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In this paper we study when and how B Byzantine agreement protocol can he used in general-purpose 
database management systems. We present an overview of the failure model used for Byzantine 
agreement, and of the protocol itself. We then present correctness criteria for database processing in 
this failure environment and discuss strategies for satisfying them. In doing this, we present new 
failure models for input/output nodes and study ways to distribute input transactions to processing 
nodes under these models. Finally, we investigate applications of Byzantine agreement protocols in 
the more common failure environment where processors are assumed to halt after a failure. 
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1. INTRODUCTION 

Byzantine agreement (BA) is the problem of making a set of processors, some of 
which may fail in arbitrary ways, agree on a common “value.” This problem has 
recently received considerable attention in the literature (e.g., [6, 7, 12, 17, 23, 
25]), mainly because reliability has become one of the principal goals of computer 
systems. A reliable system must be able to perform useful and correct computa- 
tions in the face of failing components. The agreement problem turns out to he 
fundamental in reliable computing, and illustrates the subtleties that appear in 
coping with faulty processors. (Incidentally, the name “Byzantine” refers to a 
military scenario that was initially used to describe the problem [17].) 

The goal of this paper is to study when and how Byzantine agreement protocols 
can be of use in general-purpose database processing. A number of database (or 
database-related) applications have been suggested 11, 3, 8, 12, 17-19, 241, hut in 
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many cases these applications have been mentioned in passing, or the practical 
“details” omitted. Also, there has been considerable controversy in the database 
community with regards to the applicability of Byzantine agreement, 
mainly because of the high message overhead of its solutions. Thus we study, 
from a “practitioner’s” point of view, what BA is and what its pragmatic 
implications are. 

The first step in any reliable system design is to define the expected operation 
of each component during both normal and failure periods. Therefore, in Section 
2, we present the operation models of our distributed system. Based on these 
models, we present, in Section 3, one version of the BA problem and outline its 
solution. (A reader familiar with BA may skim over these two sections.) In 
Section 4 we look at the database processing application itself and argue that the 
main application of BA is in the distribution of input transactions to a set of 
processors with a replicated database. Finally, in Section 5, we look at a failure 
environment different from that typically used in BA and discuss the uses of BA 
protocols in such an environment. 

2. MODELING FAILURES 

Multiple processors are necessary for reliable computing. Therefore, our model 
of the system consists of a set of processing nodes (or computers) connected 
through a communication network (see Figure 1). In this model, all processing 
ACM Transhctions on Databse Systems, “0,. 11, No. 1, March ,986. 
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needed by the distributed application is performed at the nodes, while any 
processing needed for communication (e.g., routing) is performed by the network. 

2.1 Node Models 

Processing nodes can fail in many different and strange ways, and modeling 
these failures accurately is difficult. One way to avoid these problems is simply 
to assume that when a node fails it can have arbitrary behavior. In this case, no 
a.ssumptiona are made about failures. A failed node can send any message, 
including garbled or misleading ones, to other nodes. It can refuse to send 
messages when it is supposed to. It can even collaborate with other failed nodes 
in an attempt to subvert the entire system. 

This model is very simple, and yet very powerful. Unlike other models, it 
covers any conceivable failure, regardless of whether it was considered by the 
system designers. It is the most conservative model, and any system that protects 
against this type of failure will be highly reliable. 

We call a node that can fail in this unpredictable way an insane node.’ For the 
time being we assume that insanity is a permanent property. Later on we consider 
the case where a node can be repaired and cease to be insane. 

Clearly, if all nodes are insane, we are unable to do reliable computing. We 
need to assume that there are some nodes that can be trusted, even if we do not 
know which ones they are. A perfect node is one that never fails.’ It always 
follows the algorithms it is given, and never pauses or halts. Furthermore, the 
algorithms it follows are correct. A perfect node responds promptly to messages 
from other nodes (more on this later). Again, we temporarily assume that if a 
node is perfect, it is perfect for all time. 

Lastly, there is a node failure model that lies between perfection and insanity. 
This model is usually not employed in BA problems; but we discuss its relation- 
ship to BA at several points in this paper. A node is considered to be sane if it 
only fails in “clean” well-defined ways.3 (This type of failure is usually called a 
crash.) When a sane node fails, it simply halts, without ever deviating from its 
algorithms. It may lose the data contained in memory, but the data contained in 
stable storage [Zl] are unaffected by the failure. When it is repaired, the node 
immediately starts executing a predefined recovery procedure. (There are a 
number of techniques for increasing the probability that a real node behaves like 
a sane one [27], but, of course, this probability will never be 1.) 

2.2 Network Model 

In this paper we make the following additional assumptions about the network 
and timing. We first state the assumptions and then discuss them. 

Nl. The network deliuers all messages correctly. Any message sent from node 
x to y is eventually delivered. Messages are not altered in any way, and the 
network never generates spontaneous messages. 

N2. Messages are authenticated. All messages are signed and encoded by 
senders in such a way that the receiver can determine unequivocally who sent 
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the message and what it contained. A third node that simply forwards the 
message cannot alter it in any way. (A node may, however, refuse to forward a 
message.) 

Ti. Perfect nodes have accurate and synchronized clocks. Specifically, at any 
instant the clocks differ by at most 7 time units [16]. 

T2. The network has a guaranteed deliwry time. The network delivers all 
messages (between perfect nodes) within To time units. 

T3. The processing time of perfect nodes can be bounded. Given a segment of 
code s, we can compute the maximum time t. that a perfect node will take to 
execute the code. 

These assumptions may be “relaxed” by considering any node involved in the 
violation of an assumption to he insane [12]. For example, if a message is lost or 
garbled (violating Nl), we can say that the sending or receiving node is insane. 
However, as we see in Section 4, there must always be some perfect nodes, and 
for these nodes the assumptions must hold [ll]. Finally, BA is possible even 
without assumption N2 (12, 171, but the resulting algorithms are less efficient. 
Since authentication is practical and well understood, we keep N2. 

A number of techniques can be used to increase our confidence in the network 
assumptions. For example, cryptographic techniques [5] (or error-detecting codes 
[2], if nodes are not malevolent) can be used to implement message signatures 
(assumption N2). A signal from a very reliable clock can be periodically broadcast 
(by radio or a dedicated line to avoid network failures) to synchronize the clocks 
(assumption Tl). As an alternative, a reliable clock synchronization protocol can 
be used [lo, 20, 22].4 To ensure a maximum message delivery time (assumption 
T2), the network can he designed with multiple routing paths and spare capacity. 

3. BYZANTINE AGREEMENT PROBLEM 

In this section we define one version of the BA problem. Our objective is to give 
the reader an intuitive understanding of the problem and its solution. The reader 
is referred to the literature for details and proofs of correctness. (The version we 
present here is from [17].) The practical applications of BA are discussed in the 
following sections. 

The problem is that at time CIC, ageneral node wants to broadcast, in a bounded 
time, a value u to a set of n lieutenant nodes. (The terminology is from the 
military scenario of [17].) Some of the nodes, including the general node, may be 
insane. Let m he the maximum number of nodes that are insane. Nodes that are 
not insane are perfect. 

A solution algorithm is considered correct if: 

Condition 1. When the algorithm completes, all perfect lieutenants agree on 
the same value. 
Condition 2. If the general is perfect, then all perfect lieutenants agree on the 
value sent by the general. 

‘Incidentally, these references show that the clock synchronization algorithm does not have to use 
BA, as had earlier been suspected. 



Applications of Byzantine Agreement * 31 

Note that if the general is insane, then the perfect lieutenants can agree on any 
value, as long as they all agree on that same value. However, if the general is 
perfect, then the lieutenants must agree on the value broadcast by the general. 

The fact that the general may be insane is what complicates solutions to this 
problem. Instead of broadcasting a single value u, the general may send out a 
collection of values Q, u2, _. ug to the lieutenants. This implies that the 
lieutenants cannot simply take the value they receive from the general and 
consider it correct. Each lieutanant Lj must instead proceed in three steps: 

(a) Lieutenant Lj receives a value from the general. 
(b) Lieutenants exchange the values they received so that they all (or at least 

the perfect ones) know the different values ul, up, , uy that were broadcast 
by the general. (As we will shortly see, this step is tricky.) 

(c) Once Z,, knows the list Us, , uy, it applies a fixed rule to obtain the single 
value it will agree on. (Obviously, all lieutenants will use identical rules.) If 
the list contains a single value, then Lj must use that value in order to satisfy 
condition 2. Otherwise, the general is insane because it broadcast different 
values, and the lieutenants may agree on any value. For instance, they may 
choose a standard null value, or the average of Q, . , Us. 

Returning to step (b), it is necessary that all perfect lieutenants end up with 
exactly the same list of values u,, , uq, or else they may obtain different values 
in step (c). The insane lieutenants may interfere with this process in two ways. 

The first way is by lying or by masquerading as a different lieutenant. For 
example, insane lieutenant Li may tell perfect lieutenant Lj that it received u1 
from the general, and may tell perfect Lk that it received u2. If we do not take 
precautions, the lists that Lj and Lk use in step (c) would then he different. 

One simple solution to this problem is to use authenticated messages (assump- 
tion NZ). The general will sign the value it broadcasts in step (a), and when a 
lieutenant forwards a value (in step (b)), it adds on its signature. The receiver of 
the forwarded value will then be able to determine the true value sent by the 
general, as well as the true identity of the forwarding lieutenant. We use the 
notation u, :G: Li for the message containing value ul, authenticated by the 
general, G, and by lieutenant Li. 

Authentication by itself does not solve the entire problem. A second way in 
which an insane lieutenant can cause confusion is by not forwarding values, or 
by delaying the forwarding. To illustrate, consider the following scenario with 
three lieutenants (see Figure 2). Suppose that the general and one of the 
lieutenants, L,, are insane. At time a0 the general broadcasts u1 : G to L1 and u2 : G 
to L2 and L3. Perfect lieutenant L2 next broadcasts u2 : G: & to all other lieuten- 
ants. Similarly, LB broadcasts u2: G: L3. However, LI sends u1 : G: L1 only to L. If 
we take no further precautions, k will finish step (h) with the value list ul, up, 
while LB will only have value Q. 

To avoid this and similar situations, we must introduce two safeguards. The 
first is to have lieutenants broadcast, not just the value they receive from the 
general, but also additional values they receive from other lieutenants. In our 
example, when L2 receives u2: G: L1, it will broadcast up: G: L1 : L to ensure that 
other lieutenants like La also receive up. (Clearly, L2 does not have to send 0% to 
L1, since it has already seen up.) 

ACM Transactions on Database Systems, Vol. 11, No. 1, March 1986. 
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Fig. 2. A EA example. 

The second safeguard is to put a limit on the time that lieutenants will wait 
for new values. Otherwise, lieutenants would never know when they have received 
all the values for step Cc). Recall that 010 is the start time, TV the guaranteed 
delivery time (assumption TZ), 7 the maximum clock drift (assumption Tl), and 
t, is the maximum time it takes a perfect node to process and forward a value 
(assumption T3). Therefore, if a lieutenant L; has not received a value from the 
general by time (on its clock) (Ye + T + to + t,, then Li knows that the general is 
insane and can safely ignore any future messages from the general. 

Similarly, L; can ignore messages of the form ua:G:Lj received after time 
no + T + 2(t~ + t,). In this case, Lj, the sender of this massage, must be insane 
and u& can he ignored. If u* was sent by Lj to other perfect lieutenants before the 
time limit, then it will be up to them (and not up to Lj) to send II* to L+. In 
general L, can ignore any message of the form uk: G : LI : & : : LP if it arrives 
after time 01~ + T + (p + l)(tD + t.). 

When can a lieutenant Li be certain that it has received all necessary values? 
By the argument above, at time w, + 7 + (m + l)(tD + t*), Li can ignore all 
messages of the form uk : G : L, : Lp : : LP, where p 5 m is the maximum number 
of insane nodes. However, L; can also ignore messages where p > m, for 
the following reason. If p > m, then there are at least two perfect nodes in G, 
ACM Tramactions 0” Database Systems, Vol. 11. No. 1. March ,986. 
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Li, , Lp. If the general is perfect, then Li would have received the value ok 
by time a0 + r + (to + t,). If the general is not perfect, then the first of the 
two perfect lieutenants in Li, , Lp would have sent oh to L. before a,, + T + 
(m + l)(to + t,). (In the worst case, L, is the first perfect lieutenant. It 
must have received va:G:L,: :I,,,-i by a0 + T + m(tn + t.) and then 
sent ua:G:Li: :L, to Li.1 In either case, .L: receives ok before ug + 
r + (m + l)(to + t.). Therefore, at this time, .L, is certain it has received all 
values and can proceed to step (cl. 

In summary, in step (b) lieutenants proceed as follows. Any message ok:G: 
Li, ,: L&r 2 0) that arrives is checked for correctness and timeliness. If the 
message has the correct format and signatures and if it arrives on time (before 
a0 + r + (p + l)(to + t,)), then the value in the message is added to the list of 
values and is broadcast to other lieutenants. Note that LX, , Lp do not need to 
receive the value since they have already seen it. Similarly, if p 2 m, the value 
does not have to be broadcast at all because one of G, Li, , Lp is perfect and 
has already broadcast the value. Finally, at time a0 + 7 + (m + l)(to + f] step 
(b) completes, and the resulting list of values is passed to step (c) for the final 
decision. 

The algorithm we have outlined guarantees agreement as defined by conditions 
1 and 2, even if there are very few perfect nodes. If there is one or no perfect 
node(s), then conditions 1 and 2 are satisfied trivially. If there are just two perfect 
nodes, they will reach agreement no matter how many insane nodes there are. 

There are a number of other solutions, but they all use similar ideas and have 
the following two characteristics: 

- In all algorithms the worst-case delay for reaching agreement is r + 
(m + l)(to + t.) time units. However, from a practical point of view, this delay 
is not critical because in most cases agreement can be reached much sooner. For 
example, the algorithm we presented can be modified so that, in the common 
case where there are no failures, a lieutenant can proceed to step (cl as soon as 
it receives valid messages from the n - 1 other lieutenants [9, 121. (Incidentally, 
worst-case times are similar in some sane node-recovery algorithms.) 

- In all solutions the message traffic is also high, for the value received by a 
lieutenant from the general must somehow be transmitted to all other lieutenants. 
This represents the essence of BA: no single node is trustworthy, so all nodes 
must collect all information and make decisions for themselves. (With sane 
nodes, on the other hand, a single node can make decisions, thus cutting down 
on the message traffic.) 

In closing this section, we make three observations that will be useful later on: 

(i) Perfect nodes cannot agree on the identity of the insane nodes. A given 
node Li may establish with certainty that some other node Lj is insane (because 
it failed to forward a message). However, Z+ may appear perfect to other nodes, 
and Li has no foolproof way of “convincing” these other nodes that Lj is indeed 
insane. 

(ii) Although it is often overlooked in BA discussions, it is critical that all 
participants agree beforehand on the start time, no, of the agreement algorithm. 

ACM Transactions on Databsse Sydems, Vol. 11, No. 1, March 1986. 
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If this time is not known, the algorithm can never finish. One practical way to 
avoid the problem is to have periodic agreements. For example, the BA algorithm 
can be run starting every second or minute. If the general has no value to 
broadcast, it can send out a null value. (It could also not send any value at all. 
This would be acceptable as long as the lieutenants then agreed on a default null 
value.) A second technique would be to use one BA to agree on both the broadcast 
value and on the time of the next BA. This is only useful if the general can 
predict the next time at which it will want to broadcast a value. 

In either case, if several executions of the BA algorithm can overlap in time, 
then the values broadcast by the general must carry an identification that binds 
them to one execution. The starting time of the execution could be concatenated 
to the value for this purpose. 

(iii) For BA we assume that m or less nodes are insane, and the rest are 
perfect. It is tempting to consider weaker assumptions, specifically that the nodes 
that are not insane are sane. Unfortunately, with these weaker assumptions, BA 
is not possible [ll]. Thus, if we wish to cope with m or less insane nodes, we 
must assume perfect nodes. 

4. APPLICATIONS OF BA IN DATA PROCESSING 

In the previous section we discussed how nodes could agree on a value. Now we 
want these nodes to do much more. We want them to do reliable data processing 
in a distributed computing system. By data processing we mean conventional 
and general-purpose database management [4, 141. Users submit trcnsacticn~ 
that contain one or more database commands (e.g., print the location of the 
carrier “Nimitz,” withdraw ten million dollars from account 777). Each transac- 
tion is run as an atomic unit against the database, and the results are given to 
the users. 

In this section we investigate the applications of BA in this environment. We 
start by making three simplifying assumptions about transactions. 

Rl. Tranmctiom contain user authentication information. Transactions from 
unauthorized users are discarded by the database system. Hence we ignore 
malevolent users in our discussions. 

R2. Each transaction originates from a single user. The user can be a military 
commander, a customer at an automatic teller machine, or a company manager. 

In some cases a command or transaction (e.g., fire a missile) must come from 
several users (e.g., the president and a commander) before it can be executed. To 
satisfy assumption R2, we can simply view this case as a collection of single user 
transactions. Each transaction records in the database the fact that one more 
user has authorized the command, and, when the required number is reached, 
the target command is executed. 

R3. The input/output functions are performed by input/output nodes that are 
different from the processing nodes. As we will shortly see, certain computations 
must be performed when receiving a transaction from a user (input) and 
when displaying results (output). We consider the nodes that perform these 
ACM Transactions on Data&e Systems, “0,. 11. No. 1, March 1986. 
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computations to be separate from the data processing nodes, so that we may 
make different failure assumptions about them. Of course, in reality, a single 
node may perform all functions. 

The next step (as in the previous section) is to specify the types of failures 
that we consider and our correctness criteria. Since we are interested in appli- 
cations of BA, we select the failure assumptions that were used for BA: the n 
data processing nodes are either perfect or insane, and there are at most m insane 
nodes. (We would prefer to have only sane and insane nodes, but recall that BA, 
as well as reliable data processing, is not feasible in this environment.) We 
continue to make assumptions Nl, N2, Tl, T2, and T3. The assumptions for 
input/output nodes are discussed later. 

Since data processing is considerably more complex than BA, we cannot give 
a precise definition of correctness. But, intuitively, we want the system to satisfy 
the following conditions. (In stating these conditions we have to strike a balance 
between what is desirable and what is reasonable to expect from a system.) 

Cl. Users should obtain the sane results from the system that they would obtain 
from on ideal system where no failures occur. Specifically, if T is the set of 
transactions submitted to the (real) system, then there must be some serial 
schedule S of a subset of T that if executed on the ideal system would yield 
exactly the same results and would leave the database in the same state. 

C2. If a transaction T; is submitted at a perfect input node, then T; will be in 
the resulting schedule S. 

Note that the system does not necessarily have to process transactions sub- 
mitted at faulty input nodes. However, if the system executes a transaction (even 
one from a faulty input node), it must be precisely what the user submitted. For 
example, if a user submits a transaction to withdraw 10 million dollars, either 
that exact operation is performed, or nothing is done. Withdrawing 9.9 million 
is not considered correct. 

From the point of view of the users it would be preferable if the system 
guaranteed the correct execution of all transactions, but we feel this would place 
an unreasonable responsibility on the input nodes. At the other extreme, the 
design of the database system would be simpler if the users could tolerate some 
modifications in their transactions. This may be the case in some applications, 
but not in general. For instance, in a flight control application, the altitude and 
speed are read off sensors, and used to compute the settings of the throttle and 
wings. In such a case readings off the sensors (i.e., the input transactions) could 
be useful even if they were “slightly off.” Even if we knew the application (which 
we do not), it would be very difficult to define precisely which deviations would 
be acceptable and which would not. 

Hence we take conditions Cl and C2 as a reasonable compromise for ageneral- 
purpose data processing system. Users will have to cops with the fact that their 
transactions may not be executed. (For instance, if their terminal appeared dead, 
they would switch to another one. If a missile had to be tired, they would write 
their “fire missile” transactions so that any 2 of 3 would cause the missile to be 

ACM Transactiona on Databsse Systems, Vol. 11. No. 1, March 1986. 



36 * H. Garcia-Molina, et al. 

fired.) On the other hand, the system guarantees’ that what it does execute is 
correct. 

Conditions Cl and C2 do not specify in any way the time at which a transaction 
will he executed (assuming it is executed). From the user’s point of view, this is 
not acceptable. For example, consider a user who submits the transaction T1 to 
withdraw 10 million dollars from an account. Clearly, the user would not be 
happy if T, were executed a year after it was submitted. Thus, within a reasonably 
short period of time, the user must know if T, was (or is being) executed or not. 
If it is not being executed, the user needs a guarantee that it will never be 
executed in the future. With this guarantee the user can then submit a second 
transaction T2 to retry the same operation. (Without the guarantee, the system 
could execute both T1 and T2.) Thus we have the following condition. 

C3. The time to commit a transaction is bounded. Suppose that transaction Tl 
is submitted by a user at time ao. Then the system will make a commitment on 
T,; that is, it will decide whether or not to execute Tl by time 01~ + 6, where 6 is 
a constant provided by the system designers. The commit decision is irreversible. 

Note that C3 does not give users a guaranteed termination time. The time at 
which a transaction completes depends on the load other transactions place on 
the system, and is hence very difficult to bound. Similarly, note that C3 leaves 
the system free to execute transactions in any relative order. So that in an ideal 
system T, may find sufficient funds in the account for the withdrawal, but in a 
real one it may not. This is acceptable as long as the resulting schedule is 
equivalent to some serial schedule. 

Having defined our correctness criteria, we now discuss how such a system 
could be constructed, and what additional assumptions have to be made. We 
start by considering the placement of the database. Suppose we have a single 
copy located at node N,. If Ni were insane, it could do whatever it wished with 
the database. The database could easily be ruined, and this would violate 
condition Cl. Assuming that A’, is perfect is not reasonable either, so, clearly, we 
cannot have a single copy of the database. 

The solution is to replicate the database at several nodes. Since there can be 
up to m insane nodes, we need at least m + 1 copies to ensure that at least one 
perfect node manages the data correctly. Unfortunately, we cannot tell which is 
the perfect node, so m + 1 copies are not enough. We actually need 2m + 1 
copies. This way we can identify the correct results as those coming out of a 
majority of the cop&s (The number of nodes n must be greater than or equal to 
2m + 1.) 

In addition to having 2m + 1 copies, it is also necessary that all perfect nodes 
execute exactly the same transactions, in the same order. Otherwise, the databases 

‘The “fine print” in this guarantee will he discussed in a moment. 
‘Although we do not discuss it here, we could also use a weighted majority scheme, where nodes that 
are less likely to fail would carry more weight. The votes could also be adjusted dynamically as 
failures occur. See 129, p. 1491 for details. 

Also note that if a clock synchronization protocol is used for assumption TI, there could be an 
additional constraint on the number of copies that are needed to tolerate m failures. Fortunately, 
there are protocols that can operate with up to m failurea out of 2m + 1 processing nodes 
,183, 20, 221. 
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at the perfect nodes may diverge, and it will not be possible to identify the correct 
ones by the majority mechanism. (Actually, the actions of the transactions can 
be executed in different order at each node, as long as the resulting execution 
schedules are all equivalent.) 

The strategy of replicating processing and voting on outputs has been called 
the state-machine approach [19,2S], and is well known, especially in the construc- 
tion of reliable hardware [27, 291. What we are doing here is simply pointing out 
that the BA failure assumptions force us into this type of processing. We now 
search for applications of BA in this environment. 

Incidentally, the operations we are dealing with here (i.e., the database trans- 
actions executed at each node) are higher level than what is typically used in 
redundant systems. We could just as well use lower level operations (e.g., disk 
reads and writes), hut we feel that this would increase the cost of guaranteeing 
that the same sequence of operations is executed at each node. In other words, 
transactions are usually the most compact way to represent the operations on 
the database: a transaction is typically a call to a predefined program (e.g., 
“reserve a seat on flight 784”) or a sequence of high-level relational commands. 
Of course, in cases where this is not true, the lower level operation may be more 
appropriate (for instance, if transactions must he described by large portions of 
code and if they access a minimal part of the database). 

(We have also decided to do the database computations for a transaction at 
the same node where the data is located. This appears to be the best strategy for 
database transactions, but in cases where transactions must perform a lot of 
computing, relative to the amount of data they access, it may be more effective 
to move the computations to another node [28].) 

Notice that this full replication environment is very different from conven- 
tional distributed database processing [13, 15, 26, 31, 331 because there is little 
communication between the nodes. The nodes must agree among themselves as 
to what the input transactions will be (discussed in subsection 4.2). The outputs 
of each transaction must also be compared in order to select the majority, correct 
one (discussed in subsection 4.1). But, unlike conventional processing, here nodes 
do not have to communicate to execute the transactions. A node does not have 
to request locks from the other nodes, and there can he no global deadlocks. 
There is no need to decide what node will execute a transaction, they all do. The 
updates made by a transaction do not have to be broadcast to other nodes: 
all (perfect) nodes will make the same updates automatically. (Another 
important difference between the two environments is, of course, cost (discussed 
in Section 4.6).) 

4.1 Outputs 

Consider a transaction T submitted to the system by a user. After T is executed 
at 2m + 1 nodes, at least m + 1 will have the correct result, n. We now need 
some mechanism to convey this result to the user. The mechanism will obtain 
the 2m + 1 results of T, select the majority value and display it, say, on the user’s 
terminal. Following assumption R3, we call this mechanism an output node. 

This output node is now a critical component, and cannot he insane. Otherwise 
it could invalidate the results of the processing nodes by conveying garbage to 
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the users. Since we have assumed that nodes can either he insane or perfect, we 
are forced to dictate that the output node be perfect. However, this seems overly 
restrictive: so far we have only required that m + 1 out of 2m + 1 processing 
nodes be perfect, yet now we are requiring all output nodes to be perfect. 

There are basically two ways out of this dilemma. The first is to move the 
output node to the user’s head. That is, the user could directly examine the 
2m + 1 results of his transaction and perform the majority operation himself. 
This seems unsatisfactory for two reasons: first, the burden of failure should be 
placed on the system rather than on the user; second, users themselves are not 
always perfect. 

The other alternative is to relax the failure model for output nodes. Since an 
ouput node performs a very simple function, it is easy to see what failures it 
could tolerate. It could lose or modify the outputs of some processing nodes as 
long as the majority, correct results were not altered. It could also crash, giving 
the user his results later, or not giving them at all. Since the system makes no 
guarantees about the completion time of a transaction, the crash of an output 
node is acceptable; that is, output nodes can be sane, as discussed in Section 2. 
When a user submits a transaction and fails to get the output, he can submit a 
query (directing the output to a different device) to see if his transaction 
committed, and, if so, what the results were. 

4.2 Inputs 

An input node is also a critical component. It must take a single transaction or 
command and distribute it to the processing nodes. And, as with output nodes, 
this critical component cannot be eliminated. If we ask the user to submit his 
transaction several times, we are only moving the distribution function to the 
user. 

Again, it is not reasonable to assume that all input nodes are perfect. However, 
in the rest of this subsection, let us temporarily make this assumption and briefly 
study how the input transactions would be distributed to the processing nodes. 
Understanding this process with perfect nodes will then make it easier to 
understand this process with faulty nodes. Then, in Sections 4.3 and 4.4, we will 
explore other failure models for input nodes. 

To satisfy condition Cl, the processing nodes must execute the same sequence 
of transactions. Since the input nodes are perfect, they can agree on this sequence 
without using BA. For example, each input node 4 (1 5 j 5 r) can number the 
transactions it generates as Tj,,, Tj,2, Tj.s, The processing nodes will then 
process the transactions in the order Tl,,, T2,1, , T,J, T,,s, Tz.2, , Tr,z, 
T,,z, All perfect processing nodes will receive identical transactions, and 
hence will not have to compare their inputs with each other in BA fashion. 

A few observations about this solution are in order: 

(i) If two conventional database systems are given identical sequences of 
transactions, they may still process them in different orders (due to the random- 
ness of some internal states, for instance, the position of the disk heads with 
respect to the platters). In our environment this cannot be permitted, since all 
nodes must have the same “final” state. Therefore, all processing nodes must 
ensure that the resulting execution schedule is equivalent to the serial schedule 
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T1,l, &, There are a number of straightforward techniques for doing this. 
(ii) Conditions C2 and C3 are trivially satisfied. Actually, the bound S of 

C3 is 0. 
(iii) With the above scheme, transaction processing will proceed at the rate of 

the slowest input node. That is, transaction Tj,b cannot cannot be processed until 
7’,,+, for all i have been processed. To avoid this problem, we can set up the 
following convention. Input nodes transmit one transaction, ‘Z+, every n time 
units. If a processing node does not receive a transaction from I, m ~7 units, then 
I;,* is taken to be a null transaction. If I, needs to transmit more than one 
transaction in fl units, it numbers them T,,,,, Tj,.k,Z, , and they are all processed 
as a single transaction. This solution relies on the synchronized clocks that 
perfect input nodes have. 

4.3 Lazy Input Nodes 

In our first model for input nodes we assume that when a processing node receives 
a transaction from an input node, then the transaction is correct, in the sense 
that the transaction was indeed submitted by a user. However, an input node 
may fail to send the transaction to some or all processing nodes, may wait 
arbitrary amounts of time between transmissions, and may send transactions in 
any order. Let us refer to this type of input node as lazy. (A lazy node is not 
necessarily sane because it can send out messages in any order and at any time.) 

To use this model, we must make an additional assumption. Note that an input 
node could hold a transaction arbitrarily long before broadcasting it, violating 
condition C3. Also, the input node could broadcast it promptly to an insane 
processing node but then die. The insane node could then wait arbitrarily long, 
broadcast this transaction, and have the perfect nodes execute it. 

To avoid these problems, we make input nodes attach a timestamp to each 
transaction, giving its arrival time. This timestamp can then be used by the 
processing nodes to discard old transactions. We must assume that input nodes 
have synchronized clocks (assumption Tl) and that timestamps on transactions 
reflect the true arrival time.’ 

With these assumptions it is possible to build a system that satisfies the 
correctness conditions, but BA must now be used to ensure that perfect nodes 
execute identical sequences of transactions. We now outline one possible solution. 

Let us say that the processing nodes agree to perform BA every Q time units.’ 
Also, let t, be an estimate of the time it takes an input node to process an 
incoming transaction. (If a node exceeds this time, its transaction will not be 
processed.) 

(1) Each processing node collects transactions received from the input nodes. 
(2) At time iQ each node selects the transactions with timestamps between 

(i - l)O - (T + to + t,) and i!7 - (r + tD + t,). (Recall that 7 is the maximum 
clock drift and tD is the guaranteed network delivery time.) After time iti, 
transactions arriving with a timestamp less than iQ - (r + tD + t,) are discarded. 

7 The input m&s could have a larger drift T than the processing nodes. This would only increase the 
commit bound of condition C3. We do not consider this option here. 
’ 0 can have any value. It can be smaller or larger than 7 + (m + l)(t~ + t.), the duration of each BA. 
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(3) At time i0 each processing node (acting as a general) broadcasts the 
selected transactions using BA. The start time of the BA algorithm is iQ. The 
messages of the algorithm can be distinguished from those of previous and future 
executions because only they deal with transactions with timestamps between 
(i - 1)Q - (7 + tD + t,) and in - (7 + TV + t,). 

(4) At time iQ + r + (m + l)(tD + t,) the BAs complete. Each perfect processing 
node has the same set of transactions. These are ordered (say lexicographically, 
or by timestamp) and executed after the transactions of the previous cycle 
complete. (As discussed in Section 4.2, nodes must ensure that the actual 
execution schedule follows this ordering.) 

With this strategy, 6, the bound required by condition C3, is the time for a 
transaction to reach the processing nodes (T + to + t7) plus the worst-case delay 
for the start of BA (Q) plus the time to complete the agreement (T + (m + 1) 
.(b + h)). 

4.4 Erratic input Nodes 

A lazy node must transmit valid transactions with valid timestamps. Suppose we 
relax this restriction. Let us say that an erratic input node acts as a lazy node, 
except that it can transmit an erroneous transaction T’ (possibly with an 
erroneous timestamp) to some processing nodes, instead of Z’, the transaction 
actually submitted by the user. Let us assume that an erratic node will transmit 
a given erroneous transaction 7” to at most 4 processing nodes. 

To satisfy condition Cl, the processing nodes can under no circumstances 
execute T’ instead of or in addition to 7’. Thus the processing nodes are forced 
to use voting to identify a correct transaction like 2’. However, we need to 
increase the number of processing nodes in order to guarantee that an erroneous 
transaction never gets a majority of votes. 

For example, suppose that m, the maximum number of insane processing 
nodes, is 2 and that the system has 5 nodes. If one of the perfect nodes receives 
T’, the 2 insane ones could also say that they received T’, and this erroneous 
transaction would be processed because it had a majority of votes. However, if 
we increased the number of processing nodes to 6 (without changing m), then 
the nodes would not have a majority. In general, if T’ can be received by 4 nodes, 
we need to have at least 2(q + m) processing nodes to prevent an erroneous 
transaction from being processed. 

Given that there are at least 2(q + m) processing nodes (or 2711 + 1 if q is O), 
then the algorithm for inputting transactions is almost identical to the one for 
lazy nodes. The only difference is in step (4), where now only transactions 
received at a majority of nodes are executed. 

Our input node models form a hierarchy. The strongest model, that is, the one 
that makes the most assumptions, is the perfect model. As discussed in Section 
4.2, if input nodes are perfect, no BA in needed. The lazy model makes fewer 
assumptions; and with it processing nodes must use BA to agree on the input 
transactions. The erratic model makes even fewer assumptions, but requires the 
addition of 2q - 1 processing nodes; and processing nodes must still use BA. The 
weakest model is the insane model; but with it condition Cl cannot be satisfied. 
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Fig. 3. Recovery from insanity. 

4.5 Recovery From Insanity 

Continuing our discussion of data processing with insane nodes, in this subsection 
we briefly address node recovery. Up to this point we have assumed that insanity 
is a permanent node property. However, it is desirable to repair insane nodes so 
that the system can then tolerate additional failures. 

Figure 3 illustrates what we mean. There are 3 nodes in this system, so only a 
single failure can be tolerated. Suppose that Na fails at time al. From that point 
on its database may be ruined, and its results are not trustworthy. If we do not 
repair N3, no failures of N1 and Nz can ever be tolerated. This is clearly not 
desirabhzs 

As discussed earlier (Section 3), the perfect nodes cannot be responsible for 
detecting an insane node like Ns. Instead, we must assume that N3 detects its 
own failure. This is most easily accomplished by monitoring the outputs of all 
nodes. If its own output is different from that produced by a majority of the 
nodes, N3 would identify itself as faulty. Alternately, the nodes could periodically 
compare their copies of the database. Of course, the comparisons could be made 
directly or through the use of database “checksums” or “signatures.” In all cases, 
however, node N3 must detect its own failure. 
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By time 01s, the failure has been detected and N3 must reconstruct its database 
copy. (Node Ns may also have to repair other components, such as its clock or 
internal state tables, hut we concentrate on the repair of the database itself.) 
Given that transactions are executed in timestamp order, the following steps can 
be used. First, N3 selects a recovery time (01s) and broadcasts it to the other 
nodes. (It does not matter whether the time is selected from the past or the 
future. However, for ease of discussion we assume the time is in the future.) At 
the appointed time, with regard to transaction timestamps, each perfect node 
takes a “snapshot” of their local database copy. (Only transactions with a 
timestamp prior to the recovery time are reflected in the snapshot.) These 
snapshots are used by Ns to reconstruct its own database. During the snapshot 
exchange period, a3 to a,, the perfect nodes must continue processing transac- 
tions, even if at a reduced rate. (A single insane failure should never halt the 
system.) Therefore, Ns must record any transactions that arrive after time o3, 
postponing their processing until time a,. After time a,, Ns must catch up to the 
other nodes in the system. At any time after a,, even before N3 is fully caught 
up, the system can tolerate a second failure, say at time a~. 

As with most algorithms, there are performance trade-offs associated with 
different implementations of detection and recovery. For example, hierarchical 
signatures could he used to identify portions of the database that have been 
corrupted, reducing the amount of data that must be exchanged during recovery. 
Additionally, the snapshots themselves may be implemented using many different 
methods, each with its advantages and disadvantages. A full examination of these 
problems is the focus of current research, and as such is beyond the scope of this 
paper. 

4.6 Cost of Full Replication 

The cost of full data and processing replication is high, so it must obviously be 
considered when a system is designed. Specifically, for each insane failure we 
wish to tolerate we must add to the system 2 processing nodes, each with a copy 
of the database. 

This can be contrasted to the cost of tolerating a sane node failure. If 
availability is not important, no extra hardware is needed: when a node fails its 
data becomes inaccessible, but when it comes up the data will he correct. If 
availability is important, one spare node is needed per failure. Furthermore, the 
sane node algorithms usually have a lower message overhead. 

Of course, the higher costs of full replication buy higher reliability, and both 
reliability and cost must be considered in making a decision. A full replication 
system can tolerate m insane failures, while even a single one of these failures 
could make a nonreplicated system yield incorrect results. 

It is also important to note that full replication provides “comparable” protec- 
tion against sane failures as a nonreplicated system (with equivalent hardware). 
That is, a properly designed full replication system with 2m + 1 processing nodes 
can tolerate not m, but 2m sane node failures and still give users prompt access 
to correct data. (Recall that the BA algorithm that distributes transactions 
guarantees agreement among all perfect nodes, regardless of how many there 
are.) If the failed nodes stop after a failure, then it is still possible to identify the 
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correct result (i.e., those at the operating sites). More than this number of sane 
failures makes the data unavailable but not incorrect. Thus the reliability that a 
full replication system can provide, with respect to sane failures, is comparable 
to (and not less than) that of a single node with 2m spares or backups.‘0 Note 
that in general a system with n processing nodes can tolerate x sane failures and 
y insane failures and still make correct data available, as long as n - I 2 2y + 1. 

Full replication is expensive, but there are a number of ways to control its cost: 
(1) A fast, local area network can be used to interconnect the nodes. This 

reduces the communication costs associated with BA. 
(2) Only the critical parts of the database can be replicated. For example, in a 

bank database it may only be necessary to handle reliably the balances of 
accounts, Other data (e.g., customer addresses and credit history) could be 
handled with a single copy, thus reducing considerably the storage requirements. 
(One limitation: a transaction should not update critical data based on values of 
noncritical data.) 

(3) If the replicated database is relatively small or if the network has large 
bandwidth, the crash recovery mechanisms (e.g., logging, shadow pages) for each 
copy can be eliminated. After a failure is detected the entire database can be 
copied from the other sites (see Section 4.5). This makes each processing node 
substantially more efficient for processing transactions during normal operation. 

(4) Read-only transactions that are not critical can be processed as a single 
node. Again, this reduces the amount of work that has to be performed by the 
nodes. 

(5) If all of the above ideas are combined, we can arrive at an “intelligent 
backup storage device” model. Here a large computer has a copy of the entire 
database and handles all transactions. A critical hut relatively small part of the 
database is fully replicated at a number of smaller processors, the intelligent 
backup devices. These processors only have to execute the update transactions 
and the critical read operations, and do not keep any local recovery data. Under 
the right circumstances the processing load at each device will be relatively small, 
making it feasible to use inexpensive microprocessors. Thus the devices are 
similar to backup disks, except that instead of receiving commands to write 
blocks of data, they receive transactions and execute them themselves. Given the 
current cost of microprocessors, this approach seems to be an effective alternative 
to passive backup copies. 

5. ANY OTHER USES OF BA? 

So far we have studied data processing in an environment where (processing) 
nodes are either insane or perfect. Applying this failure model to critical com- 
ponents such as input/output nodes forced us to assume that they were perfect, 
hence there was no need for Byzantine agreement. This is because with data 

“Nate that lost messages where the loss is not detected by the sender (violation of assumption T2) 
must still be treated as an insane failure in the full replication system. Thus it could only tolerate m 
ofthese failures. A nonreplicated system could tolerate more of these failures hy introducing indefinite 
delays: the sender keeps on transmitting a message until it.receives an acknowledgment, and the 
receiver keeps waiting until it receives a message it is expecting. 
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processing we have a strict definition of correctness, where results that are “close” 
to the correct ones are not adequate. (However, in specific applications, where 
inputs are read off sensors or clocks, BA can be useful.) 

We then relaxed the failure model for input/output nodes and identified one 
important application of BA: agreement of inputs from lazy and erratic nodes. 
Are there others? 

We believe that the answer is no. In this environment all data and processing 
is fully replicated, and there is little interaction between the nodes. Once the 
nodes agree on the sequence of input transactions, there is nothing else they 
must do as a group. 

It has been suggested that BA could he used to commit the transactions when 
they complete (as in conventional database systems), as opposed to committing 
them when they are submitted, as we have done so far. In this scenario nodes 
could process transactions in any order, and would constantly “vote” on which is 
the next transaction to complete. This way the transactions are committed in 
the same order, and the resulting schedules at all nodes would be equivalent. 

The following example illustrates a serious flaw with this strategy. Suppose 
that m of the perfect nodes vote to commit transaction T, and the last perfect 
node, jVi, votes to abort. (For example, due to the order in which A’, executed the 
transactions, T is involved in a deadlock and must be aborted.) Without iV; we 
cannot commit 7Y we would not have the required m + 1 correct results. Thus 
processing nodes must abort a transaction whenever one or more nodes vote to 
abort. But if we do this, then the insane nodes will be able to paralyze the system 
by voting abort on all transactions! So, clearly, processing nodes should not wait 
until the end of a transaction to decide if it can be committed. 

It has also been suggested that BA could decide upon the participants in the 
data processing algorithms. That is, using BA, nodes could agree on the set of 
processing nodes and on the set of input/output nodes. However, the data 
processing algorithms will work properly even if the nodes have different views 
of who is participating. 

For example, consider a system with five processing nodes that is to grow to 
seven nodes. The system administrator can simply inform the nodes of this 
change. During the change, some nodes may think there are seven nodes, while 
others may think there are five. In this period those with a live-node view will 
ignore messages from the new nodes, and the new nodes in turn will think that 
those nodes are insane. Nevertheless, the original five nodes will function 
correctly, giving protection against two failures. When all nodes have a seven- 
node view, the system will tolerate three failures. Hence we see that BA is not 
required for changing the system participants. 

5.1 BA with Sane Nodes 

Finally, it has been suggested that BA could be used in a failure scenario where 
all nodes are sane. If processing nodes are sane, then we have what is considered 
conventional distributed data processing. Databases and transaction processing 
no longer need to be fully replicated. A single transaction may span several 
nodes. Internode concurrency control is needed, and a two-phase commit protocol 
[14] (or one of its variants) must be used to terminate transactions. 
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There are two ways in which BA protocols could he used in this environment. 
One is to assume that there are certain critical system operations (e.g., transaction 
commit, directory updating, or coordinator election) that require the higher 
reliability provided by BA protocols. In this case the system component that 
handles these operations is designed so that it can withstand insane node failures, 
while the rest of the system cannot. The data used by the critical component are 
replicated at all nodes, and the update “transactions” that are going to be 
processed against this data are handled by a BA protocol, as discussed in Section 
4. (Thus, even though we are saying that a BA protocol is being used to elect a 
coordinator or to locate a tile, the protocol itself is still being used to distribute 
inputs.) 

There are a few potential problems with this approach. One is that the BA 
algorithms make no guarantee about the behavior of the failed nodes, and this 
may be unacceptable in a sane environment (i.e., where the database is not 
replicated). For example, if a BA algorithm is used to commit a transaction, a 
failed node is free to abort the transaction, even if the active nodes commit it. 
Of course, to avoid this problem, we may assume that the failed node is not really 
insane, hut if this is done then a BA protocol may he unnecessary. 

A second problem with this approach is that it may be an overkill. From the 
point of view of the system, it may be important to selectively protect certain 
components from arbitrary failures. Thus it may be valuable for the system 
administrator to know that the directory has an extremely low probability of 
being incorrect, even though the files it points to have a higher probability of 
being incorrect. However, from the point of view of the end-user of the database, 
this extra reliability may not be significant. That is, the end-user still has a single 
copy of his database, so a single insane failure will render it useless. The added 
robustness of, say, the directory is not very valuable: it is just as bad to get the 
valid location of an incorrect file as it is to get the invalid location of a correct 
file. In either case the user gets incorrect data. If the user really desires protection 
against insane failures, we should protect everything (as discussed in Section 4), 
and not just a few of the data processing steps: “A chain is as strong as the 
weakest of its links.” 

Note that we are not ruling out the use of BA protocols in a sane node 
environment. We are only stating that they must be used with caution, clearly 
identifying the users that require reliable data and protecting all of the data that 
these users need, directly or indirectly. 

A second way to use BA protocols in a sane node environment is to modify 
them so that they take advantage of the sanity of the nodes. That is, if we know 
that the nodes are sane, then the BA algorithms can he simplified and the number 
of messages that have to be sent can be reduced. (For example, if a node receives 
a message from a second node saying that a transaction has committed, the node 
can immediately commit the transaction, without checking the veracity of the 
information.) We have absolutely no objection to this approach, and, as a matter 
of fact, the modified algorithms one obtains in this fashion are very similar, if 
not identical, to the “conventional” algorithms. Thus a modified BA commit 
protocol is very similar to a three-phase commit with termination protocol [30]. 
(A termination protocol decides the fate of a transaction in case the coordinator 
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fails.) A modified BA algorithm used to elect a coordinator is very similar to 
“conventional” protocols [13]. The only question in such a case is whether a BA 
protocol without the original insane node assumptions and the code to cope with 
insanity should still be called a BA protocol. 

6. CONCLUSIONS 

In this paper we have studied BA algorithms and their application to distributed 
data processing. We presented a distributed processing system similar to the 
state machine approach, and discussed the assumptions and conditions that 
specified the desired correctness of the system. The main use of BA appears to 
be in the distribution of transactions in an environment where processing nodes 
are insane or perfect and where input nodes are lazy or erratic. 

Our search of BA applications has lead us to conclude that uses outside of 
input distribution may be limited. However, these observations must, of course, 
be treated with caution since we have only addressed a single area: general- 
purpose, distributed database processing. We would expect, and indeed we know, 
that BA has other applications outside data processing. For example, BA may be 
useful (although not necessary) in clock synchronization algorithms and in the 
construction of sane or fail-stop nodes [27]. As discussed in Section 4, BA can 
also be used to process inputs from sensors or other unreliable sources. However, 
in all of these other areas, BA protocols seem to be used in the same way they 
were used in data processing (i.e., to distribute inputs to a set of replicated 
processors). Finally, we must also point out that we made a number of assump- 
tions in this paper (Nl, N2, Tl-T3, Rl-R3). Although we believe that these are 
only simplifying assumptions and do not change the essence of our conclusions, 
we have no formal way of proving this. 
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