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Lecture 6 
Functions (2) 

Lecture Notes Originally Written By Prof. Yi Qian 
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Homework 4 – Due Tuesday March 9, 2010 

•  Section 2.1: (pp.88-90)  
1. b. d. 
2. b. d. f.  
3. b. d. 
4. b.  
6. b. d.  
7. b. d. f. 
8. b.  
9.  
10.  
11. b. 
13. b. d. 
14. b. d.  
15. b. d. f.  
17.  
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Reading 

•  Textbook: James L. Hein, Discrete 
Structures, Logic, and Computability, 2nd  
edition, Chapter 2. Section 2.2 
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Constructing Functions 

•  Composition of Functions 
–  Composition of functions is a natural process that we often use without 

even thinking. 
•  E.g., floor(log2(6)) involves the composition of the two functions floor and 

log2. To evaluate the expression, we first evaluate log2(6), which is a number 
between 2 and 3. Then we apply the floor function to this number, obtaining 
the value 2.  

•  Definition of Composition 
–  The composition of two functions f and g is the function denoted by f○g 

and defined by (f○g)(x) = f(g(x)).  
•  Notice that composition makes sense only for values of x in the 

domain of g such that g(x) is in the domain of f.  
–  So if g: A→B and f: C→D and B    C, then the composition f○g makes 

sense. In other words, for every x    A it follows that g(x)   B, and since  
B    C it follows that f(g(x))   D. It also follows that f○g: A→D.  

–  E.g., log2: R+→R and floor: R→Z, where R+ denotes the set of positive 
real numbers. So for any positive real number x, the expression log2(x) 
is a real number and thus floor(log2(x)) is an integer. So the composition 
floor○log2: R+→Z.  
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Composition of Functions 
•  Composition of functions is associative:  

–  If f, g, and h are functions of the right type such that (f○g)○h and f○(g○h) 
make sense, then (f○g)○h  = f○(g○h).  

•  Composition of functions is not commutative:  
–  E.g., suppose that f and g are defined by f(x) = x + 1 and g(x) = x2. To 

show that f○g ≠ g○f, we only need to find one number x such that (f○g)
(x) ≠ (g○f)(x). We’ll try x = 3 and observe that 

  (f○g)(3) = f(g(3)) = f(32) = 32 + 1 = 10. 
  (g○f)(3) = g(f(3)) = g(3 + 1) = (3 + 1)2 = 16.  
 Therefore, (f○g)(3) ≠ (g○f)(3)  

•  A function that always returns its argument is called an identity 
function. For a set A we sometimes write “idA” to denote the identity 
function defined by idA(a) = a for all a   A. If f: A→B, then we always 
have the following equation: f○ idA = f =  idB○f 
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The Sequence, Distribute, and Pairs Functions 
•  The sequence function “seq” has type N→lists(N) and is defined as 

follows for any natural number n: seq(n) = <0, 1, …, n>.  
–  E.g., seq(0) = <0>, seq(2) = <0, 1, 2>, seq(5) = <0, 1, 2, 3, 4, 5>.  

•  The distribute function “dist” has type A x lists(B) → lists(A x B). It 
takes an element x from A and a list y from lists(B) and returns the 
list of pairs made up by pairing x with each element of y.  
–  E.g., dist(x, <r, s, t>) = <(x, r), (x, s), (x, t)>.  

•  The pairs function takes two lists of equal length and returns the list 
of pairs of corresponding elements.  
–  E.g., pairs(<a, b, c>, <d, e, f>) = <(a, d), (b, e), (c, f)>.  
–  Since the domain of pairs is a proper subset of lists(A) x lists(B), it is a 

partial function of type lists(A) x lists(B) → lists(A x B).  
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Composing Functions with Different Arities 

•  Composition can also occur between functions with different arities.  
–  E.g., suppose we define the following function  f(x, y) = dist(x, seq(y)). In 

this case dist has two arguments and seq has one argument. For 
example, we’ll evaluate the expression f(5, 3).  

 f(5, 3)   = dist(5, seq(3)) 
= dist(5, <0, 1, 2, 3>) 
               = <(5, 0), (5, 1), (5, 2), (5, 3)>.  
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Distribute a Sequence 
•  We’ll show that the definition f(x, y) = dist(x, seq(y)) is a special case 

of the following more general form of composition, where X can be 
replaced by any number of arguments. f(X) = h(g1(X),…,gn(X)).  

•  Distribute a Sequence 
–  We’ll show that the definition f(x, y) = dist(x, seq(y)) fits the general form 

of composition. To make it fit the form, we’ll define the functions one(x, 
y) = x and two(x, y) = y. Then we have the following representation of f. 

 f(x, y) = dist(x, seq(y))  
         = dist(one(x, y), seq(two(x, y))) 

              = dist(one(x, y), (seq○two(x, y))).  
 The last expression has the general form of composition 
 f(X) = h(g1(X), g2(X)), 
 where X = (x, y), h = dist, g1 = one, and g2 = seq○two 
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The Max Function 
•  The Max Function 

–  Suppose we define the function “max”, to return the maximum of two 
numbers as follows: 

   max(x, y) = if x < y then y else x. 
 Then we can use max to define the function “max3”, which returns the 
maximum of three numbers, by the following composition: 

   max3(x, y, z) = max(max(x, y), z).  
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Minimum Depth of a Binary Tree 
•  To find the minimum depth of a binary 

tree in terms of the numbers of nodes: 
–  The following figure lists a few sample 

cases in which the trees are as 
compact as possible, which means that 
they have the least depth for the 
number of nodes. Let n denote the 
number of nodes. Notice that when 4 ≤ 
n < 8, the depth is 2. Similarly, the 
depth is 3 whenever 8 ≤ n < 16.  

–  At the same time we know that log2(4) 
=2, log2(8) = 3, and for 4 ≤ n < 8 we 
have 2 ≤ log2(n) < 3. So log2(n) almost 
works as the depth function.  

–  In general, we have the minimum depth 
function as the composition of the floor 
function and the log2 function: 

  minDepth(n) = floor(log2(n)).  

Binary tree   Nodes  Depth 

1 0 

2 1 

3 1 

4 2 

7 2 

15 3 
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List of Pairs 
•  Suppose we want to construct a definition for the following function 

in terms of known functions 
 f(n) = <(0, 0), (1, 1), …, (n, n)>  for any n   N. 
 Starting with this informal definition, we’ll transform it into a 
composition of known functions.  

•  Suppose we want to construct a definition for the following function 
in terms of known functions 
 g(k) = <(k, 0), (k, 1), …, (k, k)>  for any k   N. 
 Starting with this informal definition, we’ll transform it into a 
composition of known functions. 

 f(n)         = <(0, 0), (1, 1), …, (n, n)>  
   = pairs(<0, 1, …, n>, <0, 1, …, n>) 

  = pairs(seq(n), seq(n)).  

 g(k)  = <(k, 0), (k, 1), …, (k, k)>  
  = dist(k, <0, 1, …, k>) 
  = dist(k, seq(k)).  
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The Map Function 
•  Definition of the Map Function: 

–  Let f be a function with domain A and let <x1, …, xn> be a list of elements from A. 
Then  

 map(f, <x1, …, xn>) = <f(x1), …, f(xn)>. 
 So the type of the map function can be written as 
 map: (A→B) x list(A) → lists(B).  

–  E.g.,  
 map(floor, <-1.5, -0.5, 0.5, 1.5, 2.5>) 
   = <floor(-1.5), floor(-0.5), floor(0.5), floor(1.5), floor(2.5)> 
   = <-2, -1, 0, 1, 2>. 
 map(floor○log2, <2, 3, 4, 5>) 
   = <floor(log2(2)), floor(log2(3)), floor(log2(4)), floor(log2(5))> 
   = <1, 1, 2, 2>.  
 map(+, <(1, 2), (3, 4), (5, 6), (7, 8), (9, 10)>) 
   = < +(1, 2), +(3, 4), +(5, 6), +(7, 8), +(9, 10)> 
   = <3, 7, 11, 15, 19> 

–  The map function is an example of a higher-order function, which is any function 
that either has a function as an argument or has a function as a value. This is an 
important property that most good programming languages possess.  
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A List of Squares 
•  Suppose we want to compute sequences of squares of natural 

numbers, such as 0, 1, 4, 9, 16. In other words, we want to compute 
f: N → lists(N) defined by f(n) = <0, 1, 4, …, n2>. We have two 
different ways: 

–  First way: define s(x) = x*x and then construct a definition for f in terms of map, s, 
and seq as follows. 

 f(n) = <0, 1, 4, …, n2> 
      = <s(0), s(1), s(2), …, s(n)> 
       = map(s, <0, 1, 2, …, n>) 

           = map(s, seq(n)). 
–  Second way: construct a definition for f without using the function s that we 

defined for the first way.  
 f(n) = <0, 1, 4, …, n2> 
       = <0*0, 1*1, 2*2, …, n*n> 
       = map(*, <(0, 0), (1, 1), (2, 2), …, (n, n)>) 
       = map(*, pairs(<0, 1, 2, …, n>, <0, 1, 2, …, n>)) 
       = map(*, pairs(seq(n), seq(n))).  


