Universidad de Puerto Rico Recinto Universitario de Mayagüez

INEL 4206 – Microprocesadores Primavera 2003

Ejercicios de práctica Examen Parcial I

1. **Combinational Logic**. Provide two alternative designs for a combinational circuit to control a Dice LED display. The display has one input for each of 7 LED lights. The combinational circuit must map three inputs encoding a binary representation of a number between 0 and 6 into the 7 control signals controlling the LED's. Design one should use traditional K-Map techniques and should be based on logic gates. The second design should use a ROM or PLA.

- 2. **Sequential Circuits**. Develop a 3-bit binary cyclic counter using D-Flip-Flops and connect it to the dice display developed in exercise 3 in order to make the display count as follows: 0,1, 2, 3, 4, 5, 6, 0, 1, 2,
- 3. **CMOS**. Implement the following logic functions using CMOS technology:
 - a. $F(A,B) = not(A \cdot B)$
 - b. $F(A,B) = (A \cdot B)$
 - c. F(A,B) = (A+B)
 - d. $F(A,B) = (A \otimes B)$
 - e. F(A,B,C) = (AC + BC + AB)
- 4. **Turing Machines**. Modify the example Turing Machine discussed in class which recognized the language aⁿbⁿ in order to recognize the following languages. You only need to show the changes to the finite state machine.
 - a. aⁿcbⁿ
 - b. $(a^n cb^n)^m$
- 5. Easy I Assembly Language. Write Easy I assembly language programs to solve the following problems:
 - a. Compute the product of two number by repetitive addition
 - b. Compute de quotient of two numbers by repetitive subtraction
 - c. Determine if a number if prime

Remember to work on the practice problems on information theory and coding distributed in class.