INEL 4206 - Microprocessors

Practice Problems

1. Write a recursive procedure ${ }^{1}$ to compute and return the greatest common divisor (GCD) of 2 integer arguments. First write the procedure in a HLL and then compile the HLL code to MIPS assembly. The GCD can be defined recurrently as:
a. $\operatorname{GCD}(\mathrm{a}, \mathrm{b})=\mathrm{b}$ if b divides a
b. $\operatorname{GCD}(\mathrm{a}, \mathrm{b})=\operatorname{GCD}(\mathrm{b}, \mathrm{r})$ otherwise, where $\mathrm{r}=\mathrm{a}$ MOD b
2. Write a procedure called precision() with no arguments. The procedure must return the smallest floating point number that can be added to 1 such that the result of the sum is different from 1 .
3. Write a procedure $\operatorname{roots}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})$ that receives the three float coefficients of a polynomial and returns an integer representing the number of distinct real roots.
4. Write a procedure $\sin (x)$ that takes one float argument representing an angle in radians. The procedure should return the approximated floating point value of $\sin (x)$ by computing the sum of a Taylor series.

Remember to read Chapters 3 and 4 of Patterson and Hennessy!

[^0]
[^0]: ${ }^{1}$ In all problems provide answers in both High Level Language and Assembly Language

