
ICOM 4015: Advanced
Programming	

Lecture 8

Big Java by Cay Horstmann
Copyright © 2009 by John
Wiley & Sons. All rights
reserved.

Reading: Chapter Eight: Designing Classes

Chapter 8 – Designing Classes

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  To learn how to discover appropriate classes for a given problem

•  To understand the concepts of cohesion and coupling

•  To minimize the use of side effects

•  To document the responsibilities of methods and their callers
with preconditions and postconditions

•  To understand static methods and variables

•  To understand the scope rules for local variables and instance
variables

•  To learn about packages

T To learn about unit testing frameworks

Chapter Goals

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  A class represents a single concept from the problem domain

•  Name for a class should be a noun that describes concept

•  Concepts from mathematics:
 Point
 Rectangle
 Ellipse

•  Concepts from real life:

 BankAccount
CashRegister

Basic Conceptual Classes

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Actors (end in -er, -or) – objects do some kinds of work for you:

 Scanner
Random // better name: RandomNumberGenerator

•  Utility classes – no objects, only static methods and constants:

 Math

•  Program starters: only have a main method

•  Don’t turn actions into classes

• Paycheck is a better name than ComputePaycheck

Other Types of Classes

What is the rule of thumb for finding classes?

Answer: Look for nouns in the problem description.

Self Check 8.1

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Your job is to write a program that plays chess. Might
ChessBoard be an appropriate class? How about MovePiece?

Answer: Yes (ChessBoard) and no (MovePiece).

Self Check 8.2

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  A class should represent a single concept

•  The public interface of a class is cohesive if all of its features are
related to the concept that the class represents

•  This class lacks cohesion:

 public class CashRegister
{
 public void enterPayment(int dollars, int quarters,
 int dimes, int nickels, int pennies)
 ...
 public static final double NICKEL_VALUE = 0.05;
 public static final double DIME_VALUE = 0.1;
 public static final double QUARTER_VALUE = 0.25;
 ...
}

Cohesion

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  CashRegister, as described above, involves two concepts:
cash register and coin

•  Solution: Make two classes:
 public class Coin
{
 public Coin(double aValue, String aName) { ... }
 public double getValue() { ... }
 ...
}

public class CashRegister
{
 public void enterPayment(int coinCount, Coin coinType)
 { ... }
 ...
}

Cohesion

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  A class depends on another if it uses objects of that class

•  CashRegister depends on Coin to determine the value of the
payment

•  Coin does not depend on CashRegister

•  High coupling = Many class dependencies

•  Minimize coupling to minimize the impact of interface changes

•  To visualize relationships draw class diagrams

•  UML: Unified Modeling Language

•  Notation for object-oriented analysis and design

Coupling

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 Dependency

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

High and Low Coupling Between Classes

Why is the CashRegister class from Chapter 4 not cohesive?

Answer: Some of its features deal with payments, others with
coin values.

Self Check 8.3

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Why does the Coin class not depend on the CashRegister class?

 Answer: None of the Coin operations require the CashRegister
 class.

Self Check 8.4

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Why should coupling be minimized between classes?

Answer: If a class doesn’t depend on another, it is not
affected by interface changes in the other class.

Self Check 8.5

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Accessor: Does not change the state of the implicit parameter:

 double balance = account.getBalance();

•  Mutator: Modifies the object on which it is invoked:

 account.deposit(1000);

•  Immutable class: Has no mutator methods (e.g., String):
 String name = "John Q. Public";
String uppercased = name.toUpperCase();

 // name is not changed

•  It is safe to give out references to objects of immutable classes;
no code can modify the object at an unexpected time

Mutability of Classes

Is the substring method of the String class an accessor or a
mutator?

Answer: It is an accessor — calling substring doesn’t
modify the string on which the method is invoked. In fact, all
methods of the String class are accessors.

Self Check 8.6

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Is the Rectangle class immutable?

 Answer: No — translate is a mutator.

Self Check 8.7

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Side effect of a method: Any externally observable data
modification:

 harrysChecking.deposit(1000);

•  Modifying explicit parameter can be surprising to programmers
— avoid it if possible:
public void addStudents(ArrayList<String> studentNames)
{
 while (studentNames.size() > 0)
 {
 String name = studentNames.remove(0);
 // Not recommended
 . . .
 }
}

Side Effects

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  This method has the expected side effect of modifying the
implicit parameter and the explicit parameter other:
public void transfer(double amount, BankAccount other
{
 balance = balance – amount;
 other.balance = other.balance + amount;
}

Side Effects

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Another example of a side effect is output:

 public void printBalance() // Not recommended
{
 System.out.println("The balance is now $"

 + balance);
 }

 Bad idea: Message is in English, and relies on System.out

•  Decouple input/output from the actual work of your classes

•  Minimize side effects that go beyond modification of the implicit
parameter

Side Effects

If a refers to a bank account, then the call a.deposit(100)
modifies the bank account object. Is that a side effect?

Answer: It is a side effect; this kind of side effect is common in
object-oriented programming.

Self Check 8.8

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Consider the DataSet class of Chapter 6. Suppose we add a
method

void read(Scanner in)
{
 while (in.hasNextDouble())
 add(in.nextDouble());
}

Does this method have a side effect other than mutating the data
set?

Answer: Yes — the method affects the state of the Scanner
parameter.

Self Check 8.9

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  void transfer(double amount, double otherBalance)
 {
 balance = balance – amount;
 otherBalance = otherBalance + amount;
 }

•  Won’t work

•  Scenario:
 double savingsBalance = 1000;
 harrysChecking.transfer(500, savingsBalance);
 System.out.println(savingsBalance);

•  In Java, a method can never change parameters of primitive
 type

Common Error: Trying to Modify Primitive Type
Parameters

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

double savingsBalance = 1000;
harrysChecking.transfer(500, savingsBalance);
System.out.println(savingsBalance);
...
void transfer(double amount, double otherBalance)
{
 balance = balance - amount;
 otherBalance = otherBalance + amount;
}

Common Error: Trying to Modify Primitive Type
Parameters

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

double savingsBalance = 1000;
harrysChecking.transfer(500, savingsBalance);
System.out.println(savingsBalance);
...
void transfer(double amount, double otherBalance)
{
 balance = balance - amount;
 otherBalance = otherBalance + amount;
}

Common Error: Trying to Modify Primitive Type
Parameters

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

double savingsBalance = 1000;
harrysChecking.transfer(500, savingsBalance);
System.out.println(savingsBalance);
...
void transfer(double amount, double otherBalance)
{
 balance = balance - amount;
 otherBalance = otherBalance + amount;
}

Common Error: Trying to Modify Primitive Type
Parameters

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Common Error: Trying to Modify Primitive Type
Parameters

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

double savingsBalance = 1000;
harrysChecking.transfer(500, savingsBalance);
System.out.println(savingsBalance);
...
void transfer(double amount, double otherBalance)
{
 balance = balance - amount;
 otherBalance = otherBalance + amount;
}

Common Error: Trying to Modify Primitive Type
Parameters

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Common Error: Trying to Modify Primitive Type
Parameters

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Animation 8.1 – A Method Cannot Modify a Numeric
Parameter

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Call by value:
•  Parameter values parameter variables when a method starts

•  Call by reference:

•  Parameter memory locations are passed by caller to callee
method

•  Java

•  has call by value

•  But a method can change state of objects referenced by
parameters, yet it cannot replace the object reference with
another

Parameter Passing Mechanisms

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 public class BankAccount
{
 public void transfer(double amount, BankAccount
 otherAccount)
 {
 balance = balance - amount;
 double newBalance = otherAccount.balance + amount;
 otherAccount = new BankAccount(newBalance);

 // Won't work
 }
}

Call by Value and Call by Reference

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

harrysChecking.transfer(500, savingsAccount);

Call by Value Example

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Precondition: Requirement that the caller of a method must
meet

•  Publish preconditions so the caller won’t call methods with bad
parameters:

•  /**
 Deposits money into this account.
 @param amount the amount of money to deposit
 (Precondition: amount >= 0)
*/

•  Typical use:
1.  To restrict the parameters of a method

2.  To require that a method is only called when the object is in an
appropriate state

Preconditions

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  If precondition is violated, method is not responsible for
computing the correct result. It is free to do anything

•  Method may throw exception if precondition violated — more in
Chapter 11:

 if (amount < 0) throw new IllegalArgumentException();
balance = balance + amount;

•  Method doesn’t have to test for precondition. (Test may be
costly):
// if this makes the balance negative, it's the
// caller's fault
balance = balance + amount;

Preconditions

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Method can do an assertion check:
 assert amount >= 0;
 balance = balance + amount;

 To enable assertion checking:
 java -enableassertions MainClass

 You can turn assertions off after you have tested your program,
so that it runs at maximum speed

•  Many beginning programmers silently return to the caller
 if (amount < 0)
 return; // Not recommended; hard to debug
balance = balance + amount;

Preconditions

Syntax 8.1 Assertion

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Postcondition: requirement that is true after a method has
completed

•  If method call is in accordance with preconditions, it must ensure
that postconditions are valid

•  There are two kinds of postconditions:
•  The return value is computed correctly

•  The object is in a certain state after the method call is completed

•  /**
 Deposits money into this account.
 (Postcondition: getBalance() >= 0)
 @param amount the amount of money to deposit
 (Precondition: amount >= 0)
 */

Postconditions

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Don’t document trivial postconditions that repeat the @return
clause

•  Formulate pre- and postconditions only in terms of the interface
of the class:
 amount <= getBalance() // this is the way to state a
 postcondition
 amount <= balance // wrong postcondition formulation

•  Contract: If caller fulfills preconditions, method must fulfill
postconditions

Postconditions

Why might you want to add a precondition to a method that you
provide for other programmers?

Answer: Then you don’t have to worry about checking for
invalid values — it becomes the caller’s responsibility.

Self Check 8.10

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

When you implement a method with a precondition and you notice
that the caller did not fulfill the precondition, do you have to notify
the caller?

Answer: No — you can take any action that is convenient for
you.

Self Check 8.11

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Every method must be in a class

•  A static method is not invoked on an object

•  Why write a method that does not operate on an object

•  Common reason: encapsulate some computation that involves
only numbers.

•  Numbers aren’t objects, you can’t invoke methods on them. E.g.
x.sqrt() can never be legal in Java

Static Methods

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Example:
public class Financial
{
 public static double percentOf(double p, double a)
 {
 return (p / 100) * a;
 }
 // More financial methods can be added here.
}

•  Call with class name instead of object:
double tax = Financial.percentOf(taxRate, total);

Static Methods

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  If a method manipulates a class that you do not own, you cannot
add it to that class

•  A static method solves this problem:
public class Geometry
{
 public static double area(Rectangle rect)
 {
 return rect.getWidth() * rect.getHeight();
 }
 // More geometry methods can be added here.
}

• main is static — there aren’t any objects yet

Static Methods

Suppose Java had no static methods. How would you use the
Math.sqrt method for computing the square root of a
number x?

Answer:
 Math m = new Math();
 y = m.sqrt(x);

Self Check 8.12

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

The following method computes the average of an array list of
numbers:

public static double average(ArrayList<Double> values)

Why must it be a static method?

Answer: You cannot add a method to the ArrayList class
— it is a class in the standard Java library that you cannot
modify.

Self Check 8.13

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  A static variable belongs to the class, not to any object of the
class:

 public class BankAccount
 {
 ...
 private double balance;
 private int accountNumber;
 private static int lastAssignedNumber = 1000;
 }

•  If lastAssignedNumber was not static, each instance of
 BankAccount would have its own value of
lastAssignedNumber

Static Variables

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  public BankAccount()
 {
 // Generates next account number to be assigned
 lastAssignedNumber++; // Updates the static variable
 accountNumber = lastAssignedNumber;

 // Sets the instance variable
 }

Static Variables

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

A Static Variable and Instance Variables

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Three ways to initialize:
1. Do nothing. variable is initialized with 0 (for numbers), false (for

boolean values), or null (for objects)

2. Use an explicit initializer, such as
 public class BankAccount
{
 ...
 private static int lastAssignedNumber = 1000;
 // Executed once,
}

3. Use a static initialization block

•  Static variables should always be declared as private

Static Variables

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Exception: Static constants, which may be either private or
public:
 public class BankAccount
{
 ...
 public static final double OVERDRAFT_FEE = 5;

 // Refer to it as BankAccount.OVERDRAFT_FEE
}

•  Minimize the use of static variables (static final variables are ok)

Static Variables

Name two static variables of the System class.

Answer: System.in and System.out.

Self Check 8.14

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Harry tells you that he has found a great way to avoid those pesky
objects: Put all code into a single class and declare all methods
and variables static. Then main can call the other static
methods, and all of them can access the static variables. Will
Harry’s plan work? Is it a good idea?

Answer: Yes, it works. Static methods can access static
variables of the same class. But it is a terrible idea. As your
programming tasks get more complex, you will want to use
objects and classes to organize your programs.

Self Check 8.15

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Scope of variable: Region of program in which the variable can
be accessed

•  Scope of a local variable extends from its declaration to end of
the block that encloses it

Scope of Local Variables

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Sometimes the same variable name is used in two methods:
 public class RectangleTester
{
 public static double area(Rectangle rect)
 {
 double r = rect.getWidth() * rect.getHeight();
 return r;
 }
 public static void main(String[] args)
 {
 Rectangle r = new Rectangle(5, 10, 20, 30);
 double a = area(r);
 System.out.println(r);
 }
}

•  These variables are independent from each other; their scopes
are disjoint

Scope of Local Variables

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Scope of a local variable cannot contain the definition of another
variable with the same name:
 Rectangle r = new Rectangle(5, 10, 20, 30);
if (x >= 0)
{
 double r = Math.sqrt(x);
 // Error - can't declare another variable

 // called r here
 ...
}

Scope of Local Variables

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  However, can have local variables with identical names if scopes
do not overlap:

 if (x >= 0)
{
 double r = Math.sqrt(x);
 ...
 } // Scope of r ends here
else
{
 Rectangle r = new Rectangle(5, 10, 20, 30);
 // OK - it is legal to declare another r here
 ...
}

Scope of Local Variables

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  A local variable can shadow a variable with the same name

•  Local scope wins over class scope:

 public class Coin
{
 ...
 public double getExchangeValue(double exchangeRate)
 {
 double value; // Local variable
 ...
 return value;
 }
 private String name;
 private double value; // variable with the same name
}

Overlapping Scope

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Access shadowed variables by qualifying them with the this
reference:

 value = this.value * exchangeRate;

Overlapping Scope

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Generally, shadowing an instance variable is poor code —
error-prone, hard to read

•  Exception: when implementing constructors or setter methods,
it can be awkward to come up with different names for instance
variables and parameters

•  OK:
public Coin(double value, String name)
{
 this.value = value;
 this.name = name;
}

Overlapping Scope

Consider the following program that uses two variables named r.
Is this legal?

public class RectangleTester
{
 public static double area(Rectangle rect)
 {
 double r = rect.getWidth() * rect.getHeight();
 return r;
 }
 public static void main(String[] args)
 {
 Rectangle r = new Rectangle(5, 10, 20, 30);
 double a = area(r);
 System.out.println(r);
 }
}

Answer: Yes. The scopes are disjoint.

Self Check 8.16

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

What is the scope of the balance variable of the BankAccount
class?

Answer: It starts at the beginning of the class and ends at the
end of the class.

Self Check 8.17

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Package Purpose Sample Class
java.lang Language support Math

java.util Utilities Random

java.io Input and output PrintStream

java.awt Abstract Windowing Toolkit Color

java.applet Applets Applet

java.net Networking Socket

java.sql Database Access ResultSet

javax.swing Swing user interface JButton

omg.w3c.dom
Document Object Model for XML

documents Document

Packages

•  Package: Set of related classes

•  Important packages in the Java library:

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  To put classes in a package, you must place a line

 package packageName;

 as the first instruction in the source file containing the classes

•  Package name consists of one or more identifiers separated by
periods

Organizing Related Classes into Packages

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  For example, to put the Financial class introduced into a
package named com.horstmann.bigjava, the
Financial.java file must start as follows:

 package com.horstmann.bigjava;

public class Financial
{
 ...
}

•  Default package has no name, no package statement

Organizing Related Classes into Packages

Syntax 8.2 Package Specification

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Can always use class without importing:

 java.util.Scanner in = new java.util.Scanner(System.in);

•  Tedious to use fully qualified name

•  Import lets you use shorter class name:

 import java.util.Scanner;
 ...
 Scanner in = new Scanner(System.in)

•  Can import all classes in a package:

 import java.util.*;

•  Never need to import java.lang

•  You don’t need to import other classes in the same package

Importing Packages

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Use packages to avoid name clashes
java.util.Timer

vs.
javax.swing.Timer

•  Package names should be unambiguous

•  Recommendation: start with reversed domain name:
com.horstmann.bigjava

•  edu.sjsu.cs.walters: for Britney Walters’ classes
(walters@cs.sjsu.edu)

•  Path name should match package name:
com/horstmann/bigjava/Financial.java

Package Names

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Base directory: holds your program's Files

•  Path name, relative to base directory, must match package
name:

 com/horstmann/bigjava/Financial.java

Package and Source Files

Which of the following are packages?

a.  java

b.  java.lang
c.  java.util
d.  java.lang.Math
Answer:

a. No

b. Yes

c. Yes

d. No

Self Check 8.18

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Is a Java program without import statements limited to using the
default and java.lang packages?

Answer: No — you simply use fully qualified names for all
other classes, such as java.util.Random and
java.awt.Rectangle.

Self Check 8.19

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose your homework assignments are located in the
directory /home/me/cs101 (c:\Users\me\cs101 on
Windows). Your instructor tells you to place your homework into
packages. In which directory do you place the class
hw1.problem1.TicTacToeTester?

Answer: /home/me/cs101/hw1/problem1 or, on
Windows, c:\Users\me\cs101\hw1\problem1

Self Check 8.20

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

The Explosive Growth of Personal Computers

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Unit test frameworks simplify the task of writing classes that
contain many test cases

•  JUnit: http://junit.org
•  Built into some IDEs like BlueJ and Eclipse

•  Philosophy: whenever you implement a class, also make a
companion test class. Run all tests whenever you change your
code

Unit Testing Frameworks

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Customary that name of the test class ends in Test:
import org.junit.Test;
import org.junit.Assert;
public class CashRegisterTest
{
 @Test public void twoPurchases()
 {
 CashRegister register = new CashRegister();
 register.recordPurchase(0.75);
 register.recordPurchase(1.50);
 register.enterPayment(2, 0, 5, 0, 0);
 double expected = 0.25;
 Assert.assertEquals(expected, register.giveChange(),
 EPSILON);
 }
 // More test cases
 . . .
}

Unit Testing Frameworks

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Unit Testing Frameworks

•  If all test cases pass, the JUnit tool shows a green bar:

Provide a JUnit test class with one test case for the Earthquake
class in Chapter 5.

Answer: Here is one possible answer, using the JUnit 4 style.
public class EarthquakeTest
{
 @Test public void testLevel4()
 {
 Earthquake quake = new Earthquake(4);
 Assert.assertEquals("Felt by many people, no destruction”,
 quake.getDescription());
 }
}

Self Check 8.21

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

What is the significance of the EPSILON parameter in the
assertEquals method?

Answer: It is a tolerance threshold for comparing floating-point
numbers. We want the equality test to pass if there is a small
roundoff error.

Self Check 8.22

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

