
Data integration
through database
federation

by L. M. Haas
E. T. Lin
M. A. Roth

In a large modern enterprise, it is almost
inevitable that different parts of the
organization will use different systems to
produce, store, and search their critical data.
Yet, it is only by combining the information
from these various systems that the
enterprise can realize the full value of the data
they contain. Database federation is one
approach to data integration in which
middleware, consisting of a relational
database management system, provides
uniform access to a number of heterogeneous
data sources. In this paper, we describe the
basics of database federation, introduce
several styles of database federation, and
outline the conditions under which each style
of federation should be used. We discuss the
benefits of an information integration solution
based on database technology, and we
demonstrate the utility of the database
federation approach through a number of
usage scenarios involving IBM’s DB2 product.

In a large modern enterprise, it is inevitable that dif-
ferent parts of the organization will use different sys-
tems to produce, store, and search their critical data.
This diversity of data sources is caused by many fac-
tors including lack of coordination among company
units, different rates of adopting new technology,
mergers and acquisitions, and geographic separation
of collaborating groups. Yet, it is only by combining
the information from these various systems that the
enterprise can realize the full value of the data they
contain.

In the finance industry, mergers are an almost com-
monplace occurrence. The company resulting from
a merger inherits the data stores of the original in-
stitutions. Many of those stores will be relational da-
tabase management systems, but often from differ-
ent manufacturers. One company may have used
primarily Sybase, Inc. products, whereas another may
have used products from Informix Software, Inc.
They may both have had one or more document
management systems, such as Documentum1 or IBM
Content Manager,2 for storing text documents. Each
may have had applications that compute important
information (e.g., the risk of granting a loan to a given
customer) or that mine for information about cus-
tomers’ buying patterns.

After the merger, the new company needs to be able
to access the customer information from both sets
of data stores, to analyze its new portfolio using ex-
isting and new applications, and, in general, to use
the combined resources of both institutions through
a common interface. The company needs to be able
to identify common customers and consolidate their
accounts, even though the customer data may be
stored in different databases and in different formats.
In addition, the company must be able to combine
the legacy data with new data available on the Web
or from its business partners. These are all aspects
of data integration,3 and all pose hefty challenges.

�Copyright 2002 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

HAAS, LIN, AND ROTH 0018-8670/02/$5.00 © 2002 IBM IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002578

Sometimes the need for data integration may be as
simple as getting a reading from a sensor (say, the
temperature at some stage in a manufacturing pro-
cess), and comparing it to a baseline value derived
from historical data stored in a database. Or per-
haps data from a spreadsheet are to be compared
with data from several databases containing exper-
imental results, or perhaps one has to find custom-
ers with large credit card balances whose income is
less than some threshold. The need for data inte-
gration is ubiquitous in today’s business world.

There are many mechanisms for integrating data.
These include application-specific solutions, applica-
tion-integration frameworks, workflow (or business
process integration) frameworks, digital libraries with
portal-style or meta-search-engine integration, data
warehousing, and database federation. We discuss
each briefly.

Perhaps the most common means of data integra-
tion is via special-purpose applications that access
sources of interest directly and combine the data re-
trieved from those sources with the application it-
self. This approach always works, but it is expensive
(in terms of both time and skills), fragile (changes
to the underlying sources may all too easily break
the application), and hard to extend (a new data
source requires new code to be written).

Application-integration frameworks4,5 and compo-
nent-based frameworks6 provide a more promising
approach. Such systems typically employ a standard
data or programming model, such as CORBA**
(Common Object Request Broker Architecture),
J2EE** (Java 2 Platform, Enterprise Edition), and
so on. They provide well-defined interfaces to the
application for accessing data and other applications
and for adding new data sources, typically by writ-
ing an adaptor for the data source that meets the
framework’s adaptor interface. These frameworks
protect the application somewhat from changes in
the data sources (if the source changes, the adaptor
may have to change, but the application may never
see it). Adding a new source may be easier (although
a new adaptor may need to be written, the change
is more isolated, and the adaptor may already exist
and be available for purchase). The application pro-
grammer is not required to have detailed systems
knowledge, so applications will typically be easier to
write. However, such systems do not necessarily ad-
dress data integration issues; if combination, anal-
ysis, or comparison of the data received from the var-

ious sources is needed, the application developer
must provide that code.

Similarly, workflow systems7 provide application de-
velopers with a higher-level abstraction against which
to program, but using a more process-oriented
model. Again, these systems provide some protec-
tion to the application against changes in the envi-
ronment, and they additionally provide support for
routine results from one source to other sources.
However, they still provide only limited help for com-
paring and manipulating data.

Digital libraries, which collect results from multiple
different data sources in response to a user’s request,
represent another style of data integration. For ex-
ample, Stanford’s InfoBus architecture8 provides a
bibliographic search service that looks through sev-
eral reference repositories and returns a single list
of results. Usually the sources are similar in func-
tion (e.g., all store text documents, bibliographies,
URLs [uniform resource locators], images, etc.). For
most of these “meta search engines,” no combina-
tion of results is done, except perhaps for normal-
ization of relevance scores or formats—all are re-
turned as part of one list, possibly sorted by estimated
relevance. Similarly, portals provide a means of col-
lecting information—perhaps from quite different
data sources—and putting the results together for
the user to see in conjunction. Results from the dif-
ferent searches are typically displayed in different
areas of the interface, although portal frameworks
may allow application code to be written to combine
the results in some other way. Portals are often built
on top of some sort of application-integration frame-
work, providing a simple and amazingly powerful way
to quickly get access to a variety of information. IBM’s
Enterprise Information Portal, for example, can re-
trieve various types of data from a range of repos-
itories, including text search engines, document man-
agement systems, image stores, and relational
databases.9 Yet again, however, the application de-
veloper must write code to do any more sophisticated
analysis, comparison, or integration that is required.

Data warehouses and database federation, by con-
trast, provide users with a powerful, high-level query
language that can be used to combine, contrast, an-
alyze, and otherwise manipulate their data. Tech-
nology for optimizing queries ensures that they are
answered efficiently, even though the queries are
posed nonprocedurally, greatly easing application
development. A data warehouse is built by loading
data from one or more data sources into a newly de-

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 HAAS, LIN, AND ROTH 579

fined schema in a relational database. The data are
often cleansed and transformed in the load process.
Changes in the underlying sources may cause
changes to the load process, but the part of the ap-
plication that deals with data analysis is protected.
New data sources may introduce changes to the
schema, requiring that a new load process for the
new data be defined. SQL (Structured Query Lan-
guage) views can further protect the application from
such evolutions. However, any functions of the data
source that are not a standard part of a relational
database management system must be re-imple-
mented in the warehouse or as part of the applica-
tion.

A solution based on warehousing alone may not be
possible or cost effective for various reasons. For ex-
ample, it is not always feasible to move data from
their original location to a data warehouse, and as
described above, warehousing comes with its own
maintenance and implementation costs. Database
federation (or mediation as it is sometimes referred
to in the literature) provides users with a virtual data
warehouse, without necessarily moving any of the
data. Thus, in addition to the benefits of a warehouse,
it can provide access to “live” data and functions. A
single arbitrarily complex query can efficiently com-
bine data from multiple sources of different types,
even if those sources themselves do not possess all
the functionality needed to answer such a query. In
other words, a federated database system can op-
timize queries and compensate for SQL function that
may be lacking in a data source. Additionally, que-
ries can exploit the specialized functions of a data
source, so no functionality is lost in accessing the
source through the federated system.

Of course, database federation adds another com-
ponent between the client application and the data,
and this extra layer introduces performance trade-
offs. Indeed, one should not expect that introducing
a new layer would reduce access time for any single
federated data source. The key performance advan-
tage offered by database federation is the ability to
efficiently combine data from multiple sources in a
single SQL statement. Two components of the fed-
erated server contribute to this: query rewrite and
cost-based optimization.10–12 The query rewrite com-
ponent of a federated server can aggressively rewrite
a user’s query into a semantically equivalent form
that can be more efficiently executed. A cost-based
optimizer can search a large space of access strat-
egies and choose a global execution plan that is op-

timal across both local tables and the federated data
sources involved in the query.

Note that in some cases, a query issued to a feder-
ated server with a sophisticated query processing en-
gine may actually outperform the same query issued
directly to the data source itself. During query re-
write phase, a user’s query can be rewritten in such
a way that the federated data source can choose a
more efficient execution plan than it would if it were
given the user’s original query.

The goal of this paper is to demonstrate that data-
base federation is a fundamental tool for data in-
tegration. The rest of the paper is organized as fol-
lows. In the next section, we discuss database
federation in greater detail and describe the archi-
tecture for DB2* (Database 2*) database federation.
There are several styles of database federation, and
these are introduced in the following section, in
which we also discuss when each style of federation
should be used. In the next section, we discuss the
advantages of building an integration solution on da-
tabase technology, and in the section that follows we
demonstrate the utility of this approach through a
number of usage scenarios. We conclude with a sum-
mary and some thoughts on future work.

The basics of database federation

The term “database federation” refers to an archi-
tecture in which middleware, consisting of a rela-
tional database management system, provides uni-
form access to a number of heterogeneous data
sources. The data sources are federated, that is, they
are linked together into a unified system by the da-
tabase management system. The system shields its
users from the need to know what the sources are,
what hardware and software they run on, how they
are accessed (via what programming interface or lan-
guage), and even how the data stored in these sources
are modeled and managed. Instead, a database fed-
eration looks to the application developer like a sin-
gle database management system. The user can
search for information and manipulate data using
the full power of the SQL language. A single query
may access data from multiple sources, joining and
restricting, aggregating and analyzing the data at will.
Yet the sources may not be database systems at all,
but in fact could be anything from sensors to flat files
to application programs to XML (Extensible Markup
Language), and so on.

HAAS, LIN, AND ROTH IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002580

Many research projects and a few commercial sys-
tems have implemented and evolved the concept of
database federation. Pioneering research projects in-
cluded TSIMMIS13 and HERMES,14 which used data-
base concepts to implement “mediators,” special-
purpose query engines that use nonprocedural
specifications to integrate specific data sources.
DISCO15 and Pegasus16 were closer in feel to true da-
tabase federation. DISCO focused on a design scal-
ing up to many heterogeneous data sources. Pega-
sus had its own data model and query language, and
it had a functional object model that allowed great
flexibility for modeling data sources. Each created
its own database management system from scratch.
Garlic17 was the first research project to exploit the
full power of a standard relational database (DB218),
although it extended the language and data model
to support some object-oriented features. The wrap-
per architecture19 and cross-source query optimiza-
tion20 of Garlic are now fundamental components
of IBM’s federated database offerings.

Meanwhile, in the commercial world, the first steps
toward federation involved “gateways.” A gateway
allows a database management system to route a
query to another database system. Initially, gateway
products only allowed access to homogeneous
sources, often from the same manufacturer, and que-
ries could reference data in only one data source.
Over time, more elaborate gateway products ap-
peared, such as iWay Software’s EDA/SQL Gate-
ways.21 These products allowed access to heteroge-
neous relational systems and to nonrelational systems
that provided an Open Database Connectivity
(ODBC) driver.22 DB2 DataJoiner*23 was the first com-
mercial system to really use database federation. It
provided a full database engine with the ability to
combine data from multiple heterogeneous rela-
tional sources in a single query, and to optimize that
query for good performance. Microsoft’s Access24

allowed access to a larger set of data sources, but
was geared toward smaller applications, as opposed
to the mission-critical large enterprise applications
that DataJoiner supported.

DataJoiner and Garlic “grew up” together, with
DataJoiner focused on robust and efficient queries
over a limited range of mostly relational sources,
whereas Garlic focused on extensibility to a much
more heterogeneous set of sources. Today, the best
ideas from both projects have been incorporated into
DB2,25 which also enabled the use of user-defined
functions to “federate” simple data sources.26 DB2
thus supports a very rich notion of database feder-

ation that can be exploited for data integration. Dis-
coveryLink*,27 for example, is an IBM solution that
applies DB2 technology to integrate data in the life
sciences.

IBM’s database federation offerings have pursued sev-
eral goals. The most basic goal is transparency, which
requires masking from the user the differences, id-
iosyncrasies, and implementations of the underlying
data sources. This allows applications to be written
as if all the data were in a single database, although,
in fact, the data may be stored in a heterogeneous
collection of data sources. A second key goal is to
support heterogeneity, or the ability to accommodate
a broad range of data sources, without restriction of
hardware, software, data model, interface, or pro-
tocols. A high degree of function provides users with
the best of both worlds: not only rich, standard-com-
pliant DB2 SQL capabilities against all the data in the
federation, but also the ability to exploit functions
of the data sources that the federated engine may
lack.

The fourth goal is extensibility, the ability to add new
data sources dynamically in order to meet the chang-
ing needs of the business. Openness is an important
corollary; DB2 products support the appropriate stan-
dards28,29 in order to ensure the federation can be
extended with standard-compliant components. Fur-
ther, joining a federation should not compromise the
autonomy of individual data sources. Existing appli-
cations run unchanged; data are neither moved nor
modified; interfaces remain the same. Last but not
least, DB2 database federation technology optimizes
queries for performance. Relational queries are non-
procedural. When a relational query spans multiple
data sources, making the wrong decisions about how
to execute it can be costly in terms of resources.
Hence, the DB2 federated engine extends the capa-
bilities of a traditional optimizer12 to handle que-
ries involving federated data sources.

DB2 architecture for database federation. In the re-
mainder of the paper, we focus on the database fed-
eration capabilities of DB2. Figure 1 depicts the over-
all architecture of a DB2 database federation. Users
access the federation via any DB2 interface (CLI [Call
Level Interface], ODBC, JDBC** [Java** Database
Connectivity], etc.). The key component in this ar-
chitecture is the DB2 federated engine itself. This en-
gine consists of a Starburst-style query processor30

that compiles and optimizes SQL queries, a run-time
interpreter for driving the query execution, a data
manager that controls a local store, and several ex-

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 HAAS, LIN, AND ROTH 581

tension mechanisms that allow access to external
data, including user-defined functions and wrappers.

A user-defined function (UDF) is a routine written
by an application developer and registered with the
database. User-defined functions may take input pa-
rameters and return either a scalar result, or a table
of data. They can be used to combine functions al-
ready supported by the database, or to provide ac-
cess to a specific function provided by an external
source.

A wrapper mediates between the DB2 engine and one
or more data sources, mapping the data model of
the sources to the DB2 data model and transforming
DB2 data operations into requests that the sources
can handle. DB2 provides wrappers for many pop-
ular data sources, such as Informix, Oracle, and
MS SQL server,25 as well as wrappers for specialized
data sources such as Documentum and BLAST.31 In
addition, there is a toolkit for customers and third-
party vendors to build wrappers for their own
sources.

Clearly, there are different styles of federation avail-
able with this architecture. In the next section, we
explore each of these styles in greater detail and give
guidelines for when each style is appropriate.

DB2 styles of federation

As shown in Figure 2, the federated architecture of
DB2 offers a range of alternatives for federation, from
the simplicity of a scalar user-defined function to the
flexibility of the DB2 wrapper architecture. The fig-
ure illustrates that a natural trade-off exists between
the level of federation and the effort involved to
achieve federation. In this section we describe points
along this range and provide a decision tree that helps
to illustrate which type of federation is most appro-
priate for a given integration scenario.

Scalar UDFs: Federating function. The simplest
form of a UDF is a scalar function, which can take
data from the surrounding SQL statement as input
and produce a single scalar result. Scalar UDFs pro-
vide a way to federate function with data in DB2, com-
bining data from one source with a function provided
by another in a single statement. UDFs can provide
two major benefits to client applications: (1) a sim-
pler programming model and (2) greater perfor-
mance, achieved by reducing network traffic and path
length between the calling application, data, and
function.

For example, the user-defined function db2mq.mqsend()
ships with DB2 and allows a user to send a message
to an MQSeries32 queue. By invoking this function

Figure 1 DB2 architecture for database federation

QUERY COMPILER

RUN TIME

DATA MANAGER
UDFs WRAPPERS

LOCAL TABLES

EXTERNAL DATA
AND FUNCTIONS

DB2

EXTERNAL DATA SOURCES

HAAS, LIN, AND ROTH IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002582

within a SELECT statement, data can be moved from
a database table to an MQ queue without the client
application accessing the queue directly:

SELECT db2mq.mqsend(a.headline)
FROM Articles a
WHERE a.article_timestamp �� CURRENT TIMESTAMP

Scalar functions can also be used as a simple way to
bring data into the engine. For example, the func-
tion db2mq.mqreceive() can be used to pull the next
message from a queue. Because it is implemented
as a UDF, this function can be used in a complex query
to combine the message with other data from the
federation.

Table UDFs: Federating data. A table function is a
more sophisticated UDF that produces a table as out-
put and can appear wherever a table can be refer-
enced in an SQL statement. A row function is a spe-
cial case of a table function that returns 1 row. A
table function can retrieve a set of data and refor-
mat the data into rows and columns, providing a sim-
ple way to federate external data. Because a table
function can appear anywhere a table can, the full
power of SQL can be applied to the resulting data.
Furthermore, views can be created on top of the UDF
in order to make the external data appear even more
like a local table to client applications.

For example, a table function called addressbook() can
be used to access an address book stored in a Lotus
Notes* database that contains sales contact infor-
mation. This function can be invoked within a query
that joins the result of the function call with a local
table that contains company profile information to
return sales contacts at financial companies whose
gross revenues are greater than $50 million:

SELECT a.first, a.last, a.phone, a.email
FROM TABLE (addressbook()) AS a, Company_Profiles c
WHERE c.industry � ‘FINANCIAL’ AND c.revenue �

50,000,000 AND c.name � a.company_name

Although table functions can be used just like ta-
bles, they look more like functions. Table functions
can take arguments that can be used to restrict the
data to be returned. For example, a function to get
information about files on the local disk might take
one argument that determines the directory to
search, and a second that determines what file types
are of interest. But the table function can only filter
using those predicates that it was designed to han-
dle. For example, in the query below, the dir() func-

tion could not be passed the predicate on the col-
umn last_modified_date:

SELECT f.filename, f.author, f.last_modified_date
FROM TABLE (dir(‘�laura�papers’, ‘.pdf’)) AS f
WHERE f.last_modified_date � ‘07/04/2002’

Fortunately, the DB2 engine can apply any other
predicates to the result returned by the table func-
tion. In this example, the engine would filter the re-
sults of the table function and return only those mod-
ified more recently than July 2002.

Wrappers: Federating function and data. The wrap-
per architecture provides the most powerful and flex-
ible infrastructure for federation.33 It provides the
means to integrate both function and data by rais-
ing the level of federation from a single function or
set of data to that of an entire external data source.
Client applications can transparently access and use
the full power of the query language on data man-
aged by these sources as though DB2 itself manages
the data.

For example, consider a set of scientists at a univer-
sity working in a drug discovery laboratory. The sci-
entists store chemical compound data and experi-
mental results in an Oracle database. The university
also has access to Lotus Extended Search34 (LES),
a Web search engine that can perform searches
across multiple Web search sites. The scientists use
this search engine to retrieve research articles from
other scientists. Both the Oracle database and the

Figure 2 Different styles of federation

WRAPPER

TABLE UDF

SCALAR
UDF

LE
V

E
L

O
F

 F
E

D
E

R
AT

IO
N

IMPLEMENTATION EFFORT

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 HAAS, LIN, AND ROTH 583

search engine can be transparently accessed from DB2
via wrappers, allowing the scientists to ask a single
query that combines data and functions from both
sources.

The Oracle wrapper maps the compound data and
experimental results tables stored in Oracle to nick-
names, which can appear wherever a table can ap-
pear in an SQL query (for example, the FROM clause).
The LES wrapper provides a nickname for a list of
articles that can be searched. Each article has a ti-
tle, subject, and URL. The search functionality itself
is mapped as an SQL function that takes two argu-
ments, the section of the article to search (title, sub-
ject, or both), and a set of key words, and returns
a score that measures the relevance of the article.
For example, a common task the scientists might un-
dertake would be to find other research reports on
chemical compounds that achieved a certain result
in their experiments:

SELECT c.name, a.URL
FROM Compounds c, Experiments e, Articles a
WHERE e.result � 1.1e-9 and e.id � c.id and
search(a.subject, c.name) � 0

Because Oracle is itself a relational database, the DB2
optimizer can choose a plan in which both the pred-
icate on the Experiments table (e.result � 1.1e-9) and
the join between the Compounds and Experiments ta-
bles (e.id � c.id) are pushed down to the Oracle da-
tabase to execute, and this results in only those com-
pounds with the right test results being returned to
DB2. DB2 then routes the names of the matching com-
pounds to LES, which will retrieve relevant articles
and return their URLs back to DB2.

DB2 supplies wrappers for a variety of relational and
nonrelational sources,18 and also provides a toolkit
for third-party vendors and customers to develop
wrappers for their own data sources.17,19 The wrap-
per toolkit provides an external interface to the wrap-
per architecture, allowing a developer to federate a
new type of data source. The wrapper architecture
enables the following federated features:

● Multiserver integration. Unlike a UDF, a wrapper can
easily provide access to multiple external sources
of a particular type. The DB2 engine acts as a traf-
fic cop, maintaining the state information for each
server, managing connections, decomposing que-
ries into fragments that each server can handle,
and managing transactions across servers.

● Multidata-set integration and multioperation integra-
tion. Table UDFs are well suited to integrate a sin-
gle external operation and set of data into the fed-
eration. The wrapper architecture expands on this
capability by providing the infrastructure to model
multiple data sets and multiple operations. Data
sets are modeled as nicknames, and nicknames can
appear wherever a table can appear in an SQL state-
ment. Operations include query, insert, update,
and delete. The wrapper participates in the plan-
ning and execution of these operations, and trans-
lates them into the corresponding operations sup-
ported by the server.

The multidata-set and multioperation features in-
troduce the notion of common query framework for
external sources. The common query framework
is the way in which the wrapper architecture re-
alizes the goal of high function. That is, the frame-
work enables (1) the full power of operations ex-
pressible in SQL over the external source’s data,
and (2) specialized functions supported by the ex-
ternal source to be invoked in a query even though
DB2 does not natively support the function.

Part 1 of the goal is addressed through function
compensation. If the external source does not sup-
port the full power of DB2’s SQL, client applications
will not suffer any loss of query power over those
data, because DB2 will automatically compensate
for any differences between DB2’s capabilities and
those of the external source. So, for example, if a
data source does not support ORDER BY, DB2 will
retrieve the data from the source and perform the
sort.

Part 2 of the goal is addressed through function
mappings. Function mappings can be used to de-
claratively expose functions supported by the ex-
ternal source through the DB2 query language. For
example, a chemical structure store may have the
ability to find structurally similar chemical com-
pounds. Although that function is not present in
DB2, it can still be exploited in DB2 queries, as long
as there is a mapping that tells DB2 which source
implements the function.

If the external source implements new functions,
the wrapper itself may not require modification,
depending on the data source and what the wrap-
per needs to do to map the function. For sources
that invoke new functions in a predictable way, the
database administrator (DBA) need only register

HAAS, LIN, AND ROTH IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002584

the new function mappings. They can then be im-
mediately used in DB2 queries.

● Optimization. Operations to be performed outside
of the DB2 engine may have significant cost impli-
cations for the queries that contain them, and it
is critical for DB2 to be aware of these implications
when choosing a strategy for executing the query.
The wrapper architecture includes a flexible frame-
work for wrapper writers to provide input to the
DB2 query optimizer about the cost of their oper-
ations and the size of the data that will be returned.
This framework includes a dialog between the op-
timizer and wrapper at query compilation time, al-
lowing the wrapper writer to provide information
based on the immediate context of the query.

This information is particularly crucial when the
optimizer must consider alternatives for cross-
source operations, as these types of operations ex-
plode the set of possible execution strategies. Ref-
erence 11 provides an example of an image server
that can support two kinds of image search, one
of which is substantially more expensive than the
other. Because the wrapper can provide this in-
formation to the DB2 optimizer, the optimizer is
able to choose a plan that applies the more expen-
sive operation after another predicate has filtered
out much of the data.

● Transactional integration. DB2 acts as a transaction
manager for operations performed on external
sources, and the wrapper architecture provides the
infrastructure for wrappers to participate as re-
source managers in a DB2 transaction. DB2 main-
tains a list of wrappers that have participated in
the transaction, and it ensures that they are no-
tified at transaction commit or rollback time, giv-
ing a wrapper an opportunity to invoke the appro-
priate routine on the external source.

Determining the style of database federation to use.
To determine which level of federation is appropri-
ate for a particular integration problem, it is impor-
tant to characterize the purpose and desired prop-
erties of the integration effort. UDFs are easy to
implement, but have limited support for data mod-
eling and no support for transactional integration.
Wrappers are powerful, but rely on more advanced
capabilities of the external source and require a more
advanced skill set to implement.

Every application is different, and each can be solved
via a “small matter of programming” using the dif-

ferent federation alternatives. However, it is usually
true that one alternative is more suitable than the
others for a given problem. Figure 3 presents a de-
cision tree that helps characterize the style of fed-
eration most appropriate for a particular integration
problem.

The decision tree is based on a series of YES/NO ques-
tions. Consistently answering NO to the questions in-
dicates that the integration problem is sufficiently
contained that the best solution is likely to be a UDF.
A YES answer indicates that the integration prob-
lem exhibits a characteristic that is best handled by
the wrapper architecture. The decision tree points
to the feature of the wrapper architecture that ad-
dresses that characteristic. Next we consider the
nodes in the decision tree in more detail.

1. Does the integration problem reach out to multiple
data sources of the same type? If so, is there a ben-
efit to modeling such servers?

If the server concept is key to the integration prob-
lem, then the wrapper architecture is likely to be an

TRANSACTIONAL
CONSISTENCY?

MULTIPLE, DISTINCT
DATA SETS?

MULTISERVER
INTEGRATION

TRANSACTION
INTEGRATION

MULTITABLE
INTEGRATION

QUERY
PLANNING

QUERY
OPTIMIZATION

MULTIPLE, DISTINCT
OPERATIONS?

SOPHISTICATED
COST MODEL?

SCALAR VALUE OR
1/MORE ROWS?

SCALAR
UDF

ROW/
TABLE UDF

NO

NO

NO

NO

NO

YES

YES

YES

YES

YES

SCALAR ROWS

ACCESS TO
MULTIPLE SERVERS

Figure 3 Determining the style of federation to use

WRAPPER

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 HAAS, LIN, AND ROTH 585

appropriate solution. For example, a function that
retrieves the temperature from an on-line thermom-
eter does not require the notion of a server, and the
wrapper solution may be overkill. On the other hand,
suppose the goal is to integrate a set of Lotus Notes
databases. It is possible to write a UDF to access mul-
tiple databases; however, the burden is on the UDF
developer to take the appropriate information to
identify the databases as arguments, manage con-
nections to the databases, and use the scratchpad to
store any state information. Furthermore, the life-
time of the scratchpad is within a single statement,
so UDF invocations from separate statements will re-
quire their own connections. For this integration
problem, the multiserver support offered by the
wrapper architecture, including connection manage-
ment, will help to nicely manage access to those da-
tabases.

2. Is transactional consistency important for the in-
tegration problem?

The UDF architecture does not support transactional
consistency, whereas the wrapper architecture offers
both one-phase and (in a future release) two-phase
commit support. If transactional consistency is cru-
cial for the integration problem, and the source that
has the data or functions needed is able to partic-
ipate as a resource in a transaction, the wrapper ar-
chitecture is the only choice that can provide that
level of support.

3. Are there multiple, distinct data sets to be accessed?
Are there multiple, distinct operations to be feder-
ated?

An operation is a specific external action that can
be performed on the data to be integrated. Exam-
ples of operations include data retrieval, search, in-
sert, update, and delete. Table UDFs are well suited
to integrate a single external operation and set of
data into DB2. When there are multiple data sets
and/or multiple operations involved, the wrapper ar-
chitecture may more easily provide the infrastruc-
ture for modeling those data sets and operations.
This is particularly true when there are restrictions
on how multiple operations can be combined, or cost
implications that depend on how they are combined.
When using the wrapper architecture, data sets be-
come separate nicknames, and flexible query plan-
ning and query execution components allow the
wrapper writer to control the set of operations the
wrapper will support, and how those operations will
be executed. In addition, the wrapper architecture

includes APIs (application programming interfaces)
for the wrapper writer to provide optimization in-
formation on an operation-by-operation basis. The
wrapper writer is allowed to examine the operation
to be performed to determine which portions of the
operation the data source can execute. The wrap-
per reports this information and provides cost and
cardinality estimates based on the operations, pa-
rameters, persistent cost information stored in the
system catalogs, and state information stored in the
wrapper. With this cost information the DB2 opti-
mizer can determine an optimal execution plan.

4. Is there a sophisticated cost model associated with
the federated operations?

The UDF architecture provides some support for pro-
viding static cost information. If the operation is typ-
ically executed as part of a simple, single-table query,
a table function may be the appropriate vehicle for
federation. However, if the operation is likely to be
invoked as part of a more complex query, and its po-
sition in the query plan may greatly impact the per-
formance of the query, it may be worthwhile to use
the wrapper architecture to federate this operation,
just to exploit the flexible costing infrastructure.

If the answer to all of the above questions is no, then
a UDF is likely to be an appropriate choice for fed-
eration. In this case, the final question to ask is
whether the integrated operation should return a sca-
lar value, or a multirow set. If the operation returns
a scalar value, the right choice is a scalar UDF, and
if the operation can return a result set, a table UDF
is the appropriate choice.

If the answer to any of the questions is yes, the wrap-
per architecture provides at least one valuable fea-
ture that addresses some aspect of the integration
problem, and it is worthwhile to consider writing a
wrapper to exploit that feature. Note that because
the architecture is designed to be flexible, it is pos-
sible to implement important pieces of a wrapper
without writing a complete wrapper. For example,
if the function being integrated is really a simple sca-
lar UDF but transactional integration is key, it is pos-
sible to implement that function within a simple
wrapper that exploits the transactional architecture,
and only minimally implements the data modeling
and query optimization aspects. On the other hand,
if the operation on the data source is a highly so-
phisticated read-only function with significant cost
implications, it is possible to write a wrapper that

HAAS, LIN, AND ROTH IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002586

focuses on the optimization component and does not
address transaction issues at all.

Why use a database engine for data
integration?

Database federation centers on a relational database
engine. That engine is an essential ingredient for in-
tegrating data, because it significantly raises the level
of abstraction for the application developer. Rather
than deal with the details of how to access individual
sources, and in what order, the application devel-
oper gets the benefits of a powerful nonprocedural
language, support for data integrity, a local store to
use for persisting data and meta-data as needed, and
the use (or reuse) of the many tools and applications
already written for “normal” relational systems. In
this section, we look at each of these benefits in more
detail.

The virtues of SQL and the relational data model have
often been extolled since their invention in the late
1960s and early 1970s.35–37 Foremost among these
are the simplicity of the model and the nonproc-
edural nature of the language, which together allow
the application developer to specify what data are
needed, and not how to find the data. The system
automatically finds a path to the individual relations,
and decides how to combine them in order to return
the desired result. With the invention of query op-
timization in the late 1970s,12 systems were able to
choose wisely among alternative execution strategies,
greatly enhancing the performance and expanding
the range of queries the systems could effectively han-
dle. Over the years, the language has been contin-
uously enriched with new constructs. It is now pos-
sible to write recursive queries, perform statistical
analyses, define virtual tables on the fly, set defaults,
take different actions based on the data retrieved,
and so on.38 User-defined functions and stored pro-
cedures make it possible to execute much of the ap-
plication logic in the database, as close as possible
to the data for greatest efficiency. Database feder-
ation extends these advantages to data that are not
stored in the local store. Now applications requiring
distributed data can be written as easily as single
source applications, using all the power of SQL.

Another fundamental aspect of relational systems
is that they protect data integrity. Transaction sup-
port39 guarantees an all-or-nothing semantics for up-
dates. The extension of commit protocols to distrib-
uted environments40 is well understood and many
database systems implement one or two-phase com-

mit protocols. These add great value, of course, for
integrating data from several sources, allowing in-
tegrity guarantees to be offered and building users’
trust in the system. Sophisticated integrity con-
straints41 and active mechanisms for enforcing con-
straints of various kinds42 may also be extended to
protect relationships across federated data. Were we
to build a data integration engine on some other plat-
form, all of this would need to be built from scratch.

The local store is a further important aid to appli-
cations over federated data. Any application deal-
ing with data, and especially distributed data from
a variety of sources, needs some place to keep in-
formation about the data that it uses. The local store
is a convenient place for these meta-data. Without
that store, and the automatic cataloging of basic facts
about the data, the application developer would be
forced to manually track and ensure the persistence
of such information. A second use for the local store
is to materialize data. Data may need to be mate-
rialized temporarily, as part of query processing, for
example, or for longer—from a short-term cache to
a persistent copy, or even a long-term store of data
unique to the federated applications.

Materialized views43 are an advanced feature of SQL
that exploits the local store. Originally conceived of
as a way to amortize the cost of aggregating large
volumes of data over multiple queries, a material-
ized view (called an automatic summary table, or AST,
in DB2) creates a stored version of the query results.
When new queries arrive that match the AST’s def-
inition, they are automatically “routed” to use the
stored results rather than recomputing them.44 If the
view definition can reference foreign data, then a
stored summary of data from federated sources can
be created. When summary tables are considered
during query planning, DB2 will compare the cost of
fetching data directly from the local summary table
to the cost of re-evaluating the remote query and
pick the cheaper strategy. This is easy and natural
in a database federation, but would take an enor-
mous effort to replicate with other integration ap-
proaches, as it depends so heavily on multiple fea-
tures of the database engine approach.

Last but not least, using the database engine to in-
tegrate data means that many if not all of the tools
and applications that have been developed over the
years for relational databases can be used without
modification on distributed data. These include
query builders such as Cognos45 and Brio,46 appli-
cation development environments such as IBM Web-

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 HAAS, LIN, AND ROTH 587

Sphere* Studio,47 IBM VisualAge*,48 and Microsoft
Visual C��**49 or WebGain VisualCafé**,50 report
generators, visualization tools, and so on. Likewise,
the customer may already have applications devel-
oped for a single database that can be reused easily
in the federated environment by substituting names
of remote tables for local ones, or modifying view
definitions to make use of remote data.

In summary, many of the advantages offered by stan-
dard relational database systems are equally appli-
cable to database federation. Thus, the database fed-
eration approach provides a richly supportive
environment for the task of data integration. In the
following section, we illustrate some of these ben-
efits through some typical usage scenarios.

DB2 federation usage scenarios

In this section, we describe a set of scenarios that
illustrate how database federation can be used to in-
tegrate local and remote data from a variety of
sources, including relational data, Microsoft Excel
spreadsheets, XML documents, Web services, and
message queues. Furthermore, these scenarios dem-
onstrate that by using the database as the integra-
tion engine, business applications are able to exploit
the full power of SQL over federated data, including
complex queries and views, automatic summary ta-

bles, OLAP (on-line analytical processing) functions,
DB2 Spatial Extender, replication, and caching.

Federation of distributed data. A nationwide depart-
ment store chain has stores in several regions of the
country. Each of the stores relies on a relational da-
tabase to maintain inventory records and customer
transactions. However, because the department store
has gone through several technology migrations, not
all of the stores use the same database products. Both
the San Francisco store and the New York store use
Oracle databases to record business transactions,
while the corporate headquarters has recently mi-
grated to DB2.

Each store maintains a Transactions table, which con-
tains an entry for each item scanned during a cus-
tomer transaction. It is easy for individual stores to
generate storewide sales reports using the informa-
tion stored in this table. Figure 4 shows how the cor-
porate office can use DB2 technology to generate a
sales report across all stores. Because the San Fran-
cisco and New York offices both use Oracle, the cor-
porate office can use the Oracle wrapper provided
with DB2 to access both stores’ databases. Likewise,
the corporate office can access other stores’ databases
using the wrappers appropriate for those databases.
Note that the schemas for the individual databases
need not be the same, as long as queries can be for-

Past_Sales
AST

CORPORATE DB2 DATABASE

ORACLE
WRAPPER

sf.Transactions
NICKNAME

ny.Transactions
NICKNAME

National_Transactions
FEDERATED VIEW

Figure 4 A DB2 database federation that includes relational databases

SF ORACLE DATABASE

store_id tran_date tran_id item_id

NY ORACLE DATABASE

store_id tran_date tran_id item_id

HAAS, LIN, AND ROTH IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002588

mulated to extract the same information from each
store.

Each store’s database is registered as a server in the
corporate headquarters database, and the tables that
the corporate office needs to access are registered
as nicknames. For example, each store’s Transactions
table is registered as nickname. Once the nicknames
are in place, a federated view that shows company-
wide transactions can be defined as follows:

CREATE VIEW National_Transactions (store_id, tran_date,
tran_id, item_id) AS

SELECT store_id, tran_date, tran_id, item_id
FROM sf.Transactions
UNION ALL
SELECT store_id, tran_date, tran_id, item_id
FROM ny.Transactions

Note that if more stores are added to the depart-
ment chain, the corporate office does not need to
modify its business application. Rather, the
National_Transactions view definition can be updated
to include the information for the new stores. Given
this view, the corporate office can run a single query
to generate a national sales report that shows the
total of the number of items sold per month by all
stores in the company:

SELECT MONTH(tran_date), item_id, COUNT(*)
FROM National_Transactions
WHERE YEAR(tran_date)�2001
GROUP BY MONTH(tran_date), item_id

In addition, the corporate office can create an au-
tomatic summary table over the federated view to
cache the transaction information for previous years
locally, since it is not likely to change. The following
statement can be used to create this materialized
view:

CREATE TABLE Past_Sales AS (
SELECT YEAR(tran_date) AS year, MONTH(tran_date) AS

month, item_id, COUNT(*) AS sales
FROM National_Transactions
WHERE YEAR(tran_date) �� 2001
GROUP BY YEAR(tran_date), MONTH(tran_date), item_id)

DATA INITIALLY DEFERRED REFRESH DEFERRED

The Past_Sales summary table is locally stored, and
as a result, indexes can be created over the table and
statistics can be collected to improve query perfor-
mance. In addition, a special register can be set to
indicate that DB2 should automatically check to see

whether a given query could be executed over the
(local) summary table rather than over the (remote)
nicknames. If so, in addition to plans that send re-
mote requests to the regional stores to get the in-
formation and compute the result, DB2 will consider
plans to extract the information from the Past_Sales
summary table directly. This analysis is done trans-
parently and does not require changes to the orig-
inal query.

Federation of nonrelational structured data. Figure
5 shows how the corporate office of the department
store chain can use a DB2 database federation to ac-
cess nonrelational data sources as well. For exam-
ple, the procurement office might like to know the
manufacturer and the supplier of the best-selling
television in 2001. Item and supplier information are
stored in Excel spreadsheets and can be accessed
from DB2 using the Excel wrapper. The items spread-
sheet is mapped to an Items nickname, and the sup-
pliers spreadsheet is mapped to a Suppliers nickname.
Data contained in the spreadsheets can be retrieved
using SQL as shown by the following query:

SELECT i.mfg, s.id
FROM Items i, Suppliers s
WHERE i.id � s.id AND i.id � (SELECT g.id

FROM (SELECT g.id, COUNT(*), ROWNUMBER()
OVER (ORDER BY COUNT(*) DESC) AS rownum
FROM National_Transactions g, Items it
WHERE it.cat�‘television’ AND g.id � it.id AND

YEAR(tran_date)�2001
GROUP BY g.id) AS tv_total_2001

WHERE rownum � 1)

In the above query, the OLAP function ROWNUMBER
is used to order the COUNT(*) in descending order in
the nationwide total of sales for every model of tele-
vision in the year 2001. The first row is then selected
to find the item identifier (ID) of the most frequently
sold television. This example shows that by exploit-
ing DB2 database federation technology, the corpo-
rate office can use a single (complex) SQL statement
to correlate information among the stores and the
corporate office, although the data may be stored and
represented differently at each location.

Federation of semi-structured data. The department
store chain also provides on-line shopping for cus-
tomers. Customer data are stored in a Customers ta-
ble in the corporate office database, and orders are
generated as XML documents by a Web application.
These XML documents can also be accessed from the

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 HAAS, LIN, AND ROTH 589

corporate database using the XML wrapper to be
shipped with DB2 Life Sciences Data Connect.31

XML documents map to nicknames, and elements of
the XML document map to columns of the nickname.
A single XML document can be mapped to multiple
nicknames. An option associated with the nickname
allows the user to specify the location of the XML
document in the query, and an XPATH option on the
nickname column definition maps the column to its
location in the XML document. For example, the or-
der document contains both order and item infor-
mation, and as a result, the document is mapped to
an Orders nickname and an Order_Items nickname, and
queries involving items from a particular order can
be expressed as joins of these two nicknames.

As part of order processing, the Web application
must determine and dispatch the order to the dis-
tribution center closest to the customer. The corpo-
rate office can store the geo-coded location of each
distribution center in a Distribution_Centers table, geo-
code the customer’s location, and use the DB2 Spa-
tial Extender function db2gse.st_distance() to identify
the distribution center closest to the customer:

SELECT s.store_id, db2gse.st_distance(GEOCODE(o.street,
o.city,o.state,o.zip), s.location, ‘mile’) AS distance

FROM Distribution_Centers s, Orders o

WHERE o.order � ‘/home/customers/order5795.xml’ AND
o.transaction_id�‘12AV56BG90’

ORDER BY distance

Federation of Web services. A small furniture com-
pany supplies several nationwide retail stores with
its products. The retail stores submit orders for fur-
niture through a Web application, the furniture com-
pany fulfills the order and ships the furniture to the
stores. Since freight shipment represents a signifi-
cant portion of the production cost, the furniture
company contracts with several trucking companies
and puts each freight shipment up for bid. Figure 6
shows a system configuration using DB2 for the or-
der processing system. New orders are placed on an
MQ Series queue. A back-end order processing sys-
tem removes orders from the queue and solicits the
bids from various trucking companies for shipment.

The order processing system uses a Pending_Orders ta-
ble to maintain a list of orders currently being pro-
cessed. Each order has an auto-generated unique or-
der number, as well as the XML document that
contains the order information. The furniture com-
pany maintains a private UDDI registry for trucking
companies that support a common Web services in-
terface to request freight shipment bids. This reg-
istry is available to the order processing system via
a wrapper, and a Freight_Shippers nickname supported

SF ORACLE DATABASE

DB2

ORACLE
WRAPPER

NY ORACLE DATABASE

XML DOCUMENT

Figure 5 A DB2 database that includes relational and nonrelational data sources

XML
WRAPPER

EXCEL
WRAPPER

id cat mfg

id name phone

EXCEL

<order>
 <trans_id id=“12AV56BG90”/>
 <date date=“04/26/2002”/>
 <customer id=“8899”>
 <street street=“2041 Russell”/>
 <city name=“Paper City”/>
 <state name=“WI”/>
 <zip code=“54496”/>
 </customer>
 <item id=“5795”>
 <quantity amount=“1” />
 </item>
 <item id=“51766”/>
 <quantity amount=“2” />
 </item>
</order>

sf.Transactions ny.Transactions

HAAS, LIN, AND ROTH IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002590

by the wrapper supplies the names and URLs of truck-
ing companies that support the bid Web service. A
UDF called bid() takes the URL of a company and an
XML description of an order, sends a Web services
request to retrieve a bid for the order from the com-
pany specified by the URL, and returns the compa-
ny’s bid. A Bids table contains a list of bids obtained
for a given order, including the order number, the
name of the trucking company that supplied the bid,
and the bid itself.

The furniture company can exploit DB2’s federation
capabilities to automate a significant portion of the
order process. For example, orders can be removed
from the MQ Series queue (via the db2mq.mqreceive()
UDF), assigned a unique order number, and inserted
into the Pending_Orders table with the following
statement:

INSERT INTO Pending_Orders
VALUES(GENERATE_UNIQUE(), db2mq.mqreceive())

Furthermore, a trigger defined on the Pending_Orders
table can automatically kick off the bid process as
new orders are inserted into the table:

CREATE TRIGGER Get_Bids
AFTER INSERT ON Pending_Orders
REFERENCING NEW AS order
FOR EACH ROW MODE DB2SQL

INSERT INTO Bids
SELECT Order.ordernum, s.name, bid(s.url, order.orderxml)
FROM Freight_Shippers S

This SQL statement illustrates the power of a data-
base federation solution for integrating data. A sim-
ple insert statement causes a sophisticated trigger to
execute over federated data that are transparently com-
bined via user defined functions (db2mq.mqreceive() and
bid()) and wrapper-based federation (the Freight_Shippers
nickname).

Heterogeneous replication using database feder-
ation. Many businesses choose to keep multiple cop-
ies of their data for various uses, including data ware-
housing, fault tolerance, and fail-over scenarios. A
major retailer with outlets all over the United States
backs up data from its various locations to regional
data centers. Due to independent purchasing deci-
sions, the retail outlets use one relational database
management system, while the data center might use
another. The replication process is relatively straight-
forward, and involves extracting data from the out-
lets’ databases, optionally reshaping the data and/or
aggregating the data, and inserting the data into the
data center database.

Figure 7 shows two approaches that use DB2 tech-
nology as the extract/transform vehicle to transfer

Figure 6 A DB2 database federation that includes Web services and other sources

DB2

WRAPPER

UDDI REGISTRY

Freight_Shippers

WEB SERVICES

UDF

UDF

MQSERIES QUEUE

New_Orders
TRUCKING COMPANY 1

TRUCKING COMPANY 2

TRUCKING COMPANY N

LOCAL TABLES

Pending_Orders
Bids

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 HAAS, LIN, AND ROTH 591

data from the outlets to the data center. Approach
1 in Figure 7 shows that if the data center uses a DB2
database, the data transfer can take place with sim-
ple statements of the form:

INSERT INTO �data center local_table�

SELECT . . . FROM �outlet nickname�. . . .

Approach 2 in Figure 7 shows that even if the data
center uses another relational database product, the
same INSERT statement can be used to populate the
database, with the only difference being that the fed-
erated database will insert into a nickname instead:

INSERT INTO �data center nickname�

SELECT . . . FROM �outlet nickname�. . . .

Note that in either approach the SELECT statement
can be arbitrarily complex and can be used to se-
lectively retrieve, re-shape, and aggregate data ac-
cording to the semantics of the application.

DB2 DataPropagator*51 is an IBM product that uses
DB2 federation technology to replicate data. Data-
Propagator automates the copying of data between
remote systems, providing automated change prop-
agation, flexible scheduling, and other customization
features. DataPropagator exploits the remote
insert/update/delete capability illustrated above to
transparently apply changes to all relational sources
including non-DB2 sources.

Dynamic data caching. As shown in Figure 8, a typ-
ical e-commerce Web application consists of a three-

tiered architecture: the Web server tier, the appli-
cation server tier, and the data tier. User requests
are routed to one of multiple Web servers, which
forward the user requests to one of the application
servers for processing. The application servers in turn
retrieve product data from, and insert order infor-
mation into, a single back-end database.

It is easy to see from the figure that as traffic in-
creases, the back-end database can quickly become
the bottleneck. DBCACHE52,53 is a research prototype
built with federation technology that provides scal-
ability of the data tier. Each application server node
may include a front-end database server, the “cache”
of DBCACHE. DBCACHE allows database administra-
tors to replicate portions of the back-end database
across multiple front-end databases, allowing client
requests to be routed to the front-end databases. This
topology is often less expensive than a single large
parallel system, and also provides a layer of fault tol-
erance; a single database crash does not cause the
entire database to become inoperative.

Figure 9 shows an e-commerce application using
DBCACHE technology. Application tables are divided
into two categories: cached and noncached. Cached
tables are mostly read-only, and accessed by mul-
tiple users. For these kinds of tables, maintaining
strict consistency is not necessary, and reading stale
data is acceptable. From an on-line shopper’s per-
spective, product catalog data are read-only (query
Q1 in Figure 9, for example). Updates occur infre-
quently, usually through a scheduled deployment sce-
nario (never by an on-line shopper), and it is not a

Figure 7 Heterogeneous replication using database federation

DB2

OUTLET TABLES

APPROACH 1

LOCAL TABLES

DB2

DATA CENTER DATABASEOUTLET TABLES

APPROACH 2

DATA CENTER DATABASE

HAAS, LIN, AND ROTH IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002592

critical loss if a shopper sees product information
that is a few seconds out of date. Furthermore, since
all shoppers browse the product catalog before mak-
ing a purchase, the product catalog is heavily ac-
cessed.

Noncached tables are typically read/write. For these
tables, maintaining strict consistency is important,
and accessing stale data is intolerable. Order infor-
mation is an example of data stored in a noncached
table. From the perspective of the shopper, order
information is mostly write-only (query Q2 in Fig-
ure 9, for example). It is captured as part of on-line
order processing and read only by back-end order
fulfillment applications and by the shopper to check
order status. Because orders result in transfer of
money, it is critical that they present an accurate view
of the data.

As shown in Figure 9, the Products back-end table is
automatically replicated to a cached table across mul-
tiple front ends using DataPropagator (Data Prop
in Figure 9), according to a schedule defined by the
DBA. Reads to the Products table are transparently
routed to one of the front-end databases, whereas
writes (if any) are routed directly to the back-end
database. The Orders back-end table is represented
as a nickname in the front-end databases, and both
reads and writes are passed to the back-end data-
base using DB2 federated technology.

The client application sees a single view of the data.
Queries for product information (query Q1 in Fig-
ure 9) are dynamically routed to one of the cached
tables on the front-end database, providing a level
of load balancing and fault tolerance for these heav-
ily accessed data. Insert statements to the Orders ta-
ble (query Q2 in Figure 9) are routed directly to the
back-end table. Statements can span both cached and
noncached tables. For example, a query to check the
status of an order (query Q3 in Figure 9) can join
information from the Orders nickname with the
Products table.

Conclusions

In this paper, we have shown that database feder-
ation is a powerful tool for integrating data. Data-
base federation employs a database engine to cre-
ate a virtual database from several, possibly many,
heterogeneous and distributed data stores. We iden-
tified three styles of database federation. In all of
them, the database engine is the key driver, but the
method by which data or functions are included in
the federation differs. We presented guidelines on
when each style of federation should be used: user-
defined functions are most appropriate for fairly sim-
ple integration tasks, whereas the wrapper architec-
ture supports a much broader and more complex set
of tasks. We discussed why database technology is
so crucial to data integration, and how many of the

Figure 8 Three-tier architecture for an e-commerce application

APPLICATION
SERVER

APPLICATION
SERVER

DATABASE

CLIENT
APPLICATION

CLIENT
APPLICATION

WEB SERVER

CLIENT
APPLICATION

CLIENT
APPLICATION

WEB SERVER

CLIENT
APPLICATION

CLIENT
APPLICATION

WEB SERVER

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 HAAS, LIN, AND ROTH 593

features of relational databases can be applied in a
distributed environment to ease the development of
new applications that span multiple data sources. Fi-
nally, we demonstrated through a number of use
cases how various database features—including
views, ASTs, OLAP functions, joins, unions, and ag-
gregations—can be used in conjunction with mul-
tiple federation styles to integrate data from sources
as diverse as MQ queues, XML documents, Excel
spreadsheets, Web services, and relational database
management systems. We showed how federation
could be used as the basis for report gathering, for
warehouse loading and replication, and even for
caching. The diversity of applications for this tech-
nology is reflective of the many ways in which data
must be integrated, and the applicability of database
federation to the broad range of challenges demon-
strates its importance for data integration.

Of course, database federation is not a panacea.
There may be some integration scenarios for which

it is overkill, or for which another of the many ap-
proaches to data integration might be easier. How-
ever, we strongly believe that database federation
must be a fundamental part of any integration so-
lution. Our future efforts will be directed toward im-
proving the ease of use for this technology. Tools
are needed to develop robust and efficient wrappers
quickly and with minimal effort. We continue to en-
hance the performance of the system, improving the
optimization of queries and the set of execution strat-
egies available to the optimizer. Further challenges
in this modern age include being able to handle asyn-
chrony everywhere, better integration of XML capa-
bilities, and including native support for XML query.
As customers exercise the technology, we are find-
ing that richer support for semantic meta-data would
be helpful, as well as more automation in the ad-
ministration of the federated system. With enhance-
ments such as these, we expect that database fed-
eration will come to be widely perceived as the
cornerstone of data integration.

Figure 9 E-commerce application using DBCASHE

QI Q2 Q3

FRONT
END 1

Products Orders Orders Products

FRONT
END 2

BACKEND DATABASE

SELECT p*
FROM Products p
WHERE p.category = ‘SHOES’

INSERT INTO Orders
VALUES(GENERATE_UNIQUE(),
8080,50785,2)

SELECT o.status, p.name
FROM Orders o, Products p
WHERE o.customerid = 8080 AND
o.item_id = p.item_id

DATA
PROP

Products

WRAPPER

Orders

DATA
PROP

WRAPPER

HAAS, LIN, AND ROTH IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002594

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of the Object Management
Group, Sun Microsystems, Inc., Microsoft Corporation, or
WebGain, Inc.

Cited references

1. Documentum, Inc., Content Management: Documentum
Products, http://www.documentum.com/content-management_
Products.html.

2. IBM Corporation, Content Manager, http://www.ibm.com/
software/data/cm/.

3. M. A. Roth, D. C. Wolfson, J. C. Kleewein, and C. J. Nelin,
“Information Integration: A New Generation of Information
Technology,” IBM Systems Journal 41, No. 4, 563–577 (2002,
this issue).

4. IBM Corporation, WebSphere Application Server, http://
www.3.ibm.com/software/webservers/appserv/enterprise.html.

5. LION Bioscience AG, LION DiscoveryCenter, http://
www.lionbioscience.com/solutions/discoverycenter/.

6. middleAware.com, Component Focus, http://www.middleware.
net/components/index.html.

7. F. Leymann and D. Roller, “Using Flows in Information In-
tegration,” IBM Systems Journal 41, No. 4, 732–742 (2002,
this issue).

8. M. Roscheisen, M. Baldonado, C. Chang, L. Gravano,
S. Ketchpel, and A. Paepcke, “The Stanford InfoBus and Its
Service Layers: Augmenting the Internet with Higher-Level
Information Management Protocols,” Digital Libraries in
Computer Science: The MeDoc Approach, Lecture Notes in
Computer Science, No. 1392, Springer, New York (1998), pp.
213–230.

9. IBM Corporation, Enterprise Information Portal, http://
www-3.ibm.com/software/data/eip.

10. H. Pirahesh, J. Hellerstein, and W. Hasan, “Extensible Rule-
Based Query Rewrite Optimization in Starburst,” Proceed-
ings of the 1992 ACM SIGMOD International Conference on
Management of Data, San Diego, CA, June 2–5, 1992, ACM,
New York (1992), pp. 39–48.

11. M. Tork Roth, F. Ozcan, and L. Haas, “Cost Models DO Mat-
ter: Providing Cost Information for Diverse Data Sources in
a Federated System,” Proceedings of the Conference on Very
Large Data Bases (VLDB), Edinburgh, Scotland, September
1999, Morgan Kaufmann Publishers, San Mateo, CA (1999),
pp. 599–610.

12. P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and
T. Price, “Access Path Selection in a Relational Database
Management System,” Proceedings of the 1979 ACM SIGMOD
International Conference on Management of Data, Boston, MA,
1979, ACM, New York (1979), pp. 23–34.

13. H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakon-
stantinou, J. Ullman, and J. Widom, “Integrating and Access-
ing Heterogeneous Information Sources in TSIMMIS,” Pro-
ceedings of the AAAI Symposium on Information Gathering,
Stanford, CA, March 1995, AAAI Press (1995), pp. 61–64.

14. S. Adali, K. Candan, Y. Papakonstantinou, and V. S. Sub-
rahmanian, “Query Caching and Optimization in Distributed
Mediator Systems,” Proceedings of the ACM SIGMOD Con-
ference on Management of Data, Montreal, Canada, June 1996,
ACM, New York (1996), pp. 137–148.

15. A. Tomasic, L. Raschid, and P. Valduriez, “Scaling Heter-
ogeneous Databases and the Design of DISCO,” Proceed-
ings of the 16th International Conference on Distributed Com-

puter Systems, May 1996, Hong Kong, IEEE, New York
(1996), pp. 449–457.

16. M.-C. Shan, “Pegasus Architecture and Design Principles,”
Proceedings of the 1993 ACM SIGMOD International Confer-
ence on Management of Data, Washington, D.C., May 1993,
ACM, New York (1993), pp. 422–425.

17. M. Tork Roth, P. Schwarz, and L. Haas, “An Architecture
for Transparent Access to Diverse Data Sources,” Compo-
nent Database Systems, K. R. Dittrich, A. Geppert, Editors,
Morgan-Kaufmann Publishers, San Mateo, CA (2001), pp.
175–206.

18. IBM Corporation, DB2 Product Family, http://www-3.
ibm.com/software/data/db2/.

19. M. Tork Roth and P. Schwarz, “Don’t Scrap It, Wrap It! A
Wrapper Architecture for Legacy Data Sources,” Proceed-
ings of the Conference on Very Large Data Bases (VLDB), Ath-
ens, Greece, August 1997, Morgan Kaufmann Publishers, San
Mateo, CA (1997), pp. 266–275.

20. L. Haas, D. Kossmann, E. Wimmers, and J. Yang, “Optimiz-
ing Queries Across Diverse Data Sources,” Proceedings of the
Conference on Very Large Data Bases (VLDB), Athens,
Greece, August 1997, Morgan Kaufmann Publishers, San Ma-
teo, CA (1997), pp. 276–285.

21. iWay Software, iWay Adapters and Connectors, http://www.
iwaysoftware.com/products/e2e_integration_products.html.

22. Microsoft Corporation, Microsoft ODBC, http://www.
microsoft.com/data/odbc/.

23. IBM Corporation, DataJoiner, http://www.software.ibm.com/
data/datajoiner/.

24. Microsoft Corporation, Access 2002 Product Guide, http://
www.microsoft.com/office/access/default.asp.

25. IBM Corporation, DB2 Relational Connect, http://www-3.
ibm.com/software/data/db2/relconnect/.

26. B. Reinwald, H. Pirahesh, G. Krishnamoorthy, G. Lapis,
B. Tran, and S. Vora, “Heterogeneous Query Processing
Through SQL Table Functions,” Proceedings of the 15th In-
ternational Conference on Data Engineering, March 1999, Sid-
ney, Australia, IEEE, New York (1999), pp. 366–373.

27. L. M. Haas, P. M. Schwarz, P. Kodali, E. Kotlar, J. E. Rice,
and W. C. Swope, “DiscoveryLink: A System for Integrated
Access to Life Sciences Data Sources,” IBM Systems Journal
40, No. 2, 489–511 (2001), http://www.research.ibm.com/
journal/sj/402/haas.html.

28. ISO/IEC 9075-2:2000, Information technology—Database
languages—SQL—Part 2: Foundation (SQL/Foundation), In-
ternational Organization for Standardization, Geneva, Swit-
zerland (2000).

29. ISO/IEC 9075-9:2000, Information technology—Database
languages—SQL—Part 9: Management of External Data
(SQL/MED), International Organization for Standardization,
Geneva, Switzerland (2000).

30. L. Haas, J. Freytag, G. Lohman, and H. Pirahesh, “Exten-
sible Query Processing in Starburst,” Proceedings of the 1989
ACM SIGMOD International Conference on Management of
Data, Portland, OR, May 31–June 2, 1989, ACM, New York
(1989), pp. 377–388.

31. IBM Corporation, DB2 Life Sciences Data Connect, http://
www-3.ibm.com/software/data/db2/lifesciencesdataconnect/.

32. IBM Corporation, IBM MQSeries Integrator V2.0: The Next
Generation Message Broker, http://www-3.ibm.com/software/
ts/mqseries/library/whitepapers/mqintegrator/msgbrokers.
html.

33. V. Josifovski, P. Schwarz, L. Haas, and E. Lin, “Garlic: A
New Flavor of Federated Query Processing for DB2,” Pro-

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 HAAS, LIN, AND ROTH 595

ceedings of the ACM SIGMOD Conference on Management
of Data, Madison, WI, June 2002, ACM, New York (2002).

34. IBM Corporation, Lotus Extended Search, http://
www.lotus.com/products/des.nsf/wdocs/home.

35. E. F. Codd, “A Relational Model of Data for Large Shared
Data Banks,” Communications of the ACM 13, No. 6, 377–
387 (June 1970).

36. E. F. Codd, The Relational Model for Database Management,
Version 2, Addison-Wesley Publishing Co., Reading, MA
(1990).

37. C. J. Date and H. Darwen, A Guide to SQL Standard, 4th
Edition, Addison-Wesley Publishing Co., Reading, MA
(1997).

38. D. Chamberlin, A Complete Guide to DB2 Universal Data-
base, Morgan Kaufmann Publishers, San Mateo, CA (1998).

39. J. Gray and A. Reuter, Transaction Processing: Concepts and
Techniques, Morgan Kaufmann Publishers, San Mateo, CA
(1993).

40. I. Traiger, J. Gray, C. Galtieli, and B. Lindsay, Transactions
and Consistency in Distributed Database Systems, Research Re-
port RJ2555, IBM Almaden Research Center, San Jose, CA
95120 (1979).

41. M. Stonebraker, “Implementation of Integrity Constraints
and Views by Query Modification,” Proceedings of the 1975
ACM SIGMOD Conference on Management of Data, ACM,
New York (1975), pp. 65–78.

42. Rules in Database Systems, T. K. Sellis, Editor, Proceedings
of the Second International Workshop (RIDS ’95), Glyfada,
Athens, Greece, September 25–27, 1995, Lecture Notes in
Computer Science, No. 985, Springer, New York (1995).

43. D. Srivastava, S. Dar, H. V. Jagadish, and A. Levy, “Answer-
ing Queries with Aggregation Using Views,” Proceedings of
the 22nd International Conference on Very Large Data Bases
(VLDB ’96), Morgan Kaufmann Publishers, San Mateo, CA
(1996), pp. 318–329.

44. M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh, and
M. Urata, “Answering Complex SQL Queries Using Auto-
matic Summary Tables,” Proceedings of the 2000 ACM SIG-
MOD International Conference on Management of Data, ACM,
New York (2000), pp. 105–116.

45. Cognos Incorporated, Business Intelligence Products, http://
www.cognos.com/products/index.html.

46. Brio Software, Inc., Business Intelligence solution for data
query and analysis, http://www.brio.com/products/overview.
html.

47. IBM Corporation, WebSphere Studio Application Developer,
http://www-3.ibm.com/software/ad/studioappdev/.

48. IBM Corporation, VisualAge C��, http://www-3.ibm.com/
software/ad/vacpp/.

49. Microsoft Corporation, Visual C�� .NET, http://msdn.
microsoft.com/visualc/.

50. WebGain, Inc., Visual Café, http://www.webgain.com/
products/visual_cafe/.

51. IBM Corporation, DB2 Universal Database, DB2 Data Prop-
agator, http://www-3.ibm.com/software/data/dpropr/.

52. C. Mohan, “Caching Technologies for Web Applications,”
Proceedings of the 27th International Conference on Very Large
Data Bases, September 11–14, 2001, Roma, Italy, Morgan
Kaufmann Publishers, San Mateo, CA (2001).

53. Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo,
B. Lindsay, and J. Naughton, “Middle-Tier Database Cach-
ing for e-Business,” Proceedings of the ACM SIGMOD Con-
ference on Management of Data, Madison, WI, June 2002,
ACM, New York (2002).

Accepted for publication July 22, 2002.

Laura M. Haas IBM Software Group, Silicon Valley Laboratory,
555 Bailey Avenue, San Jose, California 95141 (electronic mail:
lmhaas@us.ibm.com). Dr. Haas is a Distinguished Engineer and
senior manager in the IBM Software Group, where she is respon-
sible for the DB2 Query Compiler development, including key
technologies for DiscoveryLinkTM and Xperanto. Dr. Haas, who
joined the IBM Almaden Research Center in 1981, has made sig-
nificant contributions to database research and has led several
research projects, including R*, Starburst, and Garlic. She has
received an IBM Outstanding Technical Achievement Award for
her work on R* and DiscoveryLink, an IBM Outstanding Con-
tribution Award for Starburst, a YWCA Tribute to Women in
Industry (TWIN) Award, and an ACM SIGMOD Outstanding
Contribution Award.

Eileen T. Lin IBM Software Group, Silicon Valley Laboratory, 555
Bailey Avenue, San Jose, California 95141 (electronic mail:
etlin@us.ibm.com). Dr. Lin is a Senior Technical Staff Member
and lead architect for DB2 database federation. She joined IBM
in 1990 after receiving her Ph.D. degree from the Georgia In-
stitute of Technology in Atlanta. She was the lead architect for
DataJoiner query processing and led the team that merged Data-
Joiner and Garlic technology into DB2 for UNIX� and Win-
dows�. She is currently a lead architect responsible for the de-
livery of database federation technology in DB2 and Xperanto.

Mary A. Roth IBM Software Group, Silicon Valley Laboratory,
555 Bailey Avenue, San Jose, California 95141 (electronic mail:
torkroth@us.ibm.com). Ms. Roth is a senior engineer and man-
ager in the Database Technology Institute for e-Business at IBM’s
Silicon Valley Lab. She has over 12 years of experience in da-
tabase research and development. As a researcher and member
of the Garlic project at IBM’s Almaden Research Center, she
contributed key advances in heterogeneous data integration tech-
niques and federated query optimization and led efforts to trans-
fer Garlic support to DB2. Ms. Roth is leading a team of devel-
opers to deliver a key set of components for Xperanto, IBM’s
information integration initiative for distributed data access and
integration.

HAAS, LIN, AND ROTH IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002596

