
ICOM 4015: Advanced
Programming	

Lecture 13

Big Java by Cay Horstmann
Copyright © 2009 by John
Wiley & Sons. All rights
reserved.

Reading: Chapter Thirteen: Recursion

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Chapter 13 – Recursion

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Chapter Goals

•  To learn about the method of recursion

•  To understand the relationship between recursion and iteration

•  To analyze problems that are much easier to solve by recursion
than by iteration

•  To learn to “think recursively”

•  To be able to use recursive helper methods

•  To understand when the use of recursion affects the efficiency of
an algorithm

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Triangle Numbers

•  Compute the area of a triangle of width n

•  Assume each [] square has an area of 1

•  Also called the nth triangle number

•  The third triangle number is 6

 []
[][]
[][][]

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Outline of Triangle Class

public class Triangle
{
 private int width;
 public Triangle(int aWidth)
 {
 width = aWidth;
 }
 public int getArea()
 {
 ...
 }
}

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Handling Triangle of Width 1

•  The triangle consists of a single square

•  Its area is 1

•  Add the code to getArea method for width 1

 public int getArea()
{
 if (width == 1) { return 1; }
 ...
}

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Handling the General Case

•  Assume we know the area of the smaller, colored triangle:

 []
[][]
[][][]
[][][][]

•  Area of larger triangle can be calculated as:

 smallerArea + width

•  To get the area of the smaller triangle
•  Make a smaller triangle and ask it for its area:

 Triangle smallerTriangle = new Triangle(width - 1);
int smallerArea = smallerTriangle.getArea();

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Completed getArea Method

public int getArea()
{
 if (width == 1) { return 1; }
 Triangle smallerTriangle = new Triangle(width - 1);
 int smallerArea = smallerTriangle.getArea();
 return smallerArea + width;
}

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Computing the area of a triangle with width 4

•  getArea method makes a smaller triangle of width 3

•  It calls getArea on that triangle

•  That method makes a smaller triangle of width 2

•  It calls getArea on that triangle

•  That method makes a smaller triangle of width 1

•  It calls getArea on that triangle

•  That method returns 1

•  The method returns smallerArea + width = 1 + 2 = 3

•  The method returns smallerArea + width = 3 + 3 = 6

•  The method returns smallerArea + width = 6 + 4 = 10

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Recursion

•  A recursive computation solves a problem by using the solution
of the same problem with simpler values

•  For recursion to terminate, there must be special cases for the
simplest inputs

•  To complete our Triangle example, we must handle width <=
0:

 if (width <= 0) return 0;

•  Two key requirements for recursion success:
•  Every recursive call must simplify the computation in some way

•  There must be special cases to handle the simplest computations directly

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Other Ways to Compute Triangle Numbers

•  The area of a triangle equals the sum:

 1 + 2 + 3 + ... + width

•  Using a simple loop:

 double area = 0;
for (int i = 1; i <= width; i++)
 area = area + i;

•  Using math:

 1 + 2 + ... + n = n × (n + 1)/2
 => width * (width + 1) / 2

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Animation 13.1

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch13/triangle/Triangle.java

 /**
 A triangular shape composed of stacked unit squares like this:
 []
 [][]
 [][][]
 . . .
 */
 public class Triangle
 {
 private int width;

 /**
 Constructs a triangular shape.
 @param aWidth the width (and height) of the triangle
 */
 public Triangle(int aWidth)
 {
 width = aWidth;
 }

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch13/triangle/Triangle.java (cont.)

 /**
 Computes the area of the triangle.
 @return the area
 */
 public int getArea()
 {
 if (width <= 0) { return 0; }
 if (width == 1) { return 1; }
 Triangle smallerTriangle = new Triangle(width - 1);
 int smallerArea = smallerTriangle.getArea();
 return smallerArea + width;
 }
 }

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch13/triangle/TriangleTester.java

Program Run:
Enter width: 10
Area: 55
Expected: 55

 public class TriangleTester
 {
 public static void main(String[] args)
 {
 Triangle t = new Triangle(10);
 int area = t.getArea();
 System.out.println("Area: " + area);
 System.out.println("Expected: 55");
 }
 }

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Self Check 13.1

Why is the statement

if (width == 1) { return 1; }

in the getArea method unnecessary?

Answer: Suppose we omit the statement. When computing
the area of a triangle with width 1, we compute the area of the
triangle with width 0 as 0, and then add 1, to arrive at the
correct area.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Self Check 13.2

How would you modify the program to recursively compute the
area of a square?

Answer: You would compute the smaller area recursively, then
return

 smallerArea + width + width - 1.

[][][][]
[][][][]
[][][][]
[][][][]

 Of course, it would be simpler to compute

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Tracing Through Recursive Methods

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Thinking Recursively

•  Problem: Test whether a sentence is a palindrome

•  Palindrome: A string that is equal to itself when you reverse all
characters

•  A man, a plan, a canal – Panama!

•  Go hang a salami, I’m a lasagna hog

•  Madam, I’m Adam

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Implement isPalindrome Method

public class Sentence
{
 private String text;
 /**
 Constructs a sentence.
 @param aText a string containing all characters of
 the sentence
 */
 public Sentence(String aText)
 {
 text = aText;
 }

 /**
 Tests whether this sentence is a palindrome.
 @return true if this sentence is a palindrome, false
 otherwise
 */

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Implement isPalindrome Method (cont.)

public boolean isPalindrome()
 {
 ...
 }
}

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Thinking Recursively: Step-by-Step

1.  Consider various ways to simplify inputs

 Here are several possibilities:

•  Remove the first character

•  Remove the last character

•  Remove both the first and last characters

•  Remove a character from the middle

•  Cut the string into two halves

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Thinking Recursively: Step-by-Step

2.  Combine solutions with simpler inputs into a solution of the
original problem
•  Most promising simplification: Remove first and last

characters
 “adam, I’m Ada” is a palindrome too!

•  Thus, a word is a palindrome if
•  The first and last letters match, and
•  Word obtained by removing the first and last letters is a palindrome

•  What if first or last character is not a letter? Ignore it
•  If the first and last characters are letters, check whether they match;

if so, remove both and test shorter string
•  If last character isn’t a letter, remove it and test shorter string
•  If first character isn’t a letter, remove it and test shorter string

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Thinking Recursively: Step-by-Step

3.  Find solutions to the simplest inputs

•  Strings with two characters
•  No special case required; step two still applies

•  Strings with a single character
•  They are palindromes

•  The empty string
•  It is a palindrome

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Thinking Recursively: Step-by-Step

4.  Implement the solution by combining the simple cases and the
reduction step

 public boolean isPalindrome()
{
 int length = text.length();
 // Separate case for shortest strings.
 if (length <= 1) { return true; }
 // Get first and last characters, converted to
 // lowercase.
 char first = Character.toLowerCase(text.charAt(0));
 char last = Character.toLowerCase(text.charAt(
 length - 1));
 if (Character.isLetter(first) &&
 Character.isLetter(last))
 {
 // Both are letters.
 if (first == last)
 {

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Thinking Recursively: Step-by-Step (cont.)

 // Remove both first and last character.
 Sentence shorter = new
 Sentence(text.substring(1, length - 1));
 return shorter.isPalindrome();
 }
 else
 return false;
 }
 else if (!Character.isLetter(last))
 {
 // Remove last character.
 Sentence shorter = new Sentence(text.substring(0,
 length - 1));
 return shorter.isPalindrome();
 }
 else
 {

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Thinking Recursively: Step-by-Step (cont.)

 // Remove first character.
 Sentence shorter = new
 Sentence(text.substring(1));
 return shorter.isPalindrome();
 }
}

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Recursive Helper Methods

•  Sometimes it is easier to find a recursive solution if you make a
slight change to the original problem

•  Consider the palindrome test of previous slide

 It is a bit inefficient to construct new Sentence objects in every
step

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Recursive Helper Methods

•  Rather than testing whether the sentence is a palindrome, check
whether a substring is a palindrome:

 /**
 Tests whether a substring of the sentence is a
 palindrome.
 @param start the index of the first character of the
 substring
 @param end the index of the last character of the
 substring
 @return true if the substring is a palindrome
*/

public boolean isPalindrome(int start, int end)

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Recursive Helper Methods

•  Then, simply call the helper method with positions that test the
entire string:

 public boolean isPalindrome()
{
 return isPalindrome(0, text.length() - 1);
}

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Recursive Helper Methods: isPalindrome

public boolean isPalindrome(int start, int end)
{
 // Separate case for substrings of length 0 and 1.
 if (start >= end) return true;
 // Get first and last characters, converted to
 // lowercase.
 char first = Character.toLowerCase(text.charAt(start));
 char last = Character.toLowerCase(text.charAt(end));
 if (Character.isLetter(first) &&
 Character.isLetter(last))
 {
 if (first == last)
 {
 // Test substring that doesn't contain the
 // matching letters.
 return isPalindrome(start + 1, end - 1);
 }
 else return false;

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Recursive Helper Methods: isPalindrome (cont.)

 }
 else if (!Character.isLetter(last))
 {
 // Test substring that doesn't contain the last
 // character.
 return isPalindrome(start, end - 1);
 }
 else
 {
 // Test substring that doesn't contain the first
 // character.
 return isPalindrome(start + 1, end);
 }
}

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Self Check 13.3

Do we have to give the same name to both isPalindrome
methods?

Answer: No — the first one could be given a different name
such as substringIsPalindrome.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Self Check 13.4

When does the recursive isPalindrome method stop calling
itself?

Answer: When start >= end, that is, when the investigated
string is either empty or has length 1.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Fibonacci Sequence

•  Fibonacci sequence is a sequence of numbers defined by

 f1 = 1
f2 = 1
fn = fn-1 + fn-2

•  First ten terms:

 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch13/fib/RecursiveFib.java

 import java.util.Scanner;

 /**
 This program computes Fibonacci numbers using a recursive method.
 */
 public class RecursiveFib
 {
 public static void main(String[] args)
 {
 Scanner in = new Scanner(System.in);
 System.out.print("Enter n: ");
 int n = in.nextInt();

 for (int i = 1; i <= n; i++)
 {
 long f = fib(i);
 System.out.println("fib(" + i + ") = " + f);
 }
 }

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch13/fib/RecursiveFib.java (cont.)

 /**
 Computes a Fibonacci number.
 @param n an integer
 @return the nth Fibonacci number
 */
 public static long fib(int n)
 {
 if (n <= 2) { return 1; }
 else return fib(n - 1) + fib(n - 2);
 }
 }

Program Run:

Enter n: 50
fib(1) = 1
fib(2) = 1
fib(3) = 2
fib(4) = 3
fib(5) = 5
fib(6) = 8
fib(7) = 13
...
fib(50) = 12586269025

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

The Efficiency of Recursion

•  Recursive implementation of fib is straightforward

•  Watch the output closely as you run the test program

•  First few calls to fib are quite fast

•  For larger values, the program pauses an amazingly long time
between outputs

•  To find out the problem, let’s insert trace messages

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch13/fib/RecursiveFibTracer.java

 import java.util.Scanner;

 /**
 This program prints trace messages that show how often the
 recursive method for computing Fibonacci numbers calls itself.
 */
 public class RecursiveFibTracer
 {
 public static void main(String[] args)
 {
 Scanner in = new Scanner(System.in);
 System.out.print("Enter n: ");
 int n = in.nextInt();

 long f = fib(n);

 System.out.println("fib(" + n + ") = " + f);
 }

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch13/fib/RecursiveFibTracer.java (cont.)

 /**
 Computes a Fibonacci number.
 @param n an integer
 @return the nth Fibonacci number
 */
 public static long fib(int n)
 {
 System.out.println("Entering fib: n = " + n);
 long f;
 if (n <= 2) { f = 1; }
 else { f = fib(n - 1) + fib(n - 2); }
 System.out.println("Exiting fib: n = " + n
 + " return value = " + f);
 return f;
 }
 }

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch13/fib/RecursiveFibTracer.java (cont.)

Program Run:
Enter n: 6
Entering fib: n = 6
Entering fib: n = 5
Entering fib: n = 4
Entering fib: n = 3
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Entering fib: n = 1
Exiting fib: n = 1 return value = 1
Exiting fib: n = 3 return value = 2
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Exiting fib: n = 4 return value = 3
Entering fib: n = 3
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Entering fib: n = 1
Exiting fib: n = 1 return value = 1 Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch13/fib/RecursiveFibTracer.java (cont)

Exiting fib: n = 1 return value = 1
Exiting fib: n = 3 return value = 2
Exiting fib: n = 5 return value = 5
Entering fib: n = 4
Entering fib: n = 3
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Entering fib: n = 1
Exiting fib: n = 1 return value = 1
Exiting fib: n = 3 return value = 2
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Exiting fib: n = 4 return value = 3
Exiting fib: n = 6 return value = 8
fib(6) = 8

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Call Tree for Computing fib(6)

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

The Efficiency of Recursion

• Method takes so long because it computes the same values over
and over

• The computation of fib(6) calls fib(3) three times

• Imitate the pencil-and-paper process to avoid computing the
values more than once

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch13/fib/LoopFib.java

 import java.util.Scanner;

 /**
 This program computes Fibonacci numbers using an iterative method.
 */
 public class LoopFib
 {
 public static void main(String[] args)
 {
 Scanner in = new Scanner(System.in);
 System.out.print("Enter n: ");
 int n = in.nextInt();

 for (int i = 1; i <= n; i++)
 {
 long f = fib(i);
 System.out.println("fib(" + i + ") = " + f);
 }
 }

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch13/fib/LoopFib.java (cont.)

 /**
 Computes a Fibonacci number.
 @param n an integer
 @return the nth Fibonacci number
 */
 public static long fib(int n)
 {
 if (n <= 2) { return 1; }
 long olderValue = 1;
 long oldValue = 1;
 long newValue = 1;
 for (int i = 3; i <= n; i++)
 {
 newValue = oldValue + olderValue;
 olderValue = oldValue;
 oldValue = newValue;
 }
 return newValue;
 }
 }

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch13/fib/LoopFib.java (cont.)

Program Run:
Enter n: 50
fib(1) = 1
fib(2) = 1
fib(3) = 2
fib(4) = 3
fib(5) = 5
fib(6) = 8
fib(7) = 13
...
fib(50) = 12586269025

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

The Efficiency of Recursion

•  Occasionally, a recursive solution runs much slower than its
iterative counterpart

•  In most cases, the recursive solution is only slightly slower

•  The iterative isPalindrome performs only slightly better than
recursive solution

•  Each recursive method call takes a certain amount of processor time

•  Smart compilers can avoid recursive method calls if they follow
simple patterns

•  Most compilers don’t do that

•  In many cases, a recursive solution is easier to understand and
implement correctly than an iterative solution

•  “To iterate is human, to recurse divine.” L. Peter Deutsch

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Iterative isPalindrome Method

public boolean isPalindrome()
{
 int start = 0;
 int end = text.length() - 1;
 while (start < end)
{
 char first =
 Character.toLowerCase(text.charAt(start));
 char last = Character.toLowerCase(text.charAt(end);
 if (Character.isLetter(first) &&
 Character.isLetter(last))
 {
 // Both are letters.
 if (first == last)
 {
 start++;
 end--;
 }

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Iterative isPalindrome Method (cont.)

 else
 return false;
 }
 if (!Character.isLetter(last))
 end--;
 if (!Character.isLetter(first))
 start++;
 }
 return true;
}

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Self Check 13.5

Is it faster to compute the triangle numbers recursively, as shown
in Section 13.1, or is it faster to use a loop that computes 1 + 2 + 3
+ . . . + width?

Answer: The loop is slightly faster. Of course, it is even faster
to simply compute width * (width + 1) / 2.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Self Check 13.6

You can compute the factorial function either with a loop, using the
definition that n! = 1 × 2 × ... × n, or recursively, using the
definition that 0! = 1 and n! = (n - 1)! × n. Is the recursive approach
inefficient in this case?

Answer: No, the recursive solution is about as efficient as the
iterative approach. Both require n - 1 multiplications to
compute n!.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Permutations

•  Design a class that will list all permutations of a string

•  A permutation is a rearrangement of the letters

•  The string "eat" has six permutations:

 "eat"
"eta"
"aet"
"tea"
"tae"

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Public Interface of PermutationGenerator

public class PermutationGenerator
{
 public PermutationGenerator(String aWord) { ... }
 ArrayList<String> getPermutations() { ... }
}

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch13/permute/PermutationGeneratorDemo.java

 import java.util.ArrayList;

 /**
 This program demonstrates the permutation generator.
 */
 public class PermutationGeneratorDemo
 {
 public static void main(String[] args)
 {
 PermutationGenerator generator = new PermutationGenerator("eat");
 ArrayList<String> permutations = generator.getPermutations();
 for (String s : permutations)
 {
 System.out.println(s);
 }
 }
 }

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch13/permute/PermutationGeneratorDemo.java (cont.)

Program Run:
eat
eta
aet
ate
tea
tae

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

To Generate All Permutations

•  Generate all permutations that start with 'e', then 'a', then
't'

•  To generate permutations starting with 'e', we need to find all
permutations of "at"

•  This is the same problem with simpler inputs

•  Use recursion

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

To Generate All Permutations

•  getPermutations: Loop through all positions in the word to
be permuted

•  For each position, compute the shorter word obtained by
removing ith letter:

 String shorterWord = word.substring(0, i) +
 word.substring(i + 1);

•  Construct a permutation generator to get permutations of the
shorter word:

 PermutationGenerator shorterPermutationGenerator
 = new PermutationGenerator(shorterWord);
ArrayList<String> shorterWordPermutations
 = shorterPermutationGenerator.getPermutations();

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

To Generate All Permutations

•  Finally, add the removed letter to front of all permutations of the
shorter word:

 for (String s : shorterWordPermutations)
{
 result.add(word.charAt(i) + s);
}

•  Special case: Simplest possible string is the empty string; single
permutation, itself

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch13/permute/PermutationGenerator.java

 import java.util.ArrayList;

 /**
 This class generates permutations of a word.
 */
 public class PermutationGenerator
 {
 private String word;

 /**
 Constructs a permutation generator.
 @param aWord the word to permute
 */
 public PermutationGenerator(String aWord)
 {
 word = aWord;
 }

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch13/permute/PermutationGenerator.java (cont.)

 /**
 Gets all permutations of a given word.
 */
 public ArrayList<String> getPermutations()
 {
 ArrayList<String> permutations = new ArrayList<String>();

 // The empty string has a single permutation: itself
 if (word.length() == 0)
 {
 permutations.add(word);
 return permutations;
 }

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch13/permute/PermutationGenerator.java (cont.)

 // Loop through all character positions
 for (int i = 0; i < word.length(); i++)
 {
 // Form a simpler word by removing the ith character
 String shorterWord = word.substring(0, i)
 + word.substring(i + 1);

 // Generate all permutations of the simpler word
 PermutationGenerator shorterPermutationGenerator
 = new PermutationGenerator(shorterWord);
 ArrayList<String> shorterWordPermutations
 = shorterPermutationGenerator.getPermutations();

 // Add the removed character to the front of
 // each permutation of the simpler word,
 for (String s : shorterWordPermutations)
 {
 permutations.add(word.charAt(i) + s);
 }
 }
 // Return all permutations
 return permutations;
 }
 }

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Self Check 13.7

What are all permutations of the four-letter word beat?

Answer: They are b followed by the six permutations of eat,
e followed by the six permutations of bat, a followed by the
six permutations of bet, and t followed by the six
permutations of bea.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Self Check 13.8

Our recursion for the permutation generator stops at the empty
string. What simple modification would make the recursion stop at
strings of length 0 or 1?

Answer: Simply change if (word.length() == 0) to
if (word.length() <= 1), because a word with a
single letter is also its sole permutation.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Self Check 13.9

Why isn’t it easy to develop an iterative solution for the
permutation generator?

Answer: An iterative solution would have a loop whose body
computes the next permutation from the previous ones. But
there is no obvious mechanism for getting the next
permutation. For example, if you already found permutations
eat, eta, and aet, it is not clear how you use that information
to get the next permutation. Actually, there is an ingenious
mechanism for doing just that, but it is far from obvious — see
Exercise P13.12.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

The Limits of Computation

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

The Limits of Computation

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Using Mutual Recursions

•  Problem: To compute the value of arithmetic expressions such
as

 3 + 4 * 5
(3 + 4) * 5
1 - (2 - (3 - (4 - 5)))

•  Computing expression is complicated
•  * and / bind more strongly than + and –

•  Parentheses can be used to group subexpressions

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Syntax Diagrams for Evaluating an Expression

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Using Mutual Recursions

•  An expression can broken down into a sequence of terms,
separated by + or -

•  Each term is broken down into a sequence of factors, separated
by * or /

•  Each factor is either a parenthesized expression or a number

•  The syntax trees represent which operations should be carried
out first

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Syntax Tree for Two Expressions

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Mutually Recursive Methods

•  In a mutual recursion, a set of cooperating methods calls each
other repeatedly

•  To compute the value of an expression, implement 3 methods
that call each other recursively:
•  getExpressionValue

•  getTermValue

•  getFactorValue

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

The getExpressionValue Method

public int getExpressionValue()
{
 int value = getTermValue();
 boolean done = false;
 while (!done)
 {
 String next = tokenizer.peekToken();
 if ("+".equals(next) || "-".equals(next))
 {
 tokenizer.nextToken(); // Discard "+" or "-"
 int value2 = getTermValue();
 if ("+".equals(next)) value = value + value2;
 else value = value - value2;
 }
 else done = true;
 }
 return value;
}

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley &

Sons. All rights reserved.

The getTermValue Method

•  The getTermValue method calls getFactorValue in the
same way, multiplying or dividing the factor values

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

The getFactorValue Method

public int getFactorValue()
{
 int value;
 String next =
 tokenpublic int getFactorValue()
{
 int value;
 String next = tokenizer.peekToken();
 if ("(".equals(next))
 {
 tokenizer.nextToken(); // Discard "("
 value = getExpressionValue();
 tokenizer.nextToken(); // Discard ")"
 }
 else
 value = Integer.parseInt(tokenizer.nextToken());
 return value;
}

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Using Mutual Recursions

To see the mutual recursion clearly, trace through the expression
(3+4)*5:

• getExpressionValue calls getTermValue
•  getTermValue calls getFactorValue

•  getFactorValue consumes the (input

•  getFactorValue calls getExpressionValue

•  getExpressionValue returns eventually with the value of 7, having
consumed 3 + 4. This is the recursive call.

•  getFactorValue consumes the)input

•  getFactorValue returns 7

•  getTermValue consumes the inputs * and 5 and returns 35

• getExpressionValue returns 35

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch13/expr/Evaluator.java

 /**
 A class that can compute the value of an arithmetic expression.
 */
 public class Evaluator
 {
 private ExpressionTokenizer tokenizer;

 /**
 Constructs an evaluator.
 @param anExpression a string containing the expression
 to be evaluated
 */
 public Evaluator(String anExpression)
 {
 tokenizer = new ExpressionTokenizer(anExpression);
 }

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch13/expr/Evaluator.java (cont.)

 /**
 Evaluates the expression.
 @return the value of the expression.
 */
 public int getExpressionValue()
 {
 int value = getTermValue();
 boolean done = false;
 while (!done)
 {
 String next = tokenizer.peekToken();
 if ("+".equals(next) || "-".equals(next))
 {
 tokenizer.nextToken(); // Discard "+" or "-"
 int value2 = getTermValue();
 if ("+".equals(next)) { value = value + value2; }
 else { value = value - value2; }
 }
 else
 {
 done = true;
 }
 }
 return value;
 }

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch13/expr/Evaluator.java (cont.)

 /**
 Evaluates the next term found in the expression.
 @return the value of the term
 */
 public int getTermValue()
 {
 int value = getFactorValue();
 boolean done = false;
 while (!done)
 {
 String next = tokenizer.peekToken();
 if ("*".equals(next) || "/".equals(next))
 {
 tokenizer.nextToken();
 int value2 = getFactorValue();
 if ("*".equals(next)) { value = value * value2; }
 else { value = value / value2; }
 }
 else
 {
 done = true;
 }
 }
 return value;
 }

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch13/expr/Evaluator.java (cont.)

 /**
 Evaluates the next factor found in the expression.
 @return the value of the factor
 */
 public int getFactorValue()
 {
 int value;
 String next = tokenizer.peekToken();
 if ("(".equals(next))
 {
 tokenizer.nextToken(); // Discard "("
 value = getExpressionValue();
 tokenizer.nextToken(); // Discard ")"
 }
 else
 {
 value = Integer.parseInt(tokenizer.nextToken());
 }
 return value;
 }
 }

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch13/expr/ExpressionTokenizer.java

 /**
 This class breaks up a string describing an expression
 into tokens: numbers, parentheses, and operators.
 */
 public class ExpressionTokenizer
 {
 private String input;
 private int start; // The start of the current token
 private int end; // The position after the end of the current token

 /**
 Constructs a tokenizer.
 @param anInput the string to tokenize
 */
 public ExpressionTokenizer(String anInput)
 {
 input = anInput;
 start = 0;
 end = 0;
 nextToken(); // Find the first token
 }
 Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch13/expr/ExpressionTokenizer.java (cont.)

 /**
 Peeks at the next token without consuming it.
 @return the next token or null if there are no more tokens
 */
 public String peekToken()
 {
 if (start >= input.length()) { return null; }
 else { return input.substring(start, end); }
 }

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch13/expr/ExpressionTokenizer.java (cont.)
 /**
 Gets the next token and moves the tokenizer to the following token.
 @return the next token or null if there are no more tokens
 */
 public String nextToken()
 {
 String r = peekToken();
 start = end;
 if (start >= input.length()) { return r; }
 if (Character.isDigit(input.charAt(start)))
 {
 end = start + 1;
 while (end < input.length()
 && Character.isDigit(input.charAt(end)))
 {
 end++;
 }
 }
 else
 {
 end = start + 1;
 }
 return r;
 }
 }

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch13/expr/ExpressionCalculator.java

 import java.util.Scanner;

 /**
 This program calculates the value of an expression
 consisting of numbers, arithmetic operators, and parentheses.
 */
 public class ExpressionCalculator
 {
 public static void main(String[] args)
 {
 Scanner in = new Scanner(System.in);
 System.out.print("Enter an expression: ");
 String input = in.nextLine();
 Evaluator e = new Evaluator(input);
 int value = e.getExpressionValue();
 System.out.println(input + "=" + value);
 }
 }

Program Run:

Enter an expression: 3+4*5
3+4*5=23

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Self Check 13.10

What is the difference between a term and a factor? Why do we
need both concepts?

Answer: Factors are combined by multiplicative operators (*
and /), terms are combined by additive operators (+, -). We
need both so that multiplication can bind more strongly than
addition.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Self Check 13.12

Why does the expression parser use mutual recursion?

Answer: To handle parenthesized expressions, such as
2 + 3 * (4 + 5). The subexpression 4 + 5 is handled by a
recursive call to getExpressionValue.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Self Check 13.11

What happens if you try to parse the illegal expression
3 + 4 *) 5? Specifically, which method throws an exception?

Answer: The Integer.parseInt call in getFactorValue
throws an exception when it is given the string ")".

