Universidad de Puerto Rico
 Recinto Universitario de Mayagüez

INEL 4206 - Microprocesadores Primavera 2003

Ejercicios de práctica
 Examen Parcial I

1. Combinational Logic. Provide two alternative designs for a combinational circuit to control a Dice LED display. The display has one input for each of 7 LED lights. The combinational circuit must map three inputs encoding a binary representation of a number between 0 and 6 into the 7 control signals controlling the LED's. Design one should use traditional K-Map techniques and should be based on logic gates. The second design should use a ROM or PLA.

2. Sequential Circuits. Develop a 3-bit binary cyclic counter using D-Flip-Flops and connect it to the dice display developed in exercise 3 in order to make the display count as follows: $0,1,2,3,4,5,6,0,1,2, \ldots$.
3. CMOS. Implement the following logic functions using CMOS technology:
a. $\quad F(A, B)=\operatorname{not}(A \cdot B)$
b. $\quad F(A, B)=(A \cdot B)$
c. $\quad F(A, B)=(A+B)$
d. $\quad F(A, B)=(A \otimes B)$
e. $F(A, B, C)=(A C+B C+A B)$
4. Turing Machines. Modify the example Turing Machine discussed in class which recognized the language $a^{n} b^{n}$ in order to recognize the following languages. You only need to show the changes to the finite state machine.
a. $a^{n} b^{n}$
b. $\left(a^{\mathrm{n}} \mathrm{cb}^{\mathrm{n}}\right)^{\mathrm{m}}$
5. Easy I Assembly Language. Write Easy I assembly language programs to solve the following problems:
a. Compute the product of two number by repetitive addition
b. Compute de quotient of two numbers by repetitive subtraction
c. Determine if a number if prime

Remember to work on the practice problems on information theory and coding distributed in class.

