ICOM 4075:
 Foundations of Computing

Lecture 6 Functions (2)

Department of Electrical and Computer Engineering University of Puerto Rico at Mayagüez

Homework 4 - Due Tuesday March 9, 2010

- Section 2.1: (pp.88-90)

```
1.b.d.
2. b. d. f.
3.b.d.
4.b.
6.b.d.
7. b. d. f.
8.b.
9.
10.
11.b.
13.b.d.
14.b.d.
15.b.d.f.
17.
```


Reading

- Textbook: James L. Hein, Discrete Structures, Logic, and Computability, $2^{\text {nd }}$ edition, Chapter 2. Section 2.2

Constructing Functions

- Composition of Functions
- Composition of functions is a natural process that we often use without even thinking.
- E.g., floor($\log _{2}(6)$) involves the composition of the two functions floor and $\log _{2}$. To evaluate the expression, we first evaluate $\log _{2}(6)$, which is a number between 2 and 3 . Then we apply the floor function to this number, obtaining the value 2.
- Definition of Composition
- The composition of two functions f and g is the function denoted by $f \circ g$ and defined by $(f \circ g)(x)=f(g(x))$.
- Notice that composition makes sense only for values of x in the domain of g such that $g(x)$ is in the domain of f.
- So if $g: A \rightarrow B$ and $f: C \rightarrow D$ and $B \subset C$, then the composition fog makes sense. In other words, for every $x \in A$ it follows that $g(x) \in B$, and since $B \subset C$ it follows that $f(g(x)) \in D$. It also follows that fog: $A \rightarrow D$.
- E.g., $\log _{2}: R^{+} \rightarrow R$ and floor: $R \rightarrow Z$, where R^{+}denotes the set of positive real numbers. So for any positive real number x, the expression $\log _{2}(x)$ is a real number and thus floor $\left(\log _{2}(x)\right)$ is an integer. So the composition floorolog ${ }_{2}: \mathrm{R}^{+} \rightarrow \mathrm{Z}$.

Composition of Functions

- Composition of functions is associative:
- If f, g, and h are functions of the right type such that ($\mathrm{f} \circ \mathrm{g}$) h and $\mathrm{f} \circ(\mathrm{g} \circ \mathrm{h})$ make sense, then ($\mathrm{f} \circ \mathrm{g}$) $\circ \mathrm{h}=\mathrm{f} \circ(\mathrm{g} \circ \mathrm{h})$.
- Composition of functions is not commutative:
- E.g., suppose that f and g are defined by $f(x)=x+1$ and $g(x)=x^{2}$. To show that $\mathrm{f} \circ \mathrm{g} \neq \mathrm{g} \circ \mathrm{f}$, we only need to find one number x such that ($\mathrm{f} \circ \mathrm{g}$) $(x) \neq(g \circ f)(x)$. We'll try $x=3$ and observe that
$(f \circ g)(3)=f(g(3))=f\left(3^{2}\right)=3^{2}+1=10$.
$(g \circ f)(3)=g(f(3))=g(3+1)=(3+1)^{2}=16$.
Therefore, $(f \circ \mathrm{~g})(3) \neq(\mathrm{g} \circ \mathrm{f})(3)$
- A function that always returns its argument is called an identity function. For a set A we sometimes write "id ${ }_{A}$ " to denote the identity function defined by $\operatorname{id}_{A}(a)=a$ for all $a \in A$. If $f: A \rightarrow B$, then we always have the following equation: $f \circ \mathrm{id}_{\mathrm{A}}=\mathrm{f}=\mathrm{id}_{\mathrm{B}} \circ \mathrm{f}$

The Sequence, Distribute, and Pairs Functions

- The sequence function "seq" has type $\mathrm{N} \rightarrow$ lists(N) and is defined as follows for any natural number n : $\operatorname{seq}(\mathrm{n})=<0,1, \ldots, \mathrm{n}>$.
- E.g., $\operatorname{seq}(0)=\langle 0\rangle, \operatorname{seq}(2)=<0,1,2\rangle, \operatorname{seq}(5)=<0,1,2,3,4,5\rangle$.
- The distribute function "dist" has type $\mathrm{A} \times \operatorname{lists}(\mathrm{B}) \rightarrow$ lists $(\mathrm{A} \times \mathrm{B})$. It takes an element x from A and a list y from lists(B) and returns the list of pairs made up by pairing x with each element of y.
$-E . g ., \operatorname{dist}(x,<r, s, t>)=<(x, r),(x, s),(x, t)>$.
- The pairs function takes two lists of equal length and returns the list of pairs of corresponding elements.
- E.g., pairs(<a, b, c>, <d, e, f>) = <(a, d), (b, e), (c, f)>.
- Since the domain of pairs is a proper subset of lists $(A) \times$ lists (B), it is a partial function of type lists(A) \times lists $(B) \rightarrow \operatorname{lists}(A \times B)$.

Composing Functions with Different Arities

- Composition can also occur between functions with different arities.
- E.g., suppose we define the following function $f(x, y)=\operatorname{dist}(x, \operatorname{seq}(y))$. In this case dist has two arguments and seq has one argument. For example, we'll evaluate the expression $f(5,3)$.

$$
\begin{aligned}
f(5,3)= & \operatorname{dist}(5, \operatorname{seq}(3)) \\
= & \operatorname{dist}(5,<0,1,2,3>) \\
& =<(5,0),(5,1),(5,2),(5,3)>.
\end{aligned}
$$

Distribute a Sequence

- We'll show that the definition $f(x, y)=\operatorname{dist}(x, \operatorname{seq}(y))$ is a special case of the following more general form of composition, where X can be replaced by any number of arguments. $f(X)=h\left(g_{1}(X), \ldots, g_{n}(X)\right)$.
- Distribute a Sequence
- We'll show that the definition $f(x, y)=\operatorname{dist}(x, \operatorname{seq}(y))$ fits the general form of composition. To make it fit the form, we'll define the functions one (x, $y)=x$ and two $(x, y)=y$. Then we have the following representation of f.

$$
\begin{aligned}
f(x, y) & =\operatorname{dist}(x, \operatorname{seq}(y)) \\
& =\operatorname{dist}(o n e(x, y), \operatorname{seq}(\operatorname{two}(x, y))) \\
& =\operatorname{dist}(\operatorname{one}(x, y),(\operatorname{seq} \circ t w o(x, y))) .
\end{aligned}
$$

The last expression has the general form of composition $f(X)=h\left(g_{1}(X), g_{2}(X)\right)$,
where $\mathrm{X}=(\mathrm{x}, \mathrm{y}), \mathrm{h}=$ dist, $\mathrm{g}_{1}=$ one, and $\mathrm{g}_{2}=$ seq○two

The Max Function

- The Max Function
- Suppose we define the function "max", to return the maximum of two numbers as follows:

$$
\max (x, y)=\text { if } x<y \text { then } y \text { else } x
$$

Then we can use max to define the function "max3", which returns the maximum of three numbers, by the following composition:

$$
\max 3(x, y, z)=\max (\max (x, y), z) .
$$

Minimum Depth of a Binary Tree

- To find the minimum depth of a binary tree in terms of the numbers of nodes:
- The following figure lists a few sample cases in which the trees are as compact as possible, which means that they have the least depth for the number of nodes. Let n denote the number of nodes. Notice that when $4 \leq$ $\mathrm{n}<8$, the depth is 2 . Similarly, the depth is 3 whenever $8 \leq n<16$.
- At the same time we know that $\log _{2}(4)$ $=2$, $\log _{2}(8)=3$, and for $4 \leq n<8$ we have $2 \leq \log _{2}(\mathrm{n})<3$. So $\log _{2}(\mathrm{n})$ almost works as the depth function.
- In general, we have the minimum depth function as the composition of the floor function and the $\log _{2}$ function:

$$
\operatorname{minDepth}(n)=\text { floor }\left(\log _{2}(n)\right)
$$

Binary tree

List of Pairs

- Suppose we want to construct a definition for the following function in terms of known functions
$f(n)=<(0,0),(1,1), \ldots,(n, n)>$ for any $n \in N$.
Starting with this informal definition, we'll transform it into a composition of known functions.

$$
\begin{aligned}
f(n) \quad & =<(0,0),(1,1), \ldots,(n, n)> \\
& =\operatorname{pairs}(<0,1, \ldots, n>,<0,1, \ldots, n>) \\
& =\operatorname{pairs}(\operatorname{seq}(n), \operatorname{seq}(n)) .
\end{aligned}
$$

- Suppose we want to construct a definition for the following function in terms of known functions $g(k)=<(k, 0),(k, 1), \ldots,(k, k)>$ for any $k \in N$. Starting with this informal definition, we'll transform it into a composition of known functions.

$$
\begin{aligned}
g(k) \quad & =<(k, 0),(k, 1), \ldots,(k, k)> \\
& =\operatorname{dist}(k,<0,1, \ldots, k>) \\
& =\operatorname{dist}(k, \operatorname{seq}(k)) .
\end{aligned}
$$

The Map Function

- Definition of the Map Function:
- Let f be a function with domain A and let $\left\langle\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\rangle$ be a list of elements from A . Then

$$
\operatorname{map}\left(f,<x_{1}, \ldots, x_{n}>\right)=\left\langle f\left(x_{1}\right), \ldots, f\left(x_{n}\right)>\right.
$$

So the type of the map function can be written as map: $(A \rightarrow B) \times \operatorname{list}(A) \rightarrow$ lists (B).

- E.g.,
map(floor, <-1.5, -0.5, 0.5, 1.5, 2.5>)
$=<$ floor(-1.5), floor(-0.5), floor(0.5), floor(1.5), floor(2.5)>
$=<-2,-1,0,1,2>$.
$\operatorname{map}\left(\right.$ floor $\left.\circ \log _{2},<2,3,4,5>\right)$
$=<$ floor $\left(\log _{2}(2)\right)$, floor $\left(\log _{2}(3)\right)$, floor $\left(\log _{2}(4)\right)$, floor $\left(\log _{2}(5)\right)>$
$=<1,1,2,2>$.
$\operatorname{map}(+,<(1,2),(3,4),(5,6),(7,8),(9,10)>)$
$=<+(1,2),+(3,4),+(5,6),+(7,8),+(9,10)>$
$=<3,7,11,15,19>$
- The map function is an example of a higher-order function, which is any function that either has a function as an argument or has a function as a value. This is an important property that most good programming languages possess.

A List of Squares

- Suppose we want to compute sequences of squares of natural numbers, such as $0,1,4,9,16$. In other words, we want to compute $f: N \rightarrow \operatorname{lists}(N)$ defined by $f(n)=<0,1,4, \ldots, n^{2}>$. We have two different ways:
- First way: define $s(x)=x^{*} x$ and then construct a definition for f in terms of map, s, and seq as follows.

$$
\begin{aligned}
f(n) & \left.=<0,1,4, \ldots, n^{2}\right\rangle \\
& =<s(0), s(1), s(2), \ldots, s(n)> \\
& =\operatorname{map}(s,<0,1,2, \ldots, n>) \\
& =\operatorname{map}(s, \operatorname{seq}(n)) .
\end{aligned}
$$

- Second way: construct a definition for f without using the function s that we defined for the first way.

$$
\begin{aligned}
f(n) & =<0,1,4, \ldots, n^{2}> \\
& =<0^{*} 0,1^{*} 1,2^{*} 2, \ldots, n^{*} n \\
& =\operatorname{map}\left(^{*},<(0,0),(1,1),(2,2), \ldots,(n, n)>\right) \\
& =\operatorname{map}\left(^{*}, \operatorname{pairs}(<0,1,2, \ldots, n>,<0,1,2, \ldots, n>)\right) \\
& =\operatorname{map}\left({ }^{*}, \operatorname{pairs}(\operatorname{seq}(n), \operatorname{seq}(n))\right) .
\end{aligned}
$$

