
University of Puerto Rico – Mayagüez Campus
School of Engineering

INEL 4206 – Microprocessors

Problem Set 1 – Combinational Computation
(Due: Tuesday February 11 by Midnight via electronic submit)

Part 1.a: One-Bit Arithmetic Logic Unit Building Block

 Using combinational logic, design a one-bit ALU (Arithmetic Logic Unit)
building block. The device will receive one bit for each of the two operands, perform the
operation indicated by the “Operation Code” and put the result in the output pin and any
resulting carry in the carry-out output signal. The ALU will only work if the enable input
is set to ‘1’, otherwise all outputs should be ‘0’.

Use text labels to identify the different parts of the design (where inputs and
outputs go). After you finish the design, place binary switches at the inputs and binary
probes at the outputs, so your design is ready for testing as soon as it is opened.

Here are the general specifications for the ALU you have to design:

 Input:

 1 bit enable
 2 bits for instruction selection
 1 bit for operand A
 1 bit for operand B
 1 bit for carry-input

 Output:

 1 bit for operation result
 1 bit for carry-out

 Operations

Name
Operation

Code
S0S1

Result

 Add 00 Ai + Bi = Ci
 XOR 01 Ai ? Bi = Ci
 Right Rotate† 10 Ai ? Ci-1 ; A0 ? Cn
 Left Rotate† 11 Ai ? Ci+1 ; An ? C0

 †Left (Right) Rotate is an operation in which you will take all bits of the input and
shift them to the left (Right) (?) by one bit position, the leftmost (rightmost) bit will be
placed on the rightmost (leftmost) location.

Ex.
A= 1 0 1 1 0 0 1

C= 0 1 1 0 0 1 1

 In this case, since it is a one-bit ALU-unit, just put whatever is in the carry signal
(which should be 0).

Part 1.b:

 Make a package of the circuit designed for part 1.a and name the device
“1bitALU”, save in a new library named “1bit-lib”. A proper layout for the packaged
device should be something like this:

Ai Bi S0 S1

Carry-in

Enable

Ci

Carry Out

(Operand Inputs)

(Operation Code
Input)

Part 2:

 Using the device created from part 1, create a 4 bit ALU, which receives two 4-bit
numbers and returns one 4-bit number and a carry signal. In case of a unary operation
(only one operand) inputs to the B operand will be ignored (don’t cares).

 After you finish the design instead of placing binary switches/probes for each
input/output, place a Hex-Keyboard for the entry of the operands (one for A, another for
B), 1 binary switch for enable, and two for selecting the operation code. Place a Hex
display at the output and a binary probe at each carry-out. Indicate on the design which is
the most significant bit and which is the least significant bit (of the 4 1-bit ALU’s which
is C3 and which is C0).

Implementation Details:
 The work will be done using LogicWorks 4, which is available for use at CRAI
Lab (S-105D).

 Truth tables and K-maps must be handed in using the provided template paper.
All spaces must be filled-in with their corresponding symbol 1, 0, X (don’t cares), no
empty spaces.

 Logic Work Files must have the following filenames:

 Part1.a: 1bit
 Part1.b : 1bit-lib
 Part2: 4ALU

 On the top left corner of every design, add a text box with your name, student #,
and account # for the class.

Correction criteria:

Criteria Weight(%)
Correctness 60%

Design 20%
Efficiency 10%

Style 10%

Name: Student #:
Assigned account #:

On Enable = 0, all outputs should be 0, thus it is not considered for the Truth Table nor
the K-maps.

 Input Ouput

 S0 S1 Ai Bi
Carry-

In Ci
Carry-

Out

 0 0 0 0 0

 0 0 0 0 1

 0 0 0 1 0

 0 0 0 1 1

 0 0 1 0 0

 0 0 1 0 1

 0 0 1 1 0

 0 0 1 1 1

 0 1 0 0 0

 0 1 0 0 1

 0 1 0 1 0

 0 1 0 1 1

 0 1 1 0 0

 1 0 0 0 0

 1 0 0 0 1

 1 0 0 1 0

 1 0 0 1 1

 1 0 1 0 0

 1 0 1 0 1

 1 0 1 1 0

 1 0 1 1 1

 1 1 0 0 0

 1 1 0 0 1

 1 1 0 1 0

 1 1 0 1 1

 1 1 1 0 0

 1 1 1 0 1

 1 1 1 1 0

 1 1 1 1 1

K-Map for Ci
Carry-in =0

S0S1

AiBi 00 01 11 10

00

01

11

10

K-Map for Ci
Carry-in =1

S0S1

AiBi 00 01 11 10

00

01

11

10

K-Map for Carry-out
Carry-in =0

S0S1

AiBi 00 01 11 10

00

01

11

10

K-Map for Carry-out
Carry-in =1

S0S1

AiBi 00 01 11 10

00

01

11

10

