
Functions (2) - 1 ICOM 4075 (Spring, 2010) UPRM

Lecture 6
Functions (2)

Lecture Notes Originally Written By Prof. Yi Qian

Functions (2) - 2 ICOM 4075 (Spring, 2010) UPRM

Homework 4 – Due Tuesday March 9, 2010

•  Section 2.1: (pp.88-90)
1. b. d.
2. b. d. f.
3. b. d.
4. b.
6. b. d.
7. b. d. f.
8. b.
9.
10.
11. b.
13. b. d.
14. b. d.
15. b. d. f.
17.

Functions (2) - 3 ICOM 4075 (Spring, 2010) UPRM

Reading

•  Textbook: James L. Hein, Discrete
Structures, Logic, and Computability, 2nd
edition, Chapter 2. Section 2.2

Functions (2) - 4 ICOM 4075 (Spring, 2010) UPRM

Constructing Functions

•  Composition of Functions
–  Composition of functions is a natural process that we often use without

even thinking.
•  E.g., floor(log2(6)) involves the composition of the two functions floor and

log2. To evaluate the expression, we first evaluate log2(6), which is a number
between 2 and 3. Then we apply the floor function to this number, obtaining
the value 2.

•  Definition of Composition
–  The composition of two functions f and g is the function denoted by f○g

and defined by (f○g)(x) = f(g(x)).
•  Notice that composition makes sense only for values of x in the

domain of g such that g(x) is in the domain of f.
–  So if g: A→B and f: C→D and B C, then the composition f○g makes

sense. In other words, for every x A it follows that g(x) B, and since
B C it follows that f(g(x)) D. It also follows that f○g: A→D.

–  E.g., log2: R+→R and floor: R→Z, where R+ denotes the set of positive
real numbers. So for any positive real number x, the expression log2(x)
is a real number and thus floor(log2(x)) is an integer. So the composition
floor○log2: R+→Z.

Functions (2) - 5 ICOM 4075 (Spring, 2010) UPRM

Composition of Functions
•  Composition of functions is associative:

–  If f, g, and h are functions of the right type such that (f○g)○h and f○(g○h)
make sense, then (f○g)○h = f○(g○h).

•  Composition of functions is not commutative:
–  E.g., suppose that f and g are defined by f(x) = x + 1 and g(x) = x2. To

show that f○g ≠ g○f, we only need to find one number x such that (f○g)
(x) ≠ (g○f)(x). We’ll try x = 3 and observe that

 (f○g)(3) = f(g(3)) = f(32) = 32 + 1 = 10.
 (g○f)(3) = g(f(3)) = g(3 + 1) = (3 + 1)2 = 16.
 Therefore, (f○g)(3) ≠ (g○f)(3)

•  A function that always returns its argument is called an identity
function. For a set A we sometimes write “idA” to denote the identity
function defined by idA(a) = a for all a A. If f: A→B, then we always
have the following equation: f○ idA = f = idB○f

Functions (2) - 6 ICOM 4075 (Spring, 2010) UPRM

The Sequence, Distribute, and Pairs Functions
•  The sequence function “seq” has type N→lists(N) and is defined as

follows for any natural number n: seq(n) = <0, 1, …, n>.
–  E.g., seq(0) = <0>, seq(2) = <0, 1, 2>, seq(5) = <0, 1, 2, 3, 4, 5>.

•  The distribute function “dist” has type A x lists(B) → lists(A x B). It
takes an element x from A and a list y from lists(B) and returns the
list of pairs made up by pairing x with each element of y.
–  E.g., dist(x, <r, s, t>) = <(x, r), (x, s), (x, t)>.

•  The pairs function takes two lists of equal length and returns the list
of pairs of corresponding elements.
–  E.g., pairs(<a, b, c>, <d, e, f>) = <(a, d), (b, e), (c, f)>.
–  Since the domain of pairs is a proper subset of lists(A) x lists(B), it is a

partial function of type lists(A) x lists(B) → lists(A x B).

Functions (2) - 7 ICOM 4075 (Spring, 2010) UPRM

Composing Functions with Different Arities

•  Composition can also occur between functions with different arities.
–  E.g., suppose we define the following function f(x, y) = dist(x, seq(y)). In

this case dist has two arguments and seq has one argument. For
example, we’ll evaluate the expression f(5, 3).

 f(5, 3) = dist(5, seq(3))
= dist(5, <0, 1, 2, 3>)
 = <(5, 0), (5, 1), (5, 2), (5, 3)>.

Functions (2) - 8 ICOM 4075 (Spring, 2010) UPRM

Distribute a Sequence
•  We’ll show that the definition f(x, y) = dist(x, seq(y)) is a special case

of the following more general form of composition, where X can be
replaced by any number of arguments. f(X) = h(g1(X),…,gn(X)).

•  Distribute a Sequence
–  We’ll show that the definition f(x, y) = dist(x, seq(y)) fits the general form

of composition. To make it fit the form, we’ll define the functions one(x,
y) = x and two(x, y) = y. Then we have the following representation of f.

 f(x, y) = dist(x, seq(y))
 = dist(one(x, y), seq(two(x, y)))

 = dist(one(x, y), (seq○two(x, y))).
 The last expression has the general form of composition
 f(X) = h(g1(X), g2(X)),
 where X = (x, y), h = dist, g1 = one, and g2 = seq○two

Functions (2) - 9 ICOM 4075 (Spring, 2010) UPRM

The Max Function
•  The Max Function

–  Suppose we define the function “max”, to return the maximum of two
numbers as follows:

 max(x, y) = if x < y then y else x.
 Then we can use max to define the function “max3”, which returns the
maximum of three numbers, by the following composition:

 max3(x, y, z) = max(max(x, y), z).

Functions (2) - 10 ICOM 4075 (Spring, 2010) UPRM

Minimum Depth of a Binary Tree
•  To find the minimum depth of a binary

tree in terms of the numbers of nodes:
–  The following figure lists a few sample

cases in which the trees are as
compact as possible, which means that
they have the least depth for the
number of nodes. Let n denote the
number of nodes. Notice that when 4 ≤
n < 8, the depth is 2. Similarly, the
depth is 3 whenever 8 ≤ n < 16.

–  At the same time we know that log2(4)
=2, log2(8) = 3, and for 4 ≤ n < 8 we
have 2 ≤ log2(n) < 3. So log2(n) almost
works as the depth function.

–  In general, we have the minimum depth
function as the composition of the floor
function and the log2 function:

 minDepth(n) = floor(log2(n)).

Binary tree Nodes Depth

1 0

2 1

3 1

4 2

7 2

15 3

Functions (2) - 11 ICOM 4075 (Spring, 2010) UPRM

List of Pairs
•  Suppose we want to construct a definition for the following function

in terms of known functions
 f(n) = <(0, 0), (1, 1), …, (n, n)> for any n N.
 Starting with this informal definition, we’ll transform it into a
composition of known functions.

•  Suppose we want to construct a definition for the following function
in terms of known functions
 g(k) = <(k, 0), (k, 1), …, (k, k)> for any k N.
 Starting with this informal definition, we’ll transform it into a
composition of known functions.

 f(n) = <(0, 0), (1, 1), …, (n, n)>
 = pairs(<0, 1, …, n>, <0, 1, …, n>)

 = pairs(seq(n), seq(n)).

 g(k) = <(k, 0), (k, 1), …, (k, k)>
 = dist(k, <0, 1, …, k>)
 = dist(k, seq(k)).

Functions (2) - 12 ICOM 4075 (Spring, 2010) UPRM

The Map Function
•  Definition of the Map Function:

–  Let f be a function with domain A and let <x1, …, xn> be a list of elements from A.
Then

 map(f, <x1, …, xn>) = <f(x1), …, f(xn)>.
 So the type of the map function can be written as
 map: (A→B) x list(A) → lists(B).

–  E.g.,
 map(floor, <-1.5, -0.5, 0.5, 1.5, 2.5>)
 = <floor(-1.5), floor(-0.5), floor(0.5), floor(1.5), floor(2.5)>
 = <-2, -1, 0, 1, 2>.
 map(floor○log2, <2, 3, 4, 5>)
 = <floor(log2(2)), floor(log2(3)), floor(log2(4)), floor(log2(5))>
 = <1, 1, 2, 2>.
 map(+, <(1, 2), (3, 4), (5, 6), (7, 8), (9, 10)>)
 = < +(1, 2), +(3, 4), +(5, 6), +(7, 8), +(9, 10)>
 = <3, 7, 11, 15, 19>

–  The map function is an example of a higher-order function, which is any function
that either has a function as an argument or has a function as a value. This is an
important property that most good programming languages possess.

Functions (2) - 13 ICOM 4075 (Spring, 2010) UPRM

A List of Squares
•  Suppose we want to compute sequences of squares of natural

numbers, such as 0, 1, 4, 9, 16. In other words, we want to compute
f: N → lists(N) defined by f(n) = <0, 1, 4, …, n2>. We have two
different ways:

–  First way: define s(x) = x*x and then construct a definition for f in terms of map, s,
and seq as follows.

 f(n) = <0, 1, 4, …, n2>
 = <s(0), s(1), s(2), …, s(n)>
 = map(s, <0, 1, 2, …, n>)

 = map(s, seq(n)).
–  Second way: construct a definition for f without using the function s that we

defined for the first way.
 f(n) = <0, 1, 4, …, n2>
 = <0*0, 1*1, 2*2, …, n*n>
 = map(*, <(0, 0), (1, 1), (2, 2), …, (n, n)>)
 = map(*, pairs(<0, 1, 2, …, n>, <0, 1, 2, …, n>))
 = map(*, pairs(seq(n), seq(n))).

