Relational Database Design

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 14

Goal: Store results from multiple sequence search attempts
Leverage SQL to analyze large result set
Entities to be stored: Matching sequences with scores for each search matrix

Acc# Definition Source Matrix eValue SearchDate

P14555 Group IIA
Phospholipase A2

Human Pam70 4.18 E-32 7/21/07

P81479 Phospholipase A2
isozyme IV

Indian
Green
Tree Viper

Pam70 2.68 -E52 7/21/07

P14555 Group IIA
Phospholipase A2

Human Blosom80 3.47 E-33 7/20/07

P81479 Phospholipase A2
isozyme IV

Indian
Green
Tree Viper

Blosom80 1.20 E-54 7/20/07

Problems: Lots of redundant information

Dealing with Redundancy

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 15

AccNum Definition Source

P14555 Group IIA Phospholipase A2 Human

P81479 Phospholipase A2 isozyme IV Indian Green Tree Viper

Acc# Date Matrix eValue

P14555 7/21/07 Pam70 4.18 E-32

P81479 7/21/07 Pam70 2.68 -E52

P14555 7/20/07 Blosom80 3.47 E-33

P81479 7/20/07 Blosom80 1.20 E-54

Sequences

Matches

Foreign key

Normalization

Still redundant

Dealing with Redundancy

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 16

Run# Matrix Date

1 7/21/07 Pam70

2 7/20/07 Blosom80

Sequences

Runs

Matches

Normalization

Acc# Definition Source

P14555 Group IIA Phospholipase A2 Human

P81479 Phospholipase A2 isozyme IV Indian Green Tree Viper

Acc# Run# eValue

P14555 1 4.18 E-32

P81479 1 2.68 -E52

P14555 2 3.47 E-33

P81479 2 1.20 E-54

Basic Normal Forms

•  First Normal Form
– Table must be flat; no multi-valued attributes

•  Second Normal Form
– All non-key attributes determined by whole

primary key
•  Third Normal Form

– All non-key attributes can ONLY depend on
whole primary key directly

•  Others…
These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 17

Entity Relationship Diagrams

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 18

sequences

Runs

N-to-N relations model as table

n

n

Acc# Definition Source

Sequences

Run# Matrix Date

Runs

Matches

Acc# Run# eValue

Entity Relationship Diagrams

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 19

Organism

Sequence

one-to-many relationships

1

n

ID Name Description

1 Cod worm Pseudoterranova decipiens

2 Human Homo sapiens

Acc# SrcID Name

CAA77743 1 Hemoglobin

AB647031 2 Hemoglobin

No table necessary for one-to-many rel’s

Sequence

Organism

Simple Query Language (SQL)

•  Organization
– Data definition/schema creation
– Data manipulation

•  Insertion
•  Manipulation
•  Updates
•  Removals

–  A standard (ISO) since 1987

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 20

SQL Data Definition Language (DDL)

•  The CREATE statement

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 21

Sequences Runs

Matches

Acc# Run# eValue

CREATE TABLE Sequences(
 AccNum int,
 Definition varchar (255),
 Source varchar(255))

CREATE TABLE Runs(
 RunNum int,
 Matrix varchar(255),
 Date date)

CREATE TABLE Matches(
 AccNum int,
 RunNum int,

 eValue int)

Acc# Definition Source Run# Matrix Date

SQL Data Manipulation Language (DML)

•  Foundation is relational algebra
•  An algebra on relations with three basic

operations:

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 22

Operation Description

Projection Select subset of attributes of a table

Selection Select subset of entities in a table

Join Merge two tables into one

All three operations yield a new table as the result

Relational Algebra - Projection

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 23

•  Selects a subset of attributes or columns

Acc# Definition Source

CAM22514 Hemoglobin alpha Mus Musculus

CAO91797 Hemoglobin X Mus Musculus

ABG47031 Hemoglobin Homo Sapiens

Acc# Source

CAM22514 Mus Musculus

CAO91797 Mus Musculus

ABG47031 Homo Sapiens

Intuitively:
Find organism that each
sequence belongs to

πAcc#, Source(Sequences)

Sequences

Relational Algebra - Selection

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 24

•  Selects a subset of entities or rows

Acc# Definition Source

CAM22514 Hemoglobin alpha Mus Musculus

CAO91797 Hemoglobin X Mus Musculus

ABG47031 Hemoglobin Homo Sapiens

Acc# Definition Source

CAM22514 Hemoglobin alpha Mus Musculus

CAO91797 Hemoglobin X Mus Musculus

No reason to keep organism is result

Sequences

Sequences

σSource=Mus Musculus (Sequences)

Intuitively:
Find all sequences from
Mus Musculus

Relational Algebra: Projection and Selection

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 25

σSource= Mus Musculus (Sequences)

πAcc#, Definition (Sequences)

Acc# Definition Source

CAM22514 Hemoglobin alpha Mus Musculus

CAO91797 Hemoglobin X Mus Musculus

Acc# Definition

CAM22514 Hemoglobin alpha

CAO91797 Hemoglobin X

πAcc#, Definition(σSource= Mus Musculus(Sequences))

Acc# Definition Source

CAM22514 Hemoglobin alpha Mus Musculus

CAO91797 Hemoglobin X Mus Musculus

ABG47031 Hemoglobin Homo Sapiens

Sequences

Relational Algebra - Natural Join

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 26

Requires
attributes for join

to have same
name

Sequences

SourceID Name

1 Mus Musculus

1 Mus Musculus

2 Homo Sapiens

Organisms

Sequences Organisms

AccNum Definition SourceID Name

CAM22514 Hemoglobin alpha 1 Mus Musculus

CAO91797 Hemoglobin X 1 Mus Musculus

ABG47031 Hemoglobin 2 Homo Sapiens

AccNum Definition SourceID

CAM22514 Hemoglobin alpha 1

CAO91797 Hemoglobin X 1

ABG47031 Hemoglobin 2

Relational Algebra - Inner Join

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 27

AccNum Definition SrcID

CAM22514 Hemoglobin alpha 1

ABG47031 Hemoglobin 2

NPO34535 Hemoglobin zeta 3

Rows without matching attributes excluded

Sequences
SrcID Name

1 Mus Musculus

2 Homo Sapiens

Organisms

Can name attribute explicitly

sequences.SrcID = organisms.SrcID

Sequences Organisms

AccNum Name SrcID Name

CAM22514 Hemoglobin alpha 1 Mus Musculus

ABG47031 Hemoglobin 2 Homo Sapiens

Relational Algebra - Left Join

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 28

Tuples (rows) on left table without matches have NULL values on attributes of right table

AccNum Name SrcID Name

CAM22514 Hemoglobin alpha 1 Mus Musculus

ABG47031 Hemoglobin 2 Homo Sapiens

NPO34535 Hemoglobin zeta 3 NULL

AccNum Definition SrcID

CAM22514 Hemoglobin alpha 1

ABG47031 Hemoglobin 2

NPO34535 Hemoglobin zeta 3

Sequences
SrcID Name

1 Mus Musculus

2 Homo Sapiens

Organisms

sequences.SrcID = organisms.SrcID

Sequences Organisms

SQL Select - Projection

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 29

•  Selects a subset of attributes or columns

Acc# Definition Source

CAM22514 Hemoglobin alpha Mus Musculus

CAO91797 Hemoglobin X Mus Musculus

ABG47031 Hemoglobin Homo Sapiens

Acc# Source

CAM22514 Mus Musculus

CAO91797 Mus Musculus

ABG47031 Homo Sapiens

πAcc#, Source(Sequences)

Sequences

SELECT Acc#, Source
 FROM Sequences

SQL Select - Selection

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 30

•  Selects a subset of entities or rows

Acc# Definition Source

CAM22514 Hemoglobin alpha Mus Musculus

CAO91797 Hemoglobin X Mus Musculus

ABG47031 Hemoglobin Homo Sapiens

Acc# Definition Source

CAM22514 Hemoglobin alpha Mus Musculus

CAO91797 Hemoglobin X Mus Musculus

No reason to keep organism is result

Sequences

Sequences

σSource=Mus Musculus (Sequences)
SELECT *
 FROM Sequences
 WHERE Source= Mus Musculus

“*” means “all”
attributes

SQL Select: Projection and Selection

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 31

σSource= Mus Musculus (Sequences)

πAcc#, Definition (Sequences)

Acc# Definition Source

CAM22514 Hemoglobin alpha Mus Musculus

CAO91797 Hemoglobin X Mus Musculus

Acc# Definition

CAM22514 Hemoglobin alpha

CAO91797 Hemoglobin X

πAcc#, Definition(σSource= Mus Musculus(Sequences))

Acc# Definition Source

CAM22514 Hemoglobin alpha Mus Musculus

CAO91797 Hemoglobin X Mus Musculus

ABG47031 Hemoglobin Homo Sapiens

Sequences

SELECT SeqNum, Org
 FROM Sequences
 WHERE Source= Mus Musculus)

SQL Select - Natural Join

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 32

Sequences

SourceID Name

1 Mus Musculus

1 Mus Musculus

2 Homo Sapiens

Organisms

Sequences Organisms

AccNum Definition SourceID Name

CAM22514 Hemoglobin alpha 1 Mus Musculus

CAO91797 Hemoglobin X 1 Mus Musculus

ABG47031 Hemoglobin 2 Homo Sapiens

AccNum Definition SourceID

CAM22514 Hemoglobin alpha 1

CAO91797 Hemoglobin X 1

ABG47031 Hemoglobin 2

SELECT *
 FROM Sequences
 NATURAL JOIN Organisms

SQL Select - Inner Join

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 33

AccNum Definition SrcID

CAM22514 Hemoglobin alpha 1

ABG47031 Hemoglobin 2

NPO34535 Hemoglobin zeta 3

Rows without matching attributes excluded

Sequences
SrcID Name

1 Mus Musculus

2 Homo Sapiens

Organisms

Can name attribute explicitly

sequences.SrcID = organisms.SrcID

Sequences Organisms

AccNum Name SrcID Name

CAM22514 Hemoglobin alpha 1 Mus Musculus

ABG47031 Hemoglobin 2 Homo Sapiens

SELECT *
 FROM Sequences
 INNER JOIN Organisms
 on sequences.SrcID = organisms.SrcID

SQL Select - Left Join

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 34

Tuples (rows) on left table without matches have NULL values on attributes of right table

AccNum Name SrcID Name

CAM22514 Hemoglobin alpha 1 Mus Musculus

ABG47031 Hemoglobin 2 Homo Sapiens

NPO34535 Hemoglobin zeta 3 NULL

AccNum Definition SrcID

CAM22514 Hemoglobin alpha 1

ABG47031 Hemoglobin 2

NPO34535 Hemoglobin zeta 3

Sequences
SrcID Name

1 Mus Musculus

2 Homo Sapiens

Organisms

sequences.SrcID = organisms.SrcID

Sequences Organisms
SELECT *
 FROM Sequences LEFT OUTER JOIN Organisms
 ON Sequences.SrcID = Organisms.SrcID;

SQL UPDATE Statement

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 35

Acc# Date Matrix eValue

P14555 7/21/07 Pam70 4.18 E-32

P81479 7/21/07 Pam70 2.68 -E52

P14555 7/20/07 Blosom80 3.47 E-33

P81479 7/20/07 Blosom80 1.20 E-54

Acc# Date Matrix eValue

P14555 7/22/07 Pam70 4.18 E-32

P81479 7/22/07 Pam70 2.68 -E52

P14555 7/20/07 Blosom80 3.47 E-33

P81479 7/20/07 Blosom80 1.20 E-54

UPDATE Matches
 SET Date = ‘7/22/07’
 WHERE Date = ‘7/21/07’

Matches

Matches

SQL DELETE Statement

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 36

Acc# Date Matrix eValue

P14555 7/21/07 Pam70 4.18 E-32

P81479 7/21/07 Pam70 2.68 -E52

P14555 7/20/07 Blosom80 3.47 E-33

P81479 7/20/07 Blosom80 1.20 E-54

Acc# Date Matrix eValue

P14555 7/20/07 Blosom80 3.47 E-33

P81479 7/20/07 Blosom80 1.20 E-54

DELETE FROM Matches
 WHERE Date = ‘7/21/07’

Matches

Matches

ADVICE: BE CAREFUL WITH DELETE. THERE IS NO EASY UNDO

SQL Select with SORT BY

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 37

Acc# Date Matrix eValue

P14555 7/21/07 Pam70 4.18 E-32

P81479 7/21/07 Pam70 2.68 -E52

P14555 7/20/07 Blosom80 3.47 E-33

P81479 7/20/07 Blosom80 1.20 E-54

SELECT * FROM Matches
 SORT BY eValue ASC

Matches

Matches

Acc# Date Matrix eValue

P81479 7/20/07 Blosom80 1.20 E-54

P81479 7/22/07 Pam70 2.68 -E52

P14555 7/20/07 Blosom80 3.47 E-33

P14555 7/22/07 Pam70 4.18 E-32

SQL Data Manipulation

•  Grouping Results and Aggregates

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 38

Filling-Up the database - Insert

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 39

Good when you know the attributes of all entities c-priori

SrcID Name

1 Mus Musculus

2 Homo Sapiens

Organisms

INSERT INTO Organisms
 Values (3, ‘C. Elegans’)

SrcID Name

1 Mus Musculus

2 Homo Sapiens

3 C. Elegans

Organisms

Filling-Up the database

•  Approach #2: Input from file (CSV)

•  Under construction

•  Tricky to set data types handled correctly
These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 40

Case Study: Analyzing Results of Multiple
BLAST Runs with alternative search matrices

•  Steps at a Glance
–  Install and configure tools

•  Python environment including BioPython
•  Database system (SQLite)

– Design the relational database schema
– Write Python functions to insert results into

database
– Analyze data using SQL queries

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 41

Case Study (Step 1): Install Tools

•  Install Python interpreter
–  Download installer from www.python.org
–  Run installer and verify installation

•  Install BioPython
–  Download installer from www.biopython.org
–  Run installer and verify installation

•  Install SQLiteMan
–  Download SQLiteMan query browser from

www.sqliteman.com
–  Run installer and verify installation

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 42

Windows version

Case Study (Step 1): Install Tools

•  UNDER CONSTRUCTION

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 43

Mac OS version

Case Study (Step 2):Design Database
Schema

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 44

Source Accession
Num

Definition Matrix eValue SearchDate

Human P14555 Group IIA
Phospholipase A2

Pam70 4.18 E-32 7/21/07

Indian Green
Tree Viper

P81479 Phospholipase A2
isozyme IV

Pam70 2.68 -E52 7/21/07

Human P14555 Group IIA
Phospholipase A2

Blosom80 3.47 E-33 7/20/07

Indian Green
Tree Viper

P81479 Phospholipase A2
isozyme IV

Blosom80 1.20 E-54 7/20/07

Case Study Step 3: Python Programming

•  Write Python functions to:
– Run a BLAST search for the query sequence

and a specific matrix
–  Insert results into Database

•  Run SQL insert queries to populate the database
•  Create a CSV file with all results from BLAST

searches and import to DB
– Run all functions together running one Blast

for each one of a set of matrices

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 45

Case Study Step 3: Python Programming
•  Run a BLAST search for the query sequence and a specific matrix

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 46

From Bio.Blast import NCBIWWW
from Bio.Blast import NCBIXML
from Bio import Fasta
from sys import *
import sqlite3

def searchAndStoreBlastSearch(query, matrix_id, filename):
 # Creates handle to store the results sent by NCBI website
 results_handle = NCBIWWW.qblast("blastp", "swissprot", query, expect=10,
 descriptions=2000, alignments=2000, hitlist_size=2000,
 matrix_name=matrix_id)
 # Reads results into memory
 blast_results = results_handle.read()

 # Creates and opens a file in filesystem for writing
 save_file = open(filename, 'w')

 # Store results from memory into the filesystem
 save_file.write(blast_results)

 #Close the file handler
 save_file.close()

Case Study Step 3: Python Programming
•  Insert results into Database: Run multiple SQL insert queries

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 47

def xmlToDatabase(filename, matrix_id, dbCursor, dbConn):
 blast_fileptr=open(filename)
 record=NCBIXML.parse(blast_fileptr).next()

 for alignment in record.alignments:
 hsp=alignment.hsps[0]
 storeIntoDatabase(hsp, alignment, matrix_id,dbCursor,dbConn)
 blast_fileptr.close()

Case Study Step 3: Python Programming
•  Insert results into Database: Run multiple SQL insert queries

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 48

def storeIntoDatabase(hsp, alignment, matrix_id, dbCursor, dbConn):
 # Insert a row of data into the table (securely)
 t = (hsp.expect, hsp.score, matrix_id, alignment.accession, alignment.title,)
 dbCursor.execute("insert into sequences values (?,?,?,?,?)",t)

 # Save (commit) the changes
 dbConn.commit()

Case Study Step 3: Python Programming
•  Insert results into Database: Create a CSV file with all results from BLAST searches

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 49

def xmlToCSV(xmlFilename, csvFilename, matrix_id):
 # Create file handler
 blast_fileptr=open(xmlFilename)
 # Parse xml file into biopython object
 record=NCBIXML.parse(blast_fileptr).next()
 # Create csv file writer
 csvFileWriter = csv.writer(open(csvFilename,'wb'))
 # Iterate over record alignments
 for alignment in record.alignments:
 # Extract high score pairwise alignment object
 hsp=alignment.hsps[0]
 # Create record vector
 record = [hsp.expect, hsp.score, matrix_id, alignment.accession, alignment.title,]
 # Store record vector into csv file
 csvFileWriter.writerow(record)
 # Close file handler
 blast_fileptr.close()

Case Study Step 3: Python Programming
•  Use all functions to run one Blast for each of a sequence of search matrices

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 50

def doIt():
 print "Import fasta file"
 query_file = open('P00624.fasta')
 fasta = Fasta.Iterator(query_file)
 query = fasta.next()
 query_file.close()
 print "Creating database interface"
 dbConnection = sqlite3.connect(dbFileName)
 dbCursor = dbConnection.cursor()

 # Create tables
 dbCursor.execute("DROP TABLE IF EXISTS sequences")

 dbCursor.execute("CREATE TABLE IF NOT EXISTS sequences (expect real, score int, matrix text, \
 accession text, description text)")

 print "Iterate over matrixes"
 for i in range(0,len(MatrixName)):
 print "Sending blast search"
 searchAndStoreBlastSearch(query, MatrixName[i], FileName[i])
 print "Processing blase search"
 xmlToDatabase(FileName[i], MatrixName[i], dbCursor, dbConnection)
 print "Program done"

Matrixname=['PAM70','BLOSUM80']
FileName=['TestPAM70.xml','TestBLOSUM80.xml']
dbFileName='data.db3'

Case Study Step 3: Python Programming
•  Run all functions together running one Blast for each one of a set of

matrices
•  Import CSV version

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 51

MatrixName=['PAM70','BLOSUM80']
TableName=['PAM70','BLOSUM80']
FileName=['TestPAM70.xml','TestBLOSUM80.xml']
CsvFileName=['TestPAM70.csv','TestBLOSUM80.csv']

def doIt():
 query_file = open('P00624.fasta')
 fasta = Fasta.Iterator(query_file)
 query = fasta.next()
 query_file.close()
 for i in range(0,len(MatrixName)):
 searchAndStoreBlastSearch(query, MatrixName[i], FileName[i])
 xmlToCSV(FileName[i], CsvFileName[i], MatrixName[i])

Case Study (Step 3): Import CSV File

•  UNDER CONSTRUCTION

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 52

Case Study (Step 4): Analyze Data
•  Analyze data using SQL
•  Example 1: Finding top matches

–  Display sequences sorted by average score/run and number of runs
where they appeared

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 53

select *, COUNT(matrix) as total
 from sequences
 group by accession
 order by total desc

Case Study (Step 4): Analyze Data

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 54

select *, COUNT(matrix) as total
 from sequences
 group by accession
 order by total desc

Display sequences sorted by average score/run and
number of runs where they appeared

Case Study (Step 4): Analyze Data
•  Analyze data using SQL
•  Example 2: Finding discriminating matrices

–  Display sequences that only showed up in one matrix run

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 55

select *, COUNT(matrix) as total
 from sequences
 group by accession
 having total = 1

Case Study (Step 4): Analyze Data

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 56

select *, COUNT(matrix) as total
 from sequences
 group by accession
 having total = 1 Display sequences that only showed up in one matrix run

Case Study: Step 4

•  Generate Graphic Reports using Excel

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 57

