
Graphical User Interfaces,
2D Graphics & Game

Programming

Goals
•  Review the different types of user-interface

components and how to add them to
containers

•  Understand how to handle mouse events and
other user input

•  Learn how to display graphical shapes such
as lines and ellipses, and the use of colors.

•  Understand how to use Java2D for game (or
general graphics) development.

•  Understand the different aspects of a game
program including, but not limited to game
logic, input, graphics and sounds.

Goals

•  To become familiar with common user-
interface components, such as buttons,
combo boxes, text areas, and menus

•  To build programs that handle events from
user-interface components

•  To learn how to use the Eclipse
WindowBuilder plug-in.

Frame Windows
•  The JFrame class

•  import javax.swing.;

JFrame frame = new JFrame();
frame.setSize(300, 400);
frame.setTitle("An Empty Frame");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

A Frame Window

Figure 1:
A Frame Window

File EmptyFrameViewer.java
01: import javax.swing.*;
02:
03: public class EmptyFrameViewer
04: {
05: public static void main(String[] args)
06: {
07: JFrame frame = new JFrame();
08:
09: final int FRAME_WIDTH = 300;
10: final int FRAME_HEIGHT = 400;
11:
12: frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
13: frame.setTitle("An Empty Frame");
14: frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
15:
16: frame.setVisible(true);
17: }
18: }

Basic GUI Construction

•  Construct a frame
•  Construct an object of your component class:

•  Add the component(s) to the frame

However, if you use an older version of Java (before
Version 5), you must make a slightly more
complicated call:

•  Make the frame visible

RectangleComponent component = new RectangleComponent();

frame.add(component);

frame.getContentPane().add(component);

Using Inheritance to Customize
Frames

•  Use inheritance for complex frames to make
programs easier to understand

•  Design a subclass of JFrame

•  Store the components as instance fields

•  Initialize them in the constructor of your
subclass

•  If initialization code gets complex, simply
add some helper methods

Layout Management

•  Each container has a layout manager that
directs the arrangement of its components

•  Three useful layout managers:
§  border layout
§  flow layout
§  grid layout

Layout Management

•  By default, JPanel places components from
left to right and starts a new row when
needed

•  Panel layout carried out by FlowLayout
layout manager

•  Can set other layout managers

panel.setLayout(new BorderLayout());

Border Layout
•  Border layout groups container into five

areas: center, north, west, south and east

Figure 1:
Components Expand to Fill Space in the Border Layout Continued…

Border Layout

•  Default layout manager for a frame
(technically, the frame's content pane)

•  When adding a component, specify the
position like this:

•  Expands each component to fill the entire
allotted area
If that is not desirable, place each component
inside a panel

panel.add(component, BorderLayout.NORTH);

Grid Layout

•  Arranges components in a grid with a fixed
number of rows and columns

•  Resizes each component so that they all
have same size

•  Expands each component to fill the entire
allotted area

Grid Layout

•  Add the components, row by row, left to
right:

JPanel numberPanel = new JPanel();
numberPanel.setLayout(new GridLayout(4, 3));
numberPanel.add(button7);
numberPanel.add(button8);
numberPanel.add(button9);
numberPanel.add(button4);
. . .

Grid Layout

Figure 2:
The Grid Layout

Grid Bag Layout
•  You can create acceptable-looking layouts

by nesting panels
§  Give each panel an appropriate layout manager
§  Panels without visible borders
§  Use as many panels as needed to organize

components

•  Grid Bag provides a tabular arrangement of
components
§  Columns can have different sizes
§  Components can span multiple columns

•  More complicated to use

Components - Choices

•  Radio buttons

•  Check boxes
•  Combo boxes

Figure 3:
A Combo Box, Check Box,
and Radio Buttons

Radio Buttons

•  For a small set of mutually exclusive
choices, use radio buttons or a combo box

•  In a radio button set, only one button can be
selected at a time

•  When a button is selected, previously
selected button in set is automatically
turned off

Radio Buttons

•  In previous figure, font sizes are mutually
exclusive:

JRadioButton smallButton = new JRadioButton("Small");
JRadioButton mediumButton = new JRadioButton("Medium");
JRadioButton largeButton = new JRadioButton("Large");

// Add radio buttons into a ButtonGroup so that
// only one button in group is on at any time
ButtonGroup group = new ButtonGroup();
group.add(smallButton);
group.add(mediumButton);
group.add(largeButton);

Check Boxes

•  Two states: checked and unchecked

•  Use a group of check boxes when one
selection does not exclude another

•  Construct by giving the name in the
constructor:

JCheckBox italicCheckBox = new JCheckBox("Italic");

Check Boxes

•  Construct by giving the name in the
constructor:

 JCheckBox italicCheckBox = new JCheckBox("Italic");

Combo Boxes
•  For a large set of choices, use a combo box

(dropdown menu)
§  Uses less space than radio buttons

•  "Combo": combination of a list and a text
field
§  The text field displays the name of the current

selection

Combo Boxes

•  Get user selection with getSelectedItem
(return type is Object)

•  Select an item with setSelectedItem

String selectedString =
 (String) facenameCombo.getSelectedItem();

Borders

•  Can add a border to any component, but
most commonly to panels:
Jpanel panel = new JPanel ();
panel.setBOrder(new EtchedBorder ());

•  Line Border: simple line

•  EtchedBorder: three-dimensional etched
effect

•  TitledBorder: a border with a title

Radio Buttons, Check Boxes, and
Combo Boxes

•  They generate an ActionEvent whenever
the user selects an item

Continued…

Menus

•  A frame contains a menu bar

•  The menu bar contains menus

•  A menu contains submenus and menu
items

Menus

Figure 7:
Pull-Down Menus

Menu Items

•  Add menu items and submenus with the
add method:

•  A menu item has no further submenus

•  Menu items generate action events

JMenuItem fileExitItem = new JMenuItem("Exit");
fileMenu.add(fileExitItem);

Continued…

Menu Items

•  Add a listener to each menu item:

•  Add action listeners only to menu items, not
to menus or the menu bar

fileExitItem.addActionListener(listener);

Visual Programming

•  Allow you to have an overview of how the
frame will look.

•  Palette for selecting components.

•  Properties and Layout management.

•  Eclipse Plugin – Window Builder
§  http://www.eclipse.org/windowbuilder/

Visual Programming

WindowBuilder Visual
Programming
Environment

Event Handling

•  To understand the Java event model

•  To install action and mouse event listeners

•  To accept input from buttons, text fields, and
the mouse

Events, Event Sources, and Event
Listeners

•  User interface events include key presses,
mouse moves, button clicks, and so on

•  Most programs don't want to be flooded by
boring events

•  A program can indicate that it only cares
about certain specific events

Events and Event Listeners

•  Event listener:
§  Notified when event happens

§  Belongs to a class that is provided by the

application programmer

§  Its methods describe the actions to be taken when

an event occurs

Events, Event Sources, and Event
Listeners

•  Example: Use JButton components for
buttons; attach an ActionListener to each
button

•  ActionListener interface:

•  Need to supply a class whose
actionPerformed method contains instruc-
tions to be executed when button is clicked

public interface ActionListener
{
 void actionPerformed(ActionEvent event);
}

Events, Event Sources, and Event
Listeners

•  event parameter contains details about the
 event, such as the time at which it occurred

•  Construct an object of the listener and add it
 to the button:
ActionListener listener = new ClickListener();
button.addActionListener(listener);

Processing Text Input
•  Use JTextField components to provide

space for user input

•  Place a JLabel next to each text field

•  Supply a button that the user can press to
indicate that the input is ready for processing

Continued…

final int FIELD_WIDTH = 10; // In characters
final JTextField rateField = new JTextField(FIELD_WIDTH);

JLabel rateLabel = new JLabel("Interest Rate: ");

Processing Text Input

Continued…

Figure 3:
An Application With a Text Field

Processing Text Input

•  The button's actionPerformed method
reads the user input from the text fields (use
getText)

class AddInterestListener implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 double rate = Double.parseDouble(rateField.getText());
 . . .
 }
}

Mouse Events
•  Use a mouse listener to capture mouse

events

•  Implement the MouseListener interface:

Continued…

public interface MouseListener
{
 void mousePressed(MouseEvent event);
 // Called when a mouse button has been pressed on a component
 void mouseReleased(MouseEvent event);
 // Called when a mouse button has been released on a component
 void mouseClicked(MouseEvent event);
 // Called when the mouse has been clicked on a component
 void mouseEntered(MouseEvent event);
 // Called when the mouse enters a component
 void mouseExited(MouseEvent event);
 // Called when the mouse exits a component
}

Mouse Events

•  mousePressed, mouseReleased: called
when a mouse button is pressed or released

•  mouseClicked: if button is pressed and
released in quick succession, and mouse
hasn't moved

•  mouseEntered, mouseExited: mouse has
entered or exited the component's area

Mouse Events

•  Add a mouse listener to a component by
calling the addMouseListener method:

Continued…

public class MyMouseListener implements MouseListener
{
 // Implements five methods
}
MouseListener listener = new MyMouseListener();
component.addMouseListener(listener);

2D Graphics - Drawing Shapes

•  paintComponent: called whenever the
component needs to be repainted:

public class RectangleComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {
 // Recover Graphics2D
 Graphics2D g2 = (Graphics2D) g;
 . . .
 }
}

Drawing Shapes

•  Graphics class lets you manipulate the
graphics state (such as current color)

•  Graphics2D class has methods to draw
shape objects

•  Use a cast to recover the Graphics2D object
from the Graphics parameter

•  java.awt package

Rectangle box = new Rectangle(5, 10, 20, 30);
g2.draw(box);

A Frame Window

Figure 1:
A Frame Window

Drawing Rectangles

Figure 2:
Drawing Rectangles

Rectangle Drawing Program Classes

•  RectangleComponent: its paintComponent
method produces the drawing

•  RectangleViewer: its main method constructs
a frame and a RectangleComponent, adds the
component to the frame, and makes the frame
visible

Continued…

Rectangle Drawing Program Classes

•  Construct a frame
•  Construct an object of your component class:

•  Add the component to the frame

However, if you use an older version of Java (before
Version 5), you must make a slightly more
complicated call:

•  Make the frame visible

RectangleComponent component = new RectangleComponent();

frame.add(component);

frame.getContentPane().add(component);

File RectangleComponent.java
01: import java.awt.Graphics;
02: import java.awt.Graphics2D;
03: import java.awt.Rectangle;
04: import javax.swing.JPanel;
05: import javax.swing.JComponent;
06:
07: /**
08: A component that draws two rectangles.
09: */
10: public class RectangleComponent extends JComponent
11: {
12: public void paintComponent(Graphics g)
13: {
14: // Recover Graphics2D
15: Graphics2D g2 = (Graphics2D) g;
16:

Continued…

File RectangleComponent.java
17: // Construct a rectangle and draw it
18: Rectangle box = new Rectangle(5, 10, 20, 30);
19: g2.draw(box);
20:
21: // Move rectangle 15 units to the right and 25 units
 // down
22: box.translate(15, 25);
23:
24: // Draw moved rectangle
25: g2.draw(box);
26: }
27: }

Graphical Shapes

•  Rectangle, Ellipse2D.Double, and
Line2D.Double describe graphical shapes

•  We won't use the .Float classes

•  These classes are inner classes–doesn't matter
to us except for the import statement:

•  Must construct and draw the shape

Ellipse2D.Double ellipse = new Ellipse2D.Double(x, y, width, height);
g2.draw(ellipse);

import java.awt.geom.Ellipse2D; // no .Double

An Ellipse

Figure 6:
An Ellipse and Its Bounding Box

Drawing Lines

•  To draw a line:

or,

Line2D.Double segment = new Line2D.Double(x1, y1, x2, y2);

Point2D.Double from = new Point2D.Double(x1, y1);
Point2D.Double to = new Point2D.Double(x2, y2);
Line2D.Double segment = new Line2D.Double(from, to);

Drawing Strings

Figure 7:
Basepoint and Baseline

g2.drawString("Message", 50, 100);

Colors

•  Standard colors Color.BLUE, Color.RED,
Color.PINK etc.

•  Specify red, green, blue between 0.0F and 1.0F
Color magenta = new Color(1.0F, 0.0F,
1.0F); // F = float

•  Set color in graphics context

•  Color is used when drawing and filling shapes

g2.setColor(magenta);

g2.fill(rectangle); // filled with current color

Drawing Graphical Shapes

Rectangle leftRectangle = new Rectangle(100, 100, 30, 60);
Rectangle rightRectangle = new Rectangle(160, 100, 30, 60);
Line2D.Double topLine
 = new Line2D.Double(130, 100, 160, 100);
Line2D.Double bottomLine
 = new Line2D.Double(130, 160, 160, 160);

Void Space Game

•  Main Game Loop
§  GameLogic: Check Conditions
§  GameScreen.updateScreen(): Update the game

graphics and handle events
•  GraphicsManager: Draw Graphic Shapes
•  Detect collisions and draw explosions
•  SoundManager: Play sound effects

§  InputHandler: Handle game controls/input
§  GameScreen.repaint(): Repaint the screen using

updated image

