
K2/Kleisli and GUS:
Experiments in
integrated access
to genomic data
sources

by S. B. Davidson
J. Crabtree
B. P. Brunk
J. Schug

V. Tannen
G. C. Overton
C. J. Stoeckert, Jr.

The integrated access to heterogeneous data
sources is a major challenge for the biomedical
community. Several solution strategies have
been explored: link-driven federation of
databases, view integration, and warehousing. In
this paper we report on our experiences with two
systems that were developed at the University
of Pennsylvania: K2, a view integration
implementation, and GUS, a data warehouse.
Although the view integration and the warehouse
approaches each have advantages, there is no
clear “winner.” Therefore, in selecting the best
strategy for a particular application, users
must consider the data characteristics, the
performance guarantees required, and the
programming resources available. Our
experiences also point to some practical tips on
how database updates should be published, and
how XML can be used to facilitate the processing
of updates in a warehousing environment.

With the recent completion of a rough draft of
the human genome, with the finished se-

quence for Drosophila, C. elegans, and yeast (among
others), and with numerous other sequencing
projects in progress, vast amounts of genomic data
have become available for further refinement and
analysis. Moving past DNA (deoxyribonucleic acid)
sequences, researchers are interested in the corre-
sponding protein sequences, their structure, and func-
tion. Beyond sequences, researchers wish to under-
stand the “space” and “time” dimensions of genes,
as for example, what genes are expressed in which
tissues and during what stages of development. While
these and other questions can only be answered ex-
actly by direct experimentation, very often insights
can be gained by accessing the tremendous amount
of genomic information that is available on line.

Suppose a researcher seeks to discover genes in-
volved in a multigenic neurological disorder such as
bipolar schizophrenia. High-throughput analysis of
gene expression patterns yields expression profiles
of several thousands of potentially involved genes.
Analysis of the profiles reveals hundreds of genes
that represent candidate genes for the disorder. Ex-
perimentally analyzing all these candidates is pro-
hibitively expensive. The researcher must therefore
prioritize the candidates and start the search with
the most promising ones. Thus, the researcher would
access databases such as GenBank,1 SWISS-PROT,2

and OMIM3 in order to determine, by genetic map-
ping, which of these genes are located in human chro-
mosomal regions associated with schizophrenia, or
which of these genes are located in human chromo-
somal regions syntenic to those in model organisms
(e.g., mouse or rat) where related nonhuman neu-
rological diseases have been mapped. Note that be-
cause GenBank, EMBL,4 and DDBJ5 form a consor-
tium and exchange data regularly, EMBL or DDBJ
could have been used instead of GenBank in the
query above.

Unfortunately, although most genomic information
that researchers wish to access is available on line,
it does not all reside in one database and in one lo-
cation. Rather, it is spread over multiple data sources
using a variety of data models and data formats, pre-
senting a variety of languages and interfaces for data

rCopyright 2001 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

DAVIDSON ET AL. 0018-8670/01/$5.00 © 2001 IBM IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001512

retrieval. Many of the data sources are not imple-
mented using conventional database management
systems (such as relational databases), but use for-
matted files with specialized GUIs (graphical user in-
terfaces) and retrieval packages (e.g., SRS6 and
ACeDB7). These formats have been adopted in pref-
erence to database management systems (DBMSs) for
several reasons. The data are complex and not easy
to represent using the relational data model. Typ-
ical structures include sequential data (lists) and
deeply nested structures (trees). This complexity
would argue for the use of object-oriented database
systems, but these have not met with success because
of the constant need for database restructuring.8 As
new experimental techniques are discovered, for ex-
ample, new data structures are needed to record de-
tails particular to those techniques. Furthermore, for-
matted files are easily accessed from languages such
as Perl and C, and a number of useful software pack-
ages exist, for a variety of platforms, that work with
these files.

As an example of the genomic data that are avail-
able on line, consider the SWISS-PROT entry shown
in Figure 1. Each line begins with a two-character
code, which indicates the type of data contained in
the line. Each database entry is identified by an ac-
cession number AC and is timestamped by up to three
dates, DT: the create date is mandatory, whereas the
last sequence update and last annotation update ap-
pear only if the sequence or annotation has been
modified since the database entry was created. The
sequence SQ (list of amino acids) appears at the end
of the entry. Citation information (bibliographical
references) are lines beginning with R. Taxonomic
data OC contain a description of the biological source
of the protein. Database references DR contain ex-
plicit links to entries in other databases: EMBL (an-
notated nucleotide sequence database); HSSP (ho-
mology derived secondary structure of proteins);
WORMPEP (predicted proteins from the Caenorhab-
ditis elegans genome sequencing project); INTERPRO,
PFAM, PRINTS, PROSITE (databases of protein fam-
ilies and domains) among others. Annotation infor-
mation—which is obtained from publications report-
ing new sequence data, review articles, and external
experts—is mainly found in the feature table FT, key-
word lines KW, and comment lines CC (not shown).
Note that the bibliographical references are nested
structures; there are two references, and the RP, RC,
RA, and RLfields are repeated for each reference. Sim-
ilarly, the feature table can be thought of as a nested
structure in which each line contains a start and end
position (e.g., 14 to 21) and a type of feature (e.g.,

NP_BIND). The entry is designed to be easily read by
a human and structured enough to be machine
parsed. However, several lines still contain a certain
amount of structure that could be separated out dur-
ing parsing. For example, the author list is a string,
which could be parsed into a list of strings so as to
be able to index into the individual authors. Simi-
larly, the taxonomic data are strings spread over sev-
eral lines that could again be parsed into a list.

The heterogeneity of the data sources, together with
their frequently unconventional implementation,
makes accessing genomic data across multiple data
sources extremely difficult. Researchers—like the
one studying bipolar schizophrenia—are faced with
the problem of integrated access to heterogeneous
data sources. What software should they use to gain
access to the data? How accessible is this software
relative to their (often limited) computer expertise?
Should they access the data where the data are, or
should they import the data into their own special-
ized database? What are the trade-offs between these
approaches? In the next section we describe three
approaches to integrating access to heterogeneous
data sources.

Three approaches

Over the past ten years, a variety of techniques have
been developed within the genomic community to
provide integrated access to multiple, heterogeneous
data sources. Several link-driven federations have
been created, in which users start by extracting en-
tries of interest in one data source and then hop to
other related data sources via Web links that have
been explicitly created by the developers of the sys-
tem. SRS,6 LinkDB,9 and GeneCards10 are examples
of this approach. Systems implementing a view in-
tegration approach have also emerged within the
community, such as K2/Kleisli11,12 and OPM.13 In this
approach, the schemas of a collection of underlying
data sources are merged to form a global schema in
some common model (such as the relational, complex
value, or object-oriented model). Users query this
global schema using a high-level query language, such
as SQL,14 OQL,15 or CPL.16 The system then deter-
mines what portion of the global query can be an-
swered by which data source, ships local queries off
to the appropriate data source, and combines the
answers from the various data sources to produce
an answer to the global query. These view integra-
tion systems can also be used to create an instan-
tiation of the global schema, commonly referred to
as a warehouse. Once this instantiation has been set

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001 DAVIDSON ET AL. 513

up, the global query can be answered using infor-
mation in the warehouse rather than shipping off lo-
cal queries to various data sources. We refer to this
approach for integrated access to heterogeneous data
sources as warehousing.

Figure 2 illustrates the connection between the view
integration and the warehousing strategies. At the
bottom of the figure multiple, heterogeneous data
sources are shown. Above the data sources a soft-
ware layer is shown that provides access to the un-
derlying data sources. The dotted lines show that the

software layer can then be used either for view in-
tegration access or as the tool for creating a data
warehouse. In either the view integration or the ware-
house strategy, a global query of the underlying data
sources can be embedded in a variety of application
programs and GUIs, shown at the top of the figure.

There are obviously trade-offs17 between the link-
driven federation, view integration, and warehouse
approaches. The link-driven federation approach is
very useful for the nonexpert user, since it relies al-
most entirely on a point-and-click interface. Most

Figure 1 Sample SWISS-PROT entry

ID EF1A_CAEEL STANDARD; PRT; 463 AA.
AC P53013;
DT 01-OCT-1996 (Rel. 34, Created)
DT 01-OCT-1996 (Rel. 34, Last sequence update)
DT 15-DEC-1998 (Rel. 37, Last annotation update)
DE ELONGATION FACTOR 1-ALPHA (EF-1-ALPHA).
GN (EFT-3 OR F31E3.5) AND R03G5.1.
OS Caenorhabditis elegans.
OC Eukaryota; Metazoa; Nematoda; Chromadorea; Rhabditida; Rhabditoidea;
OC Rhabditidae; Peloderinae; Caenorhabditis.
RN [1]
RP SEQUENCE FROM N.A. (EFT-3).
RC STRAIN=BRISTOL N2;
RA Favello A.;
RL Submitted (NOV-1995) to the EMBL/GenBank/DDBJ databases.
RN [2]
RP SEQUENCE FROM N.A. (R03G5.1).
RC STRAIN=BRISTOL N2;
RA Waterston R.;
RL Submitted (MAR-1996) to the EMBL/GenBank/DDBJ databases.
DR EMBL; U51994; AAA96068.1; -.
DR EMBL; U40935; AAA81688.1; -.
DR HSSP; P07157; 1AIP.
DR WORMPEP; F31E3.5; CE01270.
DR WORMPEP; R03G5.1; CE01270.
DR INTERPRO; IPR000795; -.
DR PFAM; PF00009; GTP_EFTU; 1.
DR PRINTS; PR00315; ELONGATNFCT.
DR PROSITE; PS00301; EFACTOR_GTP; 1.
KW Elongation factor; Protein biosynthesis; GTP-binding;
KW Multigene family.
FT NP_BIND 14 21 GTP (BY SIMILARITY).
FT NP_BIND 91 95 GTP (BY SIMILARITY).
FT NP_BIND 153 156 GTP (BY SIMILARITY).
SQ SEQUENCE 463 AA; 50668 MW; 12544AF1F17E15B7 CRC64;

MGKEKVHINI VVIGHVDSGK STTTGHLIYK CGGIDKRTIE KFEKEAQEMG KGSFKYAWVL
DKLKAERERG ITIDIALWKF ETAKYYITII DAPGHRDFIK NMITGTSQAD CAVLVVACGT
GEFEAGISKN GQTREHALLA QTLGVKQLIV ACNKMDSTEP PFSEARFTEI TNEVSGFIKK
IGYNPKAVPF VPISGFNGDN MLEVSSNMPW FKGWAVERKE GNASGKTLLE ALDSIIPPQR
PTDRPLRLPL QDVYKIGGIG TVPVGRVETG IIKPGMVVTF APQNVTTEVK SVEMHHESLP
EAVPGDNVGF NVKNVSVKDI RRGSVCSDSK QDPAKEARTF HAQVIIMNHP GQISNGYTPV
LDCHTAHIAC KFNELKEKVD RRTGKKVEDF PKFLKSGDAG IVELIPTKPL CVESFTDYAP
LGRFAVRDMR QTVAVGVIKS VEKSDGSSGK VTKSAQKAAP KKK

DAVIDSON ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001514

of the federation approaches also offer a limited re-
trieval language that can be quickly learned by non-
technical users. SRS, for example, allows users to
specify logical combinations of regular expressions
to index into fields of interest. There is also tremen-
dous value in the linked connections. The approach
is therefore very helpful for laboratories with little
in-house computer expertise. However, the approach
does not scale well. When a new data source is added
to the federation, connections between its entries and
entries of all existing federation data sources must
be added, a task of complexity commonly referred
to as the “N 2” problem. Furthermore, it is often the
case that if a user is interested in a join between two
data sources in the federation, he or she must man-
ually perform the join by clicking on each entry in
the first data source and following all connections
to the second data source. (SRS avoids this by pro-
viding a linking operator that retrieves linked entries
to a set of entries.) In contrast, a join can be expressed
in a single high-level query in the view integration
or warehouse strategies. In general the query lan-
guages supporting view integration or warehouse ap-
proaches are much more powerful languages and al-
low arbitrary restructuring of the retrieved data.

In the view integration or warehouse strategy, the
user sees a global schema of the underlying data. To
be useful, the schema should give the user the abil-
ity to connect various pieces of information. This can
be done either by explicitly providing linking tables
(as in the link-driven federation approach, but us-
ing some form of identifiers rather than hyperlinks),
or by providing software to compute matches be-
tween data (such as homology or similarity above
some threshold for sequence entries). The schema
itself can be thought of as a set of integration que-
ries over the union of the schemas of the underlying
data sources, perhaps with additional linking tables
provided by the integrator.

The remainder of this paper is organized as follows.
We start by describing the K2/Kleisli view integra-
tion system for bioinformatics applications developed
at the Penn Center for Bioinformatics (PCBI), used
at SmithKline Beecham, and used to build the
TAMBIS18 system at the University of Manchester.
We then discuss various practical issues associated
with the warehousing approach before describing a
particular warehouse, GUS (the Genomics Unified
Schema). GUS forms the basis for several organism

Figure 2 View and warehouse integration

STRUCTURED TEXT
XML AND
HYPERTEXT
WEB FORMS

SCIENTIFIC
DATA
FORMATS

SPREADSHEETS
OLE
ODBC

CORBA
JAVA RMI
SERVERS

OBJECT-
ORIENTED
DBMSs
AND VIEWS

RELATIONAL
DBMSs
(ODBC)

LEGACY
SYSTEMS
INDEXED
FILES

DATA WAREHOUSE

DATA MINING OLAP DECISION SUPPORT QUERIES: OQL, SQL, CPL, VISUALGUIs

VIEWS (UNMATERIALIZED)

DATA TRANSFORMATION AND INTEGRATION

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001 DAVIDSON ET AL. 515

and tissue specific research projects at the Univer-
sity of Pennsylvania and collaborating institutions;
in particular, view applications have been developed
in support of a Plasmodium falciparum database, a
mouse and human gene index, and a database of

genes expressed in the developing endocrine pan-
creas. The section on performance provides results
of some performance studies involving K2/Kleisli and
GUS. The section on conclusions contains final com-
ments.

K2/Kleisli

K2 is the latest incarnation of a distributed query sys-
tem that we have been developing over the past seven
years at the University of Pennsylvania. K2 is based
on many of the same principles that guided the de-
sign of Kleisli, 12,19,20 its conceptual predecessor. Like
Kleisli, the K2 system uses a complex value model
of data. This model is one in which the “collection”
types, i.e., sets, lists, and multisets (bags), may be ar-
bitrarily nested along with record and variant (tagged
union) types. Kleisli uses as its language the Collec-
tion Programming Language21 (CPL), which was de-
veloped specifically for querying and transforming
complex value data. Although equivalent in expres-
sive power to SQL when restricted to querying and
producing relational data, CPL uses a “comprehen-
sion”-style syntax,16 which is quite different in style
from SQL. This departure from the de facto query
language standard has apparently made CPL less ac-
cessible to database professionals. Consequently the
decision was made in K2 to support the more recent
industry-standard query language OQL.22 OQL uses
the “select-from-where”-style syntax of SQL, but its
semantics is that of comprehensions, just like CPL.
K2 supports full OQL extended with variant (disjoint
union) types.

The complex value data model of K2 also incorpo-
rates a new data type, that of “dictionaries.” A dic-
tionary is a function with an explicit finite definition
domain. This allows the representation22 of object-
oriented classes as dictionaries whose domains model

the class extents, i.e., sets of object identities. Dic-
tionaries also allow a direct representation of Web-
based data sources that allow the retrieval of infor-
mation through HTML forms. K2 also differs from
Kleisli in its implementation language; whereas
Kleisli was written using Standard ML,23 K2 is imple-
mented primarily in Java** and makes use of sev-
eral of the standard protocols and application pro-
gramming interfaces (APIs) that are part of the Java
platform,24 including RMI25 and JDBC**.26

The architecture of K2 is similar to that of a number
of other view integration systems. K2 relies on a set
of data drivers, each of which handles the low-level
details of communicating with a single class of un-
derlying data sources (e.g., Sybase** relational da-
tabases, Perl/shell scripts, the BLAST27 2.x family of
similarity search programs, etc.). A data driver ac-
cepts queries expressed in the query language of its
underlying data source. It transmits each such query
to the source for evaluation and then converts the
query result into K2’s internal complex value repre-
sentation. For data sources that support it, this is
done on a tuple-by-tuple or object-by-object basis
analogous to the demand-driven tuple processing
paradigm of relational databases. Data drivers are
also responsible for providing K2 with data source
meta-data (i.e., types and schemas), which are used
to type check queries.

Once a user’s OQL query has been type checked, K2
must decompose it into subqueries that can be an-
swered by the underlying data sources. Furthermore,
it must rewrite the OQL query fragments, where nec-
essary, into queries that the data sources can under-
stand (since most will not support OQL directly). Both
of these tasks are handled by the system’s query op-
timization module, which is an extensible rule-based
optimizer. The K2 optimizer performs query “defor-
estation,” i.e., the elimination of intermediate col-
lection results. Further, it performs rewrites to group
operations by data source. Cost-based optimization,
which we are also investigating, is an alternative com-
monly used in commercial relational database sys-
tems. However, the distributed environment in which
the system must run does not lend itself well to ac-
curate cost estimation. Note that any part of the
query that the K2 optimizer is unable to ship to the
underlying data sources will be executed by the K2
run-time system itself.

To illustrate how K2 is used, consider the following
scenario in which GUS is queried in combination with

K2 relies on a set
of data drivers,

each of which handles
a single type of data source.

DAVIDSON ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001516

the National Center for Biotechnology Information’s
(NCBI’s) PubMed28 database. GUS, which will be dis-
cussed in detail in a later section, contains expressed
sequence tag (EST) assemblies that represent genes.

By using the mapping and expression data integrated
by GUS, a scientist has identified a set of EST assem-
blies that represent candidate genes for an inherited
disorder. Some of these assemblies correspond to
known genes and some do not. In order to gain fur-
ther insight into the function of the “unknown”
genes, the investigator wants to find publications that
reference the known genes and that mention a spe-
cific protein or substance known to be affected by
the disorder. Annotated bibliographic data of this
kind are not part of GUS, but can be found in NCBI’s
PubMed28 database. Figure 3 shows a simplified ver-
sion of the K2 type that describes an entry in PubMed
as provided by the NCBI Network Entrez service.

Network Entrez provides a C language API to
PubMed and several other databases, including Gen-
Bank, and uses ASN.129 to represent data and types.
ASN.1 is a complex value data model much like that
used by K2, and so the translation between the two
is straightforward. A data driver for Network En-
trez has been developed using its ASN.1/C API. The
data driver appears in K2’s OQL interface as a user-
defined function that can be passed commands writ-
ten using an ad hoc syntax. For example, the follow-
ing OQL statement retrieves all the substances (e.g.,

proteins, enzymes, etc.) associated with a single
PubMed reference:

K2. entrez(''-g 20296074 -d m -r
Entrez-back.getmle.data.E.substance.E.name'');

The result of executing the query would be echoed
back as:

list(''Heparin'',
''Complement 3d'',
''N-acetylheparin'',
''Glycoproteins'',
''Complement 9'',
''clusterin'')

K2: optimized query in 0.0020 seconds.
K2: total elapsed time for request was 1.162
seconds.

In the preceding query, entrez is the OQL function
that represents the Entrez data driver; “-g 20296074”
specifies the Entrez ID of the PubMed reference;
“-d m” specifies the PubMed/MEDLINE section of En-
trez; and the “-r” flag gives an optional path expres-
sion that specifies which part(s) of the ASN.1 entry
should be returned to K2. This syntax is difficult to
remember, so we can use OQL’s define directive to
create a function that represents a very simple view
on PubMed. In the following, “u u” is OQL’s string con-
catenation operator:

Figure 3 A sample K2 type that represents a simplified PubMed entry

simplified-pubmed-entry ::=
(abstract: <0: null, 1:string>,
uid: <0: null, 1:long>,
pmid: <0: null, 1:long>
cit: (title:<0:unit, 1:{ <name:string, iso-jta:string, isbn:string, ...> } >,

from: <journal: ..., book: ..., proc: ...>,
authors: (names: <std: [...], ml: [string], str: [string]>,

affil: ...)
mesh: <0: null,

1:{ (mp: bool, term: string,
qual: <0: null, 1:{ (mp: bool, subh: string) }>) }>,

substance: <0: null,
1:{ (type: <nameonly: null, cas: null, ec: null>,

cit: <0: null, 1:string>,
name: string) }>, ...)

() ::= record, [] ::= list, {} ::= set, <> ::= variant (tagged union),
<0: null, 1: string> ::= a variant that represents an optional string value

"..." ::= a portion of the type that has been omitted for brevity

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001 DAVIDSON ET AL. 517

define get-medline-substances(pmid) as
entrez(

''-g '' u u
pmid u u '' -d m -r
Entrez-back.getmle.data.E.substance.E.name''
);

Combining these functions with the data on genes
in the GUS data warehouse, we can list the references
and substances associated with an EST assembly (pre-
dicted gene) with the following OQL view functions.
The first, GUS-transcript-seqs, takes as input a
GUS EST assembly ID and returns the accession num-
bers of the individual sequences (both ESTs and
mRNAs) that make up the assembly:

define GUS-transcript-seqs(rnaId) as
select enaseq.source_id
from GUS_RNASequence rs,

GUS_NAFeature naf,
GUS_AssemblySequence aseq,
GUS_ExternalNASequence enaseq

where rs.rna_id 5 variant(1: rnaId)
and rs.na_feature_id 5 naf.na_feature_id
and naf.na_sequence_id 5

aseq.assembly_na_sequence_id
and aseq.na_sequence_id 5

enaseq.na_sequence_id;

The second function, GUS-transcript-pubmed-refs,
joins the relevant tables in GUS with PubMed, using
the two functions that we have just defined. It calls
get-medline-substances on each sequence in the
EST assembly and returns a collection of records (the
OQL “struct” clause), each of which contains a
PubMed ID (pmid) and a list of substances. The func-
tion uses an additional mapping function,accn-to-ids,
which takes as input the accession number of a se-
quence and returns the PubMed IDs of all the publi-
cations that reference that sequence. This function is
implemented by a Perl script. Finally, note the use of
OQL’s “flatten” command to transform a nested col-
lection (e.g., a set of sets) into a nonnested collection:

define GUS-transcript-pubmed-refs(rnaId) as
select struct(pmid: pmid,
substances: get-medline-substances(pmid))

from flatten
(select accn-to-ids(''m '' u u accn)
from GUS-transcript-seqs(rnaId)
accn) pmid;

We can now call GUS-transcript-pubmed-refs on an
assembly ID to get associated PubMed IDs and sub-
stances:

K2. GUS-transcript-pubmed-refs(101005);

bag((pmid: 9530155,
substances: list(''Neurotensin'',

''Azacitidine'',
''neuromedin N'',
''Peptide Fragments'')))

The preceding example can trivially be modified to
retrieve MEDLINE abstracts, or to list only those EST
assemblies linked to publications that also mention
“neurotensin” (for example). More generally, we can
incorporate data from any of the other sources for
which we have data drivers. These include: metabolic
and/or signaling pathway information from KEGG30

and EcoCyc;31 DNA sequence-related data from Gen-
Bank, GSDB,32 and dbEST;33 organism-specific data
from MGD34 and GDB;35 sequence similarity searches
using BLAST;27 and data from any of the databases in-
dexed by SRS.6 As in our example, the data sources may
include scripts and application programs (e.g., BLAST),
as long as an appropriate data driver is available.

Thus far we have not mentioned the object-oriented
capabilities of K2. An interesting aspect of the sys-
tem is that integrated views may be defined not only
by OQL functions (as in our simple example), but also
by user-defined object-oriented classes. A new lan-
guage, K2MDL, lets users describe new classes by spec-
ifying how their extents and attributes are computed
from the underlying data sources. View classes so
defined can then be queried using OQL, and K2 will
compose the OQL queries with the K2MDL views, pro-
ducing multisource queries in its internal language;
the resulting queries are then normalized and de-
composed by the optimizer. In using K2 to define
views, the user has a range of options. At the high-
est level of abstraction, the user may define virtual
classes that span several underlying databases. At
the lowest, it is possible to use K2 to access the un-
derlying data sources directly (as in our call to the
“entrez” driver). Either way, a user or K2 system ad-
ministrator is free to provide integrated views only
for selected parts of the underlying data sources, such
as those that are best understood or most frequently
used. Those parts of the underlying data sources that
have yet to be integrated in some view may still be
queried and joined directly.

K2MDL combines ODL15 (Object Definition Lan-
guage) and OQL syntax. It defines the schema of a
class in the view using ODL, and defines how the ex-
tent of the class and how the attributes of an object

DAVIDSON ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001518

are computed using OQL. The approach is related
to O2Views.36

K2 is implemented as a multithreaded server that can
handle multiple client connections. Clients commu-
nicate with the server using either RMI-IIOP (Remote
Method Invocation, Internet Inter-Orb Protocol) or
an ad hoc socket protocol. We have implemented a
client that provides interactive command line access
to the system (as shown in our examples), in addi-
tion to a set of client libraries that simplify accessing
K2 from any Web application that uses Java servlets.25

Additional information on the system and further
examples of parameterized queries can be obtained
from the K2 Web site.37

Issues in warehousing

The view integration and warehouse strategies share
the need for a common data model—relational, ob-
ject-oriented, complex object, etc.—in which to rep-
resent the underlying data sources. They also share
the need for an appropriate query language—SQL,
OQL,15 CPL16—in which to express the integrating
queries. The difference between the approaches is
whether there exists a physical copy of the integrated,
global view. If so, then we have a warehouse. Oth-
erwise, the view is not materialized and we are deal-
ing with view integration. In the view integration
approach, for each set of search parameters, the
integration queries are specialized to these param-
eters and when executed result in the much smaller
relevant part of the integrated view as needed to sat-
isfy the query. This points to some advantages of the
view integration approach: it has low initial cost, low
maintenance cost, and the query result is always up-
to-date.

The main advantage of the warehouse approach is
that system performance tends to be much better
(this is illustrated in the section on performance).
Indeed, query optimization can be performed locally
and communication latency to access various data
sources is eliminated. System reliability is also bet-
ter since there are fewer dependencies on network
connectivity or the availability of the underlying data
sources. (Data sources may go down, or become
overloaded and temporarily unable to answer que-
ries.) It is also easier to enforce any interdatabase
constraints.38,39 Another advantage of warehousing
is that while the underlying data sources may con-
tain errors, often the only feasible way for the in-
tegrated view to have correct data is to keep a sep-

arate cleansed copy. Furthermore, the researcher
may have additional information—or annota-
tions—to add to the integrated view, which is either
entered manually or with the help of a software pack-
age guided by a human. The “added-value” of cor-
rected and annotated data stored in the data ware-
house is significant.

However, a warehouse requires maintenance as the
underlying data sources change, and this raises a
number of practical problems:

1. How can we detect that the underlying data
sources have changed?

2. How can we automate the refresh process?
3. How can we track the origins or “provenance” of

data?

Detecting change in a data source. Part of the prob-
lem of change detection is deciding whether a push
or a pull technology should be used. In a push tech-
nology, users register queries with the underlying
data source and request explicit notification when
a change occurs that matches the query; this is also
known in the database literature as “continuous” (or
“continual”) queries.40–43 In a pull technology, the
user periodically polls the underlying data source to
see if a change of interest has occurred. Note that
a push technology requires the underlying data
source to be capable of processing some form of trig-
gers, and to be willing and able to send such noti-
fication.

Genomic data sources are just beginning to offer
push capabilities. For example, SWISS-PROT offers a
service called “Swiss-Shop” that allows keyword-
based and sequence/pattern-based requests.4 When
new sequence entries are entered that are relevant
to the request, they are mailed electronically to the
requesting user. This occurs at weekly intervals as
the new update files are generated. Most of the other
major genomic data sources, however, do not yet of-
fer push services.44 Warehouse developers within the
genomics community will therefore probably have
to rely on pull technologies in many cases.

Another aspect of change detection is finding out
exactly how the underlying data source has changed.
In the context of genomic databases, this is compli-
cated by the fact that updates are typically propa-
gated in one of three ways:

1. Producing periodic new versions that can be
downloaded by the user community

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001 DAVIDSON ET AL. 519

2. Timestamping data entries so that users can in-
fer what changes have occurred since they last ac-
cessed the data

3. Keeping a list of additions and corrections; each
element of the list is a complete entry. The list
of additions can be downloaded by the user com-
munity.

None of these methods precisely describes the min-
imal changes that have been made to the data.

As an example, suppose that a warehouse stores a
portion of SWISS-PROT in a normalized45 relational
database, which requires that all fields in a table be
single-valued facts about the key of the table. In the
resulting relational schema, an entry is split over
about 15 tables. As pointed out in the introduction,
the bibliographic reference field (RN) in an entry is
not a single-valued fact about the key of an entry
(AC) since there may be many references per entry.
References must therefore be split off as a separate
table. Furthermore, since a reference could be re-
lated to several different entries, it is not enough to
include AC as a foreign key in the publication table
referencing some tuple in the entry table; a sepa-
rate table denoting a many-to-many relationship be-
tween publications and entries must be created, and
the order in which the reference appears in the en-
try must be maintained in an attribute. The same rea-
soning can be applied to authors of a reference, key-
words, features, and so on.

Now suppose that an update to a SWISS-PROT entry
occurs. The warehouse maintainer can detect that
an update has occurred since SWISS-PROT publishes
a list of entries that have been modified since the
last release. However, they do not say exactly how

the entry has changed. The actual change may be
very small; for example, adding an extra author to
a reference consumes only a few characters of the
new entry. If the entry is relevant to the warehouse
(i.e., it is selected by the integration query), the ad-
dition of an author will only affect a few tables in the
warehouse rather than all 15 tables that represent
SWISS-PROT.

Given an old and new entry, it is possible to use var-
ious DIFF algorithms to calculate minimal changes.
For example, the “acediff” utility will do this for ACe
databases. IBM’s XMLTreeDiff46 is a similar utility
for data exported in XML (Extensible Markup Lan-
guage). For data sources that export data in XML (and
we believe that this will soon happen for many of
the major data sources), algorithms for ordered
trees47–51 can be used. However, it is not clear that
the order of fields is important in the XML repre-
sentation of a SWISS-PROT or GenBank entry, nor is
it easy to represent updates using positional infor-
mation. In Reference 52 we therefore advocate the
use of a model in which value-based keys are used
at every level of nesting, and in this case the DIFF
algorithm becomes a simple, efficient top-down al-
gorithm.

Automating the refresh process. To automate the
refresh process, the portions of the warehouse de-
fined by integrating queries must be updated (com-
monly called view maintenance) and any derived data
or annotations based on the integrating query data
recomputed.

The problem of view maintenance has received much
attention from the database community, and is il-
lustrated in Figure 4. In this figure, f represents an
integration query that takes as input underlying data
source instances I1 , I2 , . . . In producing the ware-
house f(I1 , I2 , . . . In). The underlying data source
instances are then updated, producing new under-
lying data source instances I1 ø D1 , I2 ø D2 , . . . In

ø Dn . Note that D i may be a combination of inser-
tions and deletions and that ø is used to denote the
incorporation of the insertions and deletions into the
data source instance I i . Furthermore, it is common
to represent the modification of a value by the de-
letion of the old value followed by the insertion of
a new value. Thus the expression I i ø D i represents
all insertions, deletions as well as modifications that
have been made to the i’th data source.

To produce the updated warehouse f(I1 ø D1 , I2

ø D2 , . . . In ø Dn), it is always possible to re-ex-

Figure 4 View maintenance problem

f(I1, I2, ..., In) f(I1 ∪∆ 1, I2 ∪∆ 2, ..., In ∪∆ n)
g

I1, I2, ..., In I1 ∪∆ 1, I2 ∪∆ 2, ..., In ∪∆ n

updates

ff

DAVIDSON ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001520

ecute the integration query. However, this is very ex-
pensive so the problem is to find a query g that takes
as input the updates D1 , D2 , . . . , Dn , and possibly
the original instances I1 , I2 , . . . In or the existing
warehouse f(I1 , I2 , . . . In), and updates the ware-
house to produce the new state. When g can be writ-
ten without requiring the original instances and only
takes as input D1 , D2 , . . . , Dn , f(I1 , I2 , . . . In), the
view is said to be self-maintainable.

For example, suppose that we have input (relation-
al) data sources R(A, B) 5 {(a1, b1), (a2, b2)}
and S(B, C) 5 {(b1, c1), (b3, c3)}, and a view
V defined as f(R, S) 5 R S 5 {(a1, b1, c1)}.
Updates D1 5 {(a3, b3)} and D2 5 {(b2, c2)} occur
to the base relations. Then V can be updated by cal-
culating V ø (D1 S) ø (R D2) ø (D1 D2),
which (assuming that V is large and D1, D2 are small)
is more efficient than recalculating the entire view.
The view is not self-maintainable, however, since we
need to access both R and S to calculate the changes
to V. On the other hand, the following view V9 is
self-maintainable: f9(R) 5 sA5a1(R) 5 {(a1, b1)}.
When an update occurs (such as D91 5 {(a1, b3),
(a3, b3)}), the updated view can be calculated by
simply inserting the filtered update ({a1, b3)}) to
the view. More complex view definitions can also be
made self-maintainable by reasoning about func-
tional dependencies and foreign key constraints, and
storing auxiliary information at the warehouse (see
References 53–55 for details).

View maintenance has been extensively studied in
the context of relational databases56–65 (see Refer-
ence 66 for a survey), and less extensively studied in
the context of object-oriented67,68 databases, nest-
ed69 relational databases, models allowing multi-
sets,70 and semistructured71–73,52 databases. However,
the problem of recomputing corrections and anno-
tations has not been studied.

Data provenance. Data provenance74–77 addresses
the problem of tracking the origins of a data item.
The data may be the result of a global query, where
components of data originate from different under-
lying data sources. Alternatively, the data may be de-
rived from the warehouse data using various data
mining algorithms. For example, suppose that one
form of annotation in our warehouse is to assign
function to sequences based on similarity (e.g., us-
ing BLAST searches). This annotation could then be
transitively inherited by other sequences. If the orig-
inal annotation is determined to be incorrect through
experimentation, all subsequent annotations would

also have to be undone. It is therefore important to
track the origins of the annotation by keeping de-
tailed information about the origin of the annota-
tion. This is discussed in the next section.

Note that data provenance is related to the problem
of recomputing annotations. In our example, if some
sequence annotation is changed, then any subsequent
annotations based on it will need to be redone.
Knowing the provenance of data could help deter-
mine which annotations need to be recomputed.

Data warehousing in GUS

To take advantage of the benefits of data cleansing
and annotation that are available with data ware-
housing, we have developed a schema called the
Genomics Unified Schema (GUS) to integrate and
add value to data obtained from several major se-
quence databases. The databases that are included
in GUS thus far are GenBank/EMBL/DDBJ, dbEST, and
SWISS-PROT, and contain annotated nucleotide (DNA,
RNA [ribonucleic acid]) and amino acid (protein) se-
quences. GUS uses a relational data model where ta-
bles hold the nucleotide and amino acid sequences
along with associated annotation.

GUS uses the central dogma of biology (DNA3 RNA
3protein) as its organizational principle. Sequence-
centric entries from the external databases are mir-
rored within GUS, and also transformed into gene-
centric entities. Thus, GUS tables hold the conceptual
entities that the sequences and their annotation ul-
timately represent (i.e., genes), the RNA derived from
those genes, and the proteins derived from those
RNAs. The incoming sequence annotation may be ex-
perimentally determined or predicted via a variety
of algorithms, although they are all stored in GUS as
features localized as spans (intervals) or points on
the underlying sequence(s) (see the FT “fields” in Fig-
ure 1). During the transformation into a gene-cen-
tric database, data cleansing occurs to identify er-
roneous annotation and misidentified sequences.
Ontologies are used to structure the annotations, in
particular those referring to organisms (see the OC
field in Figure 1). Additional computational anno-
tation is then generated based on the newly inte-
grated sequences (e.g., gene/protein function.) We
are also just beginning the process of manual anno-
tation and curation, which will become increasingly
important as time goes by.

Data provenance. The ability to track where data
came from is extremely important in GUS. In addi-

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001 DAVIDSON ET AL. 521

tion to the common data warehouse concerns of
tracking the origins of data from external sources,
we are also concerned with tracking the history of
computationally and manually derived data gener-
ated in the course of warehouse construction. Ge-
nome sequencing efforts, such as the Human Ge-
nome Project, have led to the availability of large
amounts of nucleotide sequence for which there is
little or no annotation that is experimentally veri-
fied. Instead, predictions of gene content, gene iden-
tity, and gene function are made based on a variety
of computational approaches; many of these algo-
rithms train on data sets which themselves contain
predictions. Thus one prediction is often dependent
upon earlier predictions, and errors can easily be
spread and compounded. A similar situation exists
for EST (expressed sequence tag) sequencing
projects, which identify genes expressed in various
types of cells and organisms. The genes represented
by the ESTs are identified through computational
analysis of individual or (as in the case of GUS) as-
sembled of ESTs. These predictions may be con-
firmed, altered, or discarded as new information be-
comes available in the form of experimental results,
literature searches, or new sequence data. Thus when
we annotate genomic sequences (for gene content)
and genes (for gene identity and function) we must
record enough information to allow both users and
our professional annotators to evaluate whether the
annotation is justified given the available evidence.

The information that GUS tracks for computation-
ally derived annotation is: (1) the algorithm used;
(2) the algorithm implementation (software version);
(3) the algorithm invocation (run-time information);
and (4) the algorithm parameters (values passed to
the program at run time). A table for each of these
algorithm-associated types of information is present
in GUS. The algorithm tables are not only used for
tracking annotation history, but also for tracking data
integration. That is, the algorithm tables together
with tables describing the external data sources are
used to record the loading of data from external
sources, allowing us to precisely track the source of
each tuple, including which script was used to load
it. In addition to the algorithm tables, an Evidence
table is used to relate specific annotations to the facts
they are based on. Fact tables hold the data gener-
ated when algorithms are run against GUS entries.

One example of a fact table is Similarity, which
stores the results of similarity searches between any
two sets of sequences in the database. These sim-
ilarities could then become the evidence that allows

us to predict the cellular role of a particular protein.
Algorithm information associated with each tuple
in the Similarity fact table includes the database
index used in the search, thereby providing the abil-
ity to identify which version of the sequence data-
base was searched.

It should be noted that the algorithm and evidence
tables are also used to track manual annotation. In
this case, the Evidence table will point to the tuple

in GUS on which the annotator based a decision to
make an assignment (e.g., confidence in a predic-
tion, or a controlled vocabulary term) or to change
a relationship (e.g., merge genes, or split an EST as-
sembly). The algorithm tables capture the annota-
tion software used and (more importantly) who per-
formed the annotation and when.

Finally, any updates to the database as a result of
the annotation process are tracked in version tables
that record not only the altered tuple, but the algo-
rithm that caused that tuple to be altered, the da-
tabase transaction, and time at which it was ver-
sioned. Thus, the history of any annotation—or more
generally, of any tuple—in GUS can be retrieved. This
complete annotation history is useful for reconstruct-
ing past database states, both for archival purposes
and also to aid in identifying and rectifying poten-
tial problems with the automated annotation pro-
cess. It also allows the system to respond more grace-
fully to user requests for entries that are no longer
in the database; instead of simply saying “entry not
found,” the system can tell the user exactly when and
why it was retired from active service.

Not surprisingly, the GUS schema78 is quite large
(over 180 tables, most of which are versioned). As
mentioned in the section on issues in warehousing,
the compact representation of a SWISS-PROT entry
(shown in Figure 1) when translated to a normal-
ized relational model results in each entry being
split over about 15 tables; the same holds true for

In GUS, the complete
history of any

annotation can be
retrieved.

DAVIDSON ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001522

EMBL-format GenBank and dbEST entries. As a re-
sult, just mirroring the external databases in GUS
takes about 50 tables. Various tables related to in-
tegration and annotation make up the remainder.

Since the schema is large and fairly unintuitive, a
Perl-based object layer has been added on top of the
relational implementation. Note that this is similar
to the strategy used in OPM,13 in which users can view
and query the database as if it were an object-ori-
ented database while the actual implementation is
relational.79 For example, using the object layer a
user can view an entry structured as it is in
SWISS-PROT rather than as it is stored in relational
form; thus the features of an entry can be listed with
a simple Perl method invocation, which the object
layer translates into a join over the appropriate ta-
bles. The object layer is also crucial in tracking data
provenance, as it transparently handles a number of
versioning and bookkeeping tasks without the need
for direct user intervention.

Update management. GUS (the schema) has been in-
stantiated to create a comprehensive public resource
of human and mouse genome annotation.80 Since
new sequences that are relevant to this database ap-
pear daily in the external data sources, our goal is
to complete a cycle of annotation with the most cur-
rent information available every two to three months.
Although ideally GUS should be completely up-to-
date with respect to the external data sources, it cur-
rently seems acceptable to provide a resource that
lags by a few months. For example, SWISS-PROT is
a highly curated version of the protein portion of
GenBank, and is not completely up-to-date;81 how-
ever, it is extensively used due to the high quality of
data and annotations.

To update the database, the latest versions of exter-
nal databases are downloaded along with any sub-
sequent updates and new entries (including both new
entries and modifications of existing entries). Entries
from the external databases are then classified as un-
modified, new, or modified based on date and ver-
sion information associated with entries. Unmodi-
fied entries can be ignored, and new entries simply
inserted into GUS. Modified entries, which can be
detected by examining the appropriate entry field
(e.g., DT line in SWISS-PROT with “Last annotation
update” or an increment in the version of a Gen-
Bank accession), are more problematic. Since the
complete entry is given rather than the minimal up-
dates, the actual differences must be identified dur-
ing the entry loading process. Note that since we are

mirroring relevant portions of the source databases
(essentially “selecting” entries of interest), calculat-
ing how GUS should be updated merely entails fil-
tering the updates according to our selection crite-
ria rather than a more complex function (recall the
discussion of automating the refresh process in the
section on issues in warehousing).

To detect exactly what components of a modified en-
try have been changed, the object layer is used to
implement a simple diff algorithm (recall the discus-
sion of change detection in the section on issues in
warehousing). Using the accession number of the en-
try (which is assumed to be a key for the entry), the
object layer retrieves the top level tuple for the en-
try. It then navigates down the nested structure of
the entry by traversing relationships. Note that each
table representing a component of the entry uses an
internal identifier, which is used to index into the
next level of relationship tables. Only when a change
in value is detected is a change actually made to the
database. As noted earlier, version tables are used
to track all changes.

The new and modified entries are then put through
an annotation pipeline, which integrates protein and
DNA sequences and their annotations, and transforms
the sequence-based entries into gene and protein-
based entries. By annotation pipeline we mean a se-
ries of computational analyses where the output of
an analysis is used as input for the next analysis in
the series (see for example Reference 82). Further
annotation on the integrated sequences is then per-
formed, including functional role prediction. Up-
dates to the annotation produced by this pipeline
need to be managed in the same way as the updates
from external databases.

Updates to entries from external databases may of
course impact the old integrated sequences and the
validity of their annotation. Thus, in each annota-
tion cycle the latest entries are used and the anno-
tation (from computational analysis) is freshly gen-
erated, but the old integrated sequences and their
annotation must also be kept. It is important to main-
tain stable identifiers for genes, RNAs, and proteins
so that data analyses can be compared from differ-
ent update cycles of GUS. Therefore, we compare the
integrated sequences generated between update cy-
cles to pass on identifiers whenever possible at the
high level of genes, RNAs, and proteins. Manual an-
notation tied to these identifiers can then be reap-
plied.

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001 DAVIDSON ET AL. 523

To ensure that a consistent version of the database
is always seen by the public, our current working
model is to lock down a “production” version of the
database for public consumption while doing the up-
dates in a “development” database. When the en-
tries in the development database are complete, the
new version is released to the public. This paradigm
will need to change in the near future as we begin
manual annotation of GUS entries, since entry selec-
tion for manual annotation is guided by user inter-
est unlike the computational analyses that are driven
by new or updated entries. As a result, “collisions”
may occur between computational and manual an-
notations because they are on different schedules.
Changes in the schemas of external data sources
sometimes also occur. Relational views are used to
represent the annotation associated with the se-
quence entries providing us with the ability to easily
incorporate certain kinds of schema changes, e.g.,
the addition or renaming of an attribute.

Early days’ experience. After several initial revisions
the GUS schema has stabilized, and current versions
of SWISS-PROT (protein) and dbEST (EST) have been
loaded; loading the newest version of GenBank is
in progress. We are currently working on the inte-
gration protocols to fully integrate the DNA (Gen-
Bank) and protein (SWISS-PROT) entries. These data
(GenBank and EST) have been used to create a gene
index that attempts to assign mRNA sequences
(both literal and those computed via assembly of
ESTs) to single genes along with their genomic se-
quences and gene predictions. The database can be
queried and viewed at http://www.allgenes.org.

A number of significant gains have been realized
from building the GUS warehouse. First, since we
structure the data using ontologies of biological terms
on entry into the database, we can query the data
in much more powerful ways than are possible in the
individual source databases. Second, given this struc-
ture, new sequences representing mRNA molecules
are much more readily (and reliably) identified for
inclusion in our gene index. A third gain is the ease
with which we can predict cellular roles and in par-
ticular track the evidence for those roles given the
presence of proteins (SWISS-PROT and GenBank non-
redundant protein databases) in GUS.

We have also found the GUS warehouse to be an
effective vehicle for delivering specialized databases.
Prior to developing GUS, we were maintaining sev-
eral different databases, using a variety of database
management systems and data models, each of which

was designed for a specific function now covered in
GUS. These functions83 include genome annotation
(GAIA), gene integration (EpoDB), and generation of
a gene index (DoTS); in addition, we were becoming
involved in maintaining organism-specific informa-
tion (such as the mouse and human gene index), a
Plasmodium falciparum database,84 and a database
of genes expressed in the developing endocrine pan-
creas.85 Each of these databases is now (or will be-
come) a function-specific or organism-specific view
of GUS.

The issue of update and annotation management has
not been completely solved, and further research will
continue on better ways to integrate the annotation
between cycles using workflow approaches. This be-
comes especially important in maintaining person-
nel-intensive manual annotation and will be aided
by our ability to track the history of the annotations
as described previously.

Performance

As we stated previously, performance is often an
overriding concern in choosing a warehouse-based
solution over a view-based one. Exactly how much
faster a warehouse query will run compared to an
equivalent query in a view integration system de-
pends on many factors, including the nature of the
query and the number and types of source databases
that must be accessed. Table 1 presents some rel-
evant performance data gathered in mid-1995 using
an earlier version of the K2/Kleisli system discussed
in the section on K2/Kleisli. The table illustrates the
performance gains that can be realized by using a
relational warehouse (first row). It also demonstrates
that the performance of a view integration system
can vary widely depending on the join evaluation
strategies available to the system (e.g., semijoin ver-
sus nested loop join, rows 2–3). The join evaluation
strategies available depend in turn on the capabil-
ities of the underlying data sources; the last query,
using GDB and Entrez (row 4), could not make use
of a semijoin, because the Entrez data driver/system
is nonrelational and does not support the operation.
Note also that several of the queries failed to com-
plete in this case due to network timeouts (to which
the Entrez driver is more susceptible).

The table entries are running times in seconds for
several implementations of the following query: “Re-
trieve the official HUGO (human genome organiza-
tion) names, accession numbers, and amino acid se-
quences of all known human genes mapped to

DAVIDSON ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001524

chromosome c.” The query requires both mapping
data (from GDB) and sequence data (from GSDB or
Entrez/GenBank). At the time these experiments
were conducted, GSDB contained identical copies of
the relevant tables from GDB, allowing us to treat
GSDB as a warehouse with respect to this type of
query. This is shown in the first row of the table,
where the Sybase command-line interface “isql” was
used to run the requisite SQL queries against GSDB.
The remaining three rows represent different view
evaluation strategies using exactly two source data-
bases and Kleisli as the view system. Note that only
the data for the first nine chromosomes are shown
and that all times except those in the last row are
averages of at least five repetitions.

By way of comparison, using a more recent data set,
the GUS system supports a similar query, namely “re-
turn all EST assemblies that can be localized to chro-
mosome c by radiation hybrid mapping.” In our cur-
rent development system—an Oracle** 8i database
running on a 4-processor Linux** machine—this query
takes on average 24 seconds. Note that this query
translates to a six-table join in which two of the ta-
bles each contain more than 3 million rows, whereas
the original GDB-GSDB query involved substantially
fewer data. For this and other frequently used que-
ries, we have created materialized views in GUS to
improve their performance. Using the appropriate
materialized view for this query reduces it to a three-
table join and allows it to run in less than a second,
and we expect further performance improvements
when the system is properly tuned for Oracle.86

Conclusions

Both the K2/Kleisli implementation of the view in-
tegration approach and GUS warehouse have proven
useful for genomic applications within the Center
for Bioinformatics at the University of Pennsylva-
nia. Kleisli was used for some time to implement sev-

eral Web-based, parameterized queries that were
written for specific user groups. Users could query
views that integrated many important on-line data
sources (such as GenBank, GSDB, dbEST, GDB,
SRS-indexed databases, KEGG and EcoCyc) and ap-
plication programs (such as BLAST). After the user
supplied values for parameters, the data sources and
application programs were then accessed. The set
of available Web-based queries grew as users mailed
in requests, although few people actually wrote CPL
queries themselves. K2 has now supplanted Kleisli
on our Web site, and the list of queries has been
somewhat modified. K2/Kleisli has also been ex-
tremely successful within SmithKline Beecham, and
has formed the basis for the TAMBIS18 system at the
University of Manchester. K2/Kleisli and other view
integration implementations seem most useful in a
curiosity-driven/browsing type of environment where
network delays and temporary data source unavail-
ability can be tolerated.

GUS, on the other hand, has grown in importance as
we have moved toward projects involving “produc-
tion strength” support for function- and organism-
specific applications, in particular those involving an-
notation. In a production strength system, we need
much more control over the data to guarantee the
data’s correctness. Furthermore, the added annota-
tion is tied to the state of the input data sources, and
we have found it easier to mirror that state within
the warehouse than to reconstruct it based on time-
stamps and version information.

It should be noted that K2 was not used to populate
GUS. There are three main reasons for this. First, it
was felt that although OQL is an excellent query lan-
guage, it is not well-suited to the task of large-scale
data restructuring. For this type of work it is better
to rely either on a high-level declarative transforma-
tion language like TSL/WOL87 (and, as an aside, on its
ability to execute the resulting transformations effi-

Table 1 Running times of a query on several different implementations of a database

Chromosome: 1 2 3 4 5 6 7 8 9

GSDB LJa (isql) 20 20 18 19 19 23 21 20 17
GDB-GSDB SJb (Kleisli) 147 106 215 150 97 93 138 75 75
GDB-GSDB NL c (Kleisli) 1771 1508 2135 1769 1298 3033 1531 1124 1131
GDB-Entrez NL c (Kleisli) —d —d —d 1113 420 1943 342 558 848

a LJ 5 Local Join (“warehouse” approach)
b SJ 5 Semijoin (relational sources only)
c NL 5 Nested Loop iteration
d Query failed to complete

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001 DAVIDSON ET AL. 525

ciently)oronageneral-purposeprogramming/scripting
language. Second, unlike SQL, OQL does not have an
explicit insert/update syntax; in OQL updates must
be performed by method calls that affect the state
of the database as “side effects.” Third, the data are
not highly restructured or integrated when initially
mirrored in GUS; most of the integration is performed
in the subsequent annotation pipeline. Overall, since
the manner in which GUS was to be populated was
well understood and relatively straightforward, it was
most efficient to write Perl scripts to perform the task.
K2 will, however, be used as we incorporate databases
that we cannot or do not wish to warehouse locally,
for example PubMed (as illustrated in the section
on K2/Kleisli) as well as a specialized database of
mouse neuroanatomy that we plan to integrate in
the near future.

Implicit in the problems encountered in creating and
maintaining view integration systems is the lack of
standards for, and cooperation between the under-
lying data sources. These kinds of problems largely
motivated a standardization drive based on the
Common Object Request Broker Architecture**
(CORBA**) proposed by the Object Management
Group88 (OMG). The OMG is a consortium whose mis-
sion is to foster interoperability and portability of
enterprise applications via cooperative creation and
promulgation of object-oriented standards. Fore-
most of all OMG standards is CORBA, which describes
how a network of component systems should behave
in order to interoperate in a distributed environment.
The Life Sciences Research Task Force (LSR) has
been formed within the OMG to address requirements
and specifications of software components for life
sciences using CORBA. Currently, the LSR has reached
consensus on specifications for biomolecular se-
quence analyses and genome maps, and it is now up
to individual data source owners or third parties to
modify their data sources or to provide wrappers to
their data sources so that they conform to these spec-
ifications. We believe, however, that the standard-
ization of all genomic data sources is an unrealistic
goal given their diversity, autonomy, and rapid
schema changes. This is evidenced by the fact that
interest in CORBA seems to have waned over the past
year and to have been superseded by XML.89

As a universal data exchange format, XML may well
supplant existing formats such as EMBL and ASN.1
for biological data,90 and as such will simplify some
of the lower-level driver technology that is part of
K2/Kleisli and other view integration systems. There
is an abundance of freely available parsers and other

software for XML, and heavy industry backing of XML.
The question is whether it will do more than func-
tion as an exchange format. It may, in fact, become
a basis for view integration systems by using one of
the query languages91,92 developed for semistructured
data or XML. Before it becomes a good basis for an
integration system, however, we believe that several
things must happen.

1. Some kind of schema technology must be devel-
oped for XML. DTDs function as only a rough
schema for XML. For example, there are no base
types other than PCDATA (so the integer 198 can-
not be distinguished from the string “198”), no
ability to specify keys or other constraints on the
schema, and the reliance on order makes repre-
senting tuples (in which the order of attributes is
unimportant) tricky. The recent XMLSchema93

proposal addresses many of these problems by
providing a means for defining the structure, con-
tent, and semantics of XML documents.

2. An agreement must be reached on the use of
terms, or there must be a mechanism to map be-
tween terms. The discussions in this paper have
sidestepped one of the most difficult parts of data
and software integration: semantic integration.
Semantic integration focuses on the development
of shared ontologies between domains of users,
and on the resolution of naming conflicts (syn-
onyms and homonyms). In the TAMBIS project,
although Kleisli was used for the low-level (syn-
tactic) integration, a major effort of the project
was to develop an ontology through which re-
searchers could navigate to find information of
interest. The view layer K2MDL in K2 aids in se-
mantic integration by providing a means for map-
ping between concepts in different databases, and
has proven extremely useful in the integration
projects for SmithKline Beecham. For XML to be
useful in data integration, either the usage of tag
labels must be uniform across the community, or
a semantic layer must be available.

3. A standard for XML storage must be adopted. Sev-
eral storage techniques are currently being ex-
plored based on relational and object-oriented
technologies; new technologies are also being con-
sidered. However, there is no agreement on what
is best. Warehouse developers must currently
therefore provide their own mapping layer to
store the result of an integration query.

DAVIDSON ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001526

These issues are of current interest in the database
research community, and we expect to see some pre-
liminary solutions in the near future.

Because it is likely that warehouses like GUS will con-
tinue to be developed, we believe that a number of
practical steps should be taken by both the produc-
ers of primary data and the developers of ware-
houses.

1. Develop “keyed” XML data interchange formats.
There are currently two ways of identifying a node
in an XML tree. The first is to use ID attributes,
which are globally unique PCDATA strings. The
second is to use the ordering of subnodes to iden-
tify a position. For example, in a DOM94 tree rep-
resentation of an XML document the address of
a node is given by the element position of each
node on the path from the root to the given node.
However, element positions change as new data
are added; for example, inserting a new element
after the third element changes the position of
every element following it in the list. Since po-
sitions may change as updates occur, it is there-
fore desirable to use value-based rather than po-
sition-based identifiers. For example, in the
relational model, tuples are identified by keys, that
is, sets of attributes whose values uniquely iden-
tify a tuple and which cannot be modified. In a
hierarchically structured model (as with K2/Kleisli
or XML), the analog is to require that keys be spec-
ified at each level of nesting so that each node in
the tree can be described by a unique path of keys
from the root to that node. Note that this is dif-
ferent from IDs, which must be globally unique
within a document rather than locally unique. The
XMLSchema93 is addressing this, and several
other proposals95 are also being made that may
have some impact.

2. Publish minimal changes. Intuitively, rather than
just publishing “Entry 90158697 has been mod-
ified” it would also be useful to know how it has
been modified, by using statements such as “Fea-
ture X has been added to entry 90158697,” where
X is the value of the feature added. Given keyed
hierarchical data, the changes to an entry can sim-
ply be represented as the set of paths that rep-
resent insertions, the set of paths that represent
deletions, and the set of paths that represent mod-
ifications of values in the old entry. Since not ev-
eryone will want such detailed information, users
should probably continue to have the choice of

obtaining the newest version of a database or of
obtaining the entries that have been modified.

3. Keep track of where the data came from. Since data
in secondary databases are derived from primary
sources, it is important to keep track of where the
data came from and why the data are there. At
a minimum, this implies that detailed informa-
tion should be maintained about the version of
the primary data source from which the data were
extracted, the date on which the information was
extracted, and information about the query that
extracted the data. For data that were obtained
through analysis packages based on data from pri-
mary sources, even more information should be
maintained: the analysis performed, the input pa-
rameters, the name of the person performing the
analysis, etc.

An additional problem that we have not discussed
but which has implications for creating warehouses
is the ownership of data. Over the past ten years,
data originally in the public domain have, for a va-
riety of reasons, had increasingly restrictive licenses
placed on their use. While databases such as Gen-
Bank and PubMed are still in the public domain,
other databases such as SWISS-PROT, which is itself
a value-added secondary database, are placing re-
strictions on the use of their data. In the case of
SWISS-PROT, the restrictions are intended as a fund-
ing mechanism aimed at commercial uses rather than
at nonprofit uses.96 However, if a nonprofit user in-
tegrates part of SWISS-PROT into a specialized data-
base that can then be used by commercial users, the
nonprofit user must provide a list of commercial
users so that the licensing can be checked.97 Even
though such restrictions are quite reasonable given
the high cost of producing high-quality data, they may
present a significant barrier to instantiating those
portions of a warehouse integration that draw data
from primary sources with restrictive licenses.

Acknowledgments

K2 is the work of Jonathan Crabtree, Scott Harker,
and Val Tannen. GUS has been designed and devel-
oped by Brian Brunk, Jonathan Crabtree, Chris
Overton, Jonathan Schug, Chris Stoeckert, and the
entire Computational Biology and Informatics Lab-
oratory (CBIL). We are thankful to Peter Buneman
and members of the Database and Bioinformatics
group in the Department of Computer and Infor-
mation Science, as well as the members of CBIL at

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001 DAVIDSON ET AL. 527

the Center for Bioinformatics for their input on var-
ious aspects of this work.

This research was supported in part by DOE DE-FG02-
94-ER-61923 Sub 1, DOE DE-FG02-00-ER-62893, NIH R01-
HG01539, NSF DBI99-75206, NSF IIS90-17444, ARO DAAG55-
98-1-0031, and a grant from SmithKline Beecham.

**Trademark or registered trademark of Sun Microsystems, Inc.,
Sybase, Inc., Oracle Corporation, Linus Torvalds, or Object Man-
agement Group.

Cited references and notes

1. D. Benson, I. Karsch-Mizrachi, D. Lipman, J. Ostell, B. A.
Rapp, and D. Wheeler, “GenBank,” Nucleic Acids Research
28, No. 1, 15–18 (2000).

2. A. Bairoch and R. Apweiler, “The SWISS-PROT Protein Se-
quence Database and Its Supplement TrEMBL in 2000,” Nu-
cleic Acids Research 28, 45–48 (2000).

3. V. A. McKusick, Mendelian Inheritance in Man, Catalogs of
Human Genes and Genetic Disorders, 12th edition, Johns Hop-
kins University Press, Baltimore, MD (1998).

4. W. Baker, A. van den Broek, E. Camon, P. Hingamp, P. Sterk,
G. Stoesser, and M. A. Tuli, “The EMBL Nucleotide Se-
quence Database,” Nucleic Acids Research 28, No. 1, 19–23
(2000).

5. Y. Tateno, S. Miyazaki, M. Ota, H. Sugawara, and T. Go-
jobori, “DNA Data Bank of Japan (DDBJ) in Collaboration
with Mass Sequencing Teams,” Nucleic Acids Research 28,
No. 1, 24–26 (2000).

6. T. Etzold and P. Argos, “SRS: An Indexing and Retrieval
Tool for Flat File Data Libraries,” Computer Applications of
Biosciences 9, 49–57 (1993), http://srs.ebi.ac.uk.

7. J. Thierry-Mieg and R. Durbin, “ACeDB—A C. elegans Da-
tabase: Syntactic Definitions for the ACeDB Data Base Man-
ager,” 1992, http://genome.cornell.edu/acedocs/syntax.html.

8. N. Goodman, S. Rozen, and L. Stein, “Requirements for a
Deductive Query Language in the MapBase Genome-Map-
ping Database,” Proceedings of Workshop on Programming with
Logic Databases, Vancouver, BC, October 1993, pp. 18–32.

9. W. Fujibuchi, S. Goto, H. Migimatsu, I. Uchiyama, A. Ogi-
wara, Y. Akiyama, and M. Kanehisa, “DBGET/LinkDB: An
Integrated Database Retrieval System,” Proceedings of the Pa-
cific Symposium on Biocomputing (1998), pp. 683–694,
http://www.genome.ad.jp/dbget/.

10. M. Rebhan, V. Chalifa-Caspi, J. Prilusky, and D. Lancet,
GeneCards: Encyclopedia for Genes, Proteins and Diseases,
Technical Report, Weizmann Institute of Science, Bioinfor-
matics Unit and Genome Center, Rehovot, Israel (1997),
http://nciarray.nci.nih.gov/cards/.

11. L. Wong, “Kleisli, a Functional Query System,” Journal of
Functional Programming 10, No. 1, 19–56 (2000).

12. P. Buneman, S. B. Davidson, K. Hart, C. Overton, and
L. Wong, “A Data Transformation System for Biological Data
Sources,” Proceedings of the International Conference on Very
Large Data Bases (VLDB), September 1995, Morgan Kauf-
mann Publishers, San Francisco, CA (1995), pp. 158–169.

13. I.-M. A. Chen and V. M. Markowitz, “An Overview of the
Object-Protocol Model (OPM) and OPM Data Management
Tools,” Information Systems 20, No. 5, 393–418 (1995).

14. J. Melton and A. Simon, Understanding the New SQL: A Com-
plete Guide, Morgan Kaufmann Publishers, San Francisco,
CA (1993).

15. The Object Database Standard: ODMG 2.0, R. G. G. Cattell,
Editor, Morgan Kaufmann Publishers, San Mateo, CA (1997).

16. P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong,
“Comprehension Syntax,” SIGMOD Record 23, No. 1, 87–96
(March 1994).

17. S. B. Davidson, C. Overton, and P. Buneman, “Challenges
in Integrating Biological Data Sources,” Journal of Compu-
tational Biology 2, No. 4, 557–572 (1995).

18. N. W. Paton, R. Stevens, P. G. Baker, C. A. Goble, S. Bech-
hofer, and A. Brass, “Query Processing in the TAMBIS Bioin-
formatics Source Integration System,” Proceedings of the 11th
International Conference on Scientific and Statistical Databases,
IEEE Press, New York (1999), pp. 138–147.

19. P. Buneman, J. Crabtree, S. B. Davidson, C. Overton, V. Tan-
nen, and L. Wong, “BioKleisli,” Bioinformatics, S. Letovsky,
Editor, Kluwer Academic Publishers, New York (1998).

20. S. Davidson, C. Overton, V. Tannen, and L. Wong, “Biokleisli:
A Digital Library for Biomedical Researchers,” Journal of
Digital Libraries 1, No. 1, 36–53 (1996).

21. K. Hart, L. Wong, C. Overton, and P. Buneman, “Using a
Query Language to Integrate Biological Data,” Abstracts of
1st Meeting on the Interconnection of Molecular Biology Da-
tabases, Stanford, CA, August 1994.

22. R. G. G. Cattell, D. K. Barry, D. Bartels, M. Berler, J. East-
man, S. Gamerman, D. Jordan, A. Springer, H. Strickland,
and D. Wade, The Object Database Standard: ODMG 2.0,
Morgan Kaufmann Publishers, San Francisco, CA (1997).

23. R. Milner, M. Tofte, and R. Harper, The Definition of Stan-
dard ML, MIT Press, Boston, MA (1990).

24. See http://www.javasoft.com/j2se/.
25. See http://www.javasoft.com/products/.
26. See http://java.sun.com/products/jdbc/.
27. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.

Lipman, “Basic Local Alignment Search Tool,” Journal of Mo-
lecular Biology 215, 403–410 (1990).

28. See http://www.ncbi.nlm.nih.gov/entrez/query/static/overview.
html.

29. ISO, Standard 8824. Information Processing Systems. Open Sys-
tems Interconnection. Specification of Abstraction Syntax No-
tation One (ASN.1), 1987.

30. M. Kanehisa and S. Goto, “KEGG: Kyoto Encyclopedia of
Genes and Genomes,” Nucleic Acids Research 28, No. 1, 29–34
(2000).

31. P. D. Karp, M. Riley, M. Saier, I. T. Paulsen, S. M. Paley,
and A. Pellegrini-Toole, “The EcoCyc and MetaCyc Data-
bases,” Nucleic Acids Research 28, No. 1, 56–59 (2000).

32. C. Harger, G. Chen, A. Farmer, W. Huang, J. Inman,
D. Kiphart, F. Schilkey, M. P. Skupski, and J. Weller, “The
Genome Sequence DataBase,” Nucleic Acids Research 28,
No. 1, 31–32 (2000).

33. M. S. Boguski, T. M. Lowe, and C. M. Tolstoshev, “dbEST—
Database for ‘Expressed Sequence Tags,’ ” Nature Genetics
4, No. 4, 332–333 (August 1993).

34. J. A. Blake, J. T. Eppig, J. E. Richardson, M. T. Davisson,
and the Mouse Genome Database Group, “The Mouse Ge-
nome Database (MGD): Expanding Genetic and Genomic
Resources for the Laboratory Mouse,” Nucleic Acids Research
28, No. 1, 108–111 (2000).

35. P. Pearson, N. Matheson, N. Flescher, and R. J. Robbins,
“The GDB Human Genome Data Base Anno 1992,” Nucleic
Acids Research 20, 2201–2206 (1992).

36. C. Souza dos Santos, S. Abiteboul, and C. Delobel, “Virtual
Schemas and Bases,” Proceedings of the 4th International Con-
ference on Extending Database Technology, Cambridge, UK,

DAVIDSON ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001528

March 1994, Lecture Notes in Computer Science 779, Springer-
Verlag, Berlin (1994).

37. See http://www.cbil.upenn.edu/K2.
38. M. Rusinkiewicz, A. Sheth, and G. Karabatis, “Specifying In-

terdatabase Dependencies in a Multidatabase Environment,”
IEEE Computer 24, No. 12, 46–53 (1991).

39. G. Wiederhold, “Mediators in the Architecture of Future In-
formation Systems,” IEEE Computer 25, No. 3, 38–49 (1992).

40. J. Chen, D. DeWitt, F. Tian, and Y. Wang, “Niagaracq: A
Scalable Continuous Query System for Internet Databases,”
Proceedings of the ACM SIGMOD International Conference,
Dallas, TX, May 2000, ACM, New York (2000), pp. 379–390.

41. L. Liu, C. Pu, R. Barga, and T. Zhou, “Differential Evalu-
ation of Continual Queries,” Proceedings of the International
Conference on Distributed Computing Systems (ICDCS), ACM,
New York (1996), pp. 458–465.

42. L. Liu, C. Pu, and W. Tang, “Continual Queries for Internet
Scale Event-Driven Information Delivery,” IEEE Transac-
tions on Knowledge and Data Engineering 11, No. 4, 610–628
(1999).

43. L. Liu, C. Pu, R. Barga, and T. Zhou, “Continuous Queries
over Append-Only Databases,” Proceedings of the ACM SIG-
MOD Conference on the Management of Data, ACM, New
York (1992), pp. 321–330.

44. Push capabilities may be more common in the private sector.
For example, DoubleTwist (http://www.doubletwist.com) has
software agents that notify users when relevant entries are
added to their database(s).

45. J. D. Ullman, Principles of Database and Knowledgebase Sys-
tems I, Computer Science Press, Rockville, MD 20850 (1989).

46. See http://www.alphaWorks.ibm.com/formula/xmltreediff.
47. S. M. Selkow, “The Tree-to-Tree Editing Problem,” Infor-

mation Processing Letters 6, No. 6, 184–186 (1977).
48. K. C. Tai, “The Tree-to-Tree Correction Problem,” Journal

of the Association for Computing Machinery 26, No. 3, 422–
433 (1979).

49. K. Zhang and D. Shasha, “Simple Fast Algorithms for the
Editing Distance Between Trees and Related Problems,”
SIAM Journal on Computing 18, No. 6, 1245–1262 (1989).

50. K. Zhang, R. Statman, and D. Shasha, “On the Editing Dis-
tance Between Unordered Labeled Trees,” Information Pro-
cessing Letters 42, No. 3, 133–139 (1992).

51. S. Chawathe and H. Garcia, “Meaningful Change Detection
in Structured Data,” Proceedings of the ACM SIGMOD Con-
ference on Management of Data, May 1997, ACM, New York
(1997), pp. 26–37.

52. H. Liefke and S. Davidson, “View Maintenance for Hierar-
chical Semistructured Data,” Proceedings of the International
Conference on Data Warehousing and Knowledge Discovery
(DaWaK’00), London, England, September 2000, Springer-
Verlag, Berlin (2000).

53. D. Quass, A. Gupta, I. S. Mumick, and J. Widom, “Making
Views Self-Maintainable for Data Warehousing,” Proceed-
ings of the IEEE Conference on Parallel and Distributed In-
formation Systems (PDIS), Miami Beach, FL, December 1996,
IEEE, New York (1996), pp. 158–169.

54. K. A. Ross, D. Srivastava, and S. Sudarshan, “Materialized
View Maintenance and Integrity Constraint Checking: Trad-
ing Space for Time,” Proceedings of ACM SIGMOD Interna-
tional Conference on Management of Data, Montreal, Can-
ada, June 1996, ACM, New York (1996), pp. 447–458.

55. N. Huyn, “Multiple-View Self-Maintenance in Data Ware-
housing Environments,” Proceedings of the International Con-
ference on Very Large Databases (VLDB), Athens, Greece,

1997, Morgan Kaufmann Publishers, San Francisco, CA
(1997), pp. 26–35.

56. O. Shmueli and A. Itai, “Maintenance of Views,” Proceed-
ings of ACM SIGMOD International Conference on Manage-
ment of Data, Boston, MA, June 1984, ACM, New York
(1984), pp. 240–255.

57. J. A. Blakeley, P.-A. Larson, and F. Tomba, “Efficiently Up-
dating Materialized Views,” Proceedings of ACM SIGMOD
International Conference on Management of Data, 1986, ACM,
New York (1986), pp. 61–71.

58. J. A. Blakeley, N. Coburn, and P. A. Larson, “Updating De-
rived Relations: Detecting Irrelevant and Autonomously
Computable Updates,” ACM Transactions on Database Sys-
tems 14, No. 3, 369–400 (September 1989).

59. A. Gupta, I. S. Mumick, and V. S. Subrahmanian, “Main-
taining Views Incrementally,” Proceedings of the ACM SIG-
MOD Conference, Washington, DC, May 1993, ACM, New
York (1993), pp. 157–166.

60. S. Ceri and J. Widom, “Deriving Production Rules for In-
cremental View Maintenance,” Proceedings of the Interna-
tional Conference on Very Large Data Bases (VLDB), Barce-
lona, Spain, Morgan Kaufmann Publishers, San Francisco,
CA (1991), pp. 577–589.

61. R. Paige, “Applications of Finite Differencing to Database
Integrity Control and Query/Transaction Optimization,” Pro-
ceedings of Advances in Database Theory, New York (1984),
pp. 170–209.

62. X. Qian and G. Wiederhold, “Incremental Recomputation
of Active Relational Expressions,” IEEE Transactions on
Knowledge and Data Engineering 3, No. 3, 337–341 (1991).

63. T. Griffin, L. Libkin, and H. Tricket, “An Improved Algo-
rithm for the Incremental Recomputation of Active Rela-
tional Expressions,” IEEE Transactions on Knowledge and
Data Engineering 9, No. 3, 508–511 (1997).

64. D. Quass, “Maintenance Expressions for Views with Aggre-
gation,” Workshop on Materialized Views: Techniques and Ap-
plications, Montreal, Canada, June 1996, ACM, New York
(1996), pp. 110–118.

65. A. Gupta, V. Harinarayan, and D. Quass, “Generalized Pro-
jections: A Powerful Approach to Aggregation,” Proceedings
of International Conference on Very Large Databases (VLDB),
Zurich, Switzerland, September 1995, Morgan Kaufmann
Publishers, San Francisco, CA (1995), pp. 358–369.

66. A. Gupta and I. S. Mumick, “Maintenance of Materialized
Views: Problems, Techniques, and Applications,” IEEE Data
Engineering Bulletin 18, No. 2, 3–18 (June 1995).

67. D. Gluche, T. Grust, C. Mainberger, and M. H. Scholl, “In-
cremental Updates for Materialized OQL Views,” Proceed-
ings of the 5th International Conference on Deductive and Ob-
ject-Oriented Databases, December 1997, Montreux,
Switzerland, Lecture Notes in Computer Science 1341, Spring-
er-Verlag, Berlin (1997).

68. H. A. Kuno and E. A. Rundensteiner, “Incremental Main-
tenance of Materialized Object-Oriented Views in Multi-
view: Strategies and Performance Evaluation,” IEEE Trans-
actions on Knowledge and Data Engineering 10, No. 5, 768–
792 (1998).

69. A. Kawaguchi, D. F. Lieuwen, I. S. Mumick, and K. A. Ross,
“Implementing Incremental View Maintenance in Nested
Data Models,” Proceedings of International Workshop on Da-
tabase Programming Languages, Estes Park, CO, August 1997,
Lecture Notes in Computer Science 1369, Springer-Verlag, Ber-
lin (1997), pp. 202–221.

70. T. Griffin and L. Libkin, “Incremental Maintenance of Views
with Duplicates,” Proceedings of the ACM SIGMOD Confer-

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001 DAVIDSON ET AL. 529

ence, San Jose, CA, May 1995, ACM, New York (1995), pp.
328–339.

71. D. Suciu, “Query Decomposition and View Maintenance for
Query Languages for Unstructured Data,” Proceedings of In-
ternational Conference on Very Large Databases (VLDB), Bom-
bay, India, September 1995, Morgan Kaufmann Publishers,
San Francisco, CA (1995), pp. 227–238.

72. S. Abiteboul, J. McHugh, M. Rys, V. Vassalos, and J. Wie-
ner, “Incremental Maintenance for Materialized Views over
Semistructured Data,” Proceedings of the International Con-
ference on Very Large Databases (VLDB), New York, August
1998, Morgan Kaufmann Publishers, San Francisco, CA
(1998), pp. 38–49.

73. Y. Zhuge and H. Garcia-Molina, “Graph Structured Views
and their Incremental Maintenance,” Proceedings of the 14th
International Conference on Data Engineering (ICDE), Or-
lando, FL, February 1998, IEEE, New York (1998), pp. 116–
125.

74. Y. Cui, J. Widom, and J. Wiener, “Tracing the Lineage of
View Data in a Data Warehousing Environment,” ACM
Transactions on Database Systems 25, No. 2, 179–227 (2000).

75. A. Woodruff and M. Stonebraker, “Supporting Fine-Grained
Data Lineage in a Database Visualization Environment,” Pro-
ceedings of the Thirteenth International Conference on Data
Engineering, IEEE, New York (1997), pp. 91–102.

76. T. Lee, S. Bressan, and S. Madnick, “Source Attribution for
Querying Against Semi-Structured Documents,” Proceedings
of the International Conference on Information and Knowledge
Management—Workshop on Web Information and Data Man-
agement, ACM, New York (1998).

77. P. A. Bernstein and T. Bergstraesser, “Meta-Data Support
for Data Transformations Using Microsoft Repository,” IEEE
Data Engineering Bulletin 22, No. 1, 9–14 (1999).

78. See http://www.allgenes.org/cgi-bin/schemaBrowser.pl for the
complete schema.

79. This approach was used in GDB (see http://gizmo.lbl.gov/
opm.html).

80. See http://www.allgenes.org.
81. A new version is released quarterly, but it is difficult to de-

termine how much of a lag there is from when the sequences
first appear in GenBank.

82. L. C. Bailey, Jr., S. Fischer, J. Schug, J. Crabtree, M. Gibson,
and G. C. Overton, “Gaia: Framework Annotation of Ge-
nomic Sequence,” Genome Research 8, No. 3, 234–250 (1998).

83. For descriptions of these databases, see http://www.cbil.
upenn.edu.

84. See http://www.plasmodb.org.
85. See http://www.cbil.upenn.edu/EPConDB.
86. Our current production GUS database runs under Sybase

11.9.2 and we are in the process of adding support for Or-
acle.

87. S. B. Davidson and A. Kosky, “WOL: A Language for Da-
tabase Transformations and Constraints,” Proceedings of the
International Conference of Data Engineering, April 1997,
IEEE, New York (1997), pp. 55–65.

88. See http://www.omg.org.
89. See http://www.w3.org.
90. See for example http://www.ebi.ac.uk/microarray/MGED/.
91. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and

D. Suciu, “A Query Language for XML,” Proceedings of the
International World Wide Web Conference (WWW8), Toronto,
1999, http://www8.org.

92. J. Robie, J. Lapp, and D. Schach, “XML Query Language
(XQL),” W3C Query Languages Workshop (QL’98), Boston,
MA, December 1998, http://www.w3.org/.

93. World Wide Web Consortium (W3C), XML Schema Part 0:
Primer, 2000, http://www.w3.org/TR/xmlschema-0/.

94. World Wide Web Consortium (W3C), Document Object
Model (DOM) Level 1 Specification, 1998, http://www.w3.
org/TR/WD-DOM-971009.

95. P. Buneman, S. Davidson, W. Fan, C. Hara, and W.-C. Tan,
“Keys for XML.” To appear in the 10th International World
Wide Web Conference, May 2001.

96. See http://www.isb-sib.ch/announce.
97. The SWISS-PROT copyright notice also states for nonprofit

users: “There are no restrictions on its use by non-profit in-
stitutions as long as its content is in no way modified.”

Accepted for publication November 20, 2000.

Susan B. Davidson Center for Bioinformatics and Department
of Computer and Information Science, University of Pennsylvania,
200 South 33rd Street, Philadelphia, Pennsylvania 19104-6389 (elec-
tronic mail: susan@cis.upenn.edu). Dr. Davidson received the B.A.
degree in mathematics from Cornell University, Ithaca, NY, in
1978, and the Ph.D. degree in electrical engineering and com-
puter science from Princeton University, Princeton, NJ, in 1982.
Dr. Davidson is a professor in the Department of Computer and
Information Science, where she has been since 1982. Her research
interests include database systems, database modeling, distrib-
uted systems, bioinformatics, and real-time systems. Dr. David-
son is also Interim Director of the Center for Bioinformatics, a
multischool center spanning the Schools of Medicine, Engineer-
ing and Applied Science, and Arts and Sciences. The center pulls
together researchers from biomedicine, statistics, mathematics,
and computer science, and is known for its pioneering work in
database integration, genomic schema development, visualization
tools, and annotation systems.

Jonathan Crabtree Center for Bioinformatics, University of Penn-
sylvania, 1315 Blockley Hall, Philadelphia, Pennsylvania 19104-6021
(electronic mail: crabtree@pcbi.upenn.edu). Mr. Crabtree is a sen-
ior programmer/analyst at the University of Pennsylvania’s Cen-
ter for Bioinformatics. He received his undergraduate degree from
Williams College in 1993, followed by an M.S.E. degree in com-
puter and information science from the University of Pennsyl-
vania in 1996, where he is also currently enrolled as a part-time
Ph.D. student. Over the past five years he has worked on a va-
riety of research projects, ranging from genome annotation and
database integration to comparative sequence analysis and in-
teractive genomic visualization.

Brian P. Brunk Center for Bioinformatics, University of Pennsyl-
vania, 1316 Blockley Hall, Philadelphia, Pennsylvania 19104-6021
(electronic mail: brunkb@pcbi.upenn.edu). Dr. Brunk is a senior
IT project manager in the Center for Bioinformatics directing
the Genomics Unified Schema (GUS) project, which involves da-
tabase integration and analysis of disparate biological databases.
He received his Ph.D. degree in 1988 from the University of Vir-
ginia, Department of Biology, working with Dr. Paul Adler study-
ing the genetic basis of pattern formation in the fruit fly (D. me-
lanogaster). Dr. Brunk then did a postdoctoral fellowship with
Dr. Charles Emerson (lastly at the University of Pennsylvania,
Department of Cell and Developmental Biology) before joining
the Center for Bioinformatics under the direction of Dr. G. Chris-
tian Overton. His current research interests include utilizing da-
tabase integration and data mining to represent and understand
biological genetic networks.

DAVIDSON ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001530

Jonathan Schug Center for Bioinformatics, University of Penn-
sylvania, 1315 Blockley Hall, Philadelphia, Pennsylvania 19104-6021
(electronic mail: jschug@pcbi.upenn.edu). Mr. Schug is a staff pro-
grammer at the Center for Bioinformatics, and a Ph.D. degree
candidate in computer and information science at the University
of Pennsylvania. His research interests include the control of gene
expression, including DNA sequence analysis, using information-
theoretic and linguistic approaches, and modeling of genetic cir-
cuits using hybrid systems.

Val Tannen Department of Computer and Information Science,
University of Pennsylvania, 200 South 33rd Street, Philadelphia,
Pennsylvania 19104-6389 (electronic mail: val@cis.upenn.edu). Dr.
Tannen received his Ph.D. degree in computer science from MIT
in 1987, and has been a University of Pennsylvania faculty mem-
ber since then. His research interests include information inte-
gration, query optimization, programming languages, logic in com-
puter science, and parallel processing.

G. Christian Overton Center for Bioinformatics and Department
of Genetics, University of Pennsylvania, 1312 Blockley Hall, Phil-
adelphia, Pennsylvania 19104-6021. Dr. Overton was an associate
professor in the Department of Genetics of the University of Penn-
sylvania School of Medicine, and the founding director of the Cen-
ter for Bioinformatics at the University of Pennsylvania School
of Medicine. He received a B.S. degree in physics and mathe-
matics from the University of New Mexico, a Ph.D. degree in bio-
physics from the Johns Hopkins University, and subsequently an
M.S.E. degree in computer science from the University of Penn-
sylvania. Prior to joining the University of Pennsylvania faculty,
he spent five years as part of the artificial intelligence research
group at the Unisys Center for Advanced Information Technol-
ogy. His research interests included the implementation of
databases for genome informatics and gene expression, and the
development of database technology for the evolution, transfor-
mation, and integration of databases. He died unexpectedly on
June 1, 2000.

Christian J. Stoeckert, Jr. University of Pennsylvania, 1313
Blockley Hall, Philadelphia, Pennsylvania 19104-6021 (electronic
mail: stoeckrt@pcbi.upenn.edu). Dr. Stoeckert is a research as-
sociate professor in the Department of Genetics of the Univer-
sity of Pennsylvania School of Medicine. He received his Ph.D.
degree in 1982 at Johns Hopkins University in biophysics, and
did his postdoctoral training with Sherman Weissman in the De-
partment of Human Genetics at the Yale University School of
Medicine. He has been an assistant professor in the Department
of Anatomy at the University of Pennsylvania and an associate
member of the Stoke’s Research Institute at the Children’s Hos-
pital of Philadelphia. His research interests include databases,
gene annotation, gene expression analysis, and ontologies.

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001 DAVIDSON ET AL. 531

