Graphical User Interfaces,
2D Graphics & Game

Programming

Goals

Review the different types of user-interface
components and how to add them to
containers

Understand how to handle mouse events and
other user input

Learn how to display graphical shapes such
as lines and ellipses, and the use of colors.

Understand how to use Java2D for game (or
general graphics) development.

Understand the different aspects of a game
program including, but not limited to game
logic, input, graphics and sounds.

Goals

* To become familiar with common user-
interface components, such as buttons,
combo boxes, text areas, and menus

* To build programs that handle events from
user-interface components

 To learn how to use the Eclipse
WindowBuilder plug-in.

Frame Windows

The JFrame class

JFrame frame = new JFrame () ;

frame.setSize (300, 400);

frame.setTitle ("An Empty Frame");
frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
frame.setVisible (true) ;

import javax.swing.;

A Frame Window

Figure 1:
A Frame Window

File EmptyFrameViewer. java

01l: import javax.swing.¥*;

02:

03: EmptyFrameViewer

04:

05: main (String[] args)

06:

07: JFrame frame = JFrame () ;

08:

09: FRAME WIDTH =

10: FRAME HEIGHT =

11:

12: .setSize (FRAME WIDTH, FRAME HEIGHT) ;
13: .setTitle ("An Empty Frame");

14: .setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
15:

16: .setVisible () ;

17:

18:

Basic GUI Construction

e Construct a frame
e Construct an object of your component class:

RectangleComponent component = new RectangleComponent () ;

 Add the component(s) to the frame

frame.add (component) ;

However, if you use an older version of Java (before
Version 5), you must make a slightly more
complicated call:

frame.getContentPane () .add (component) ;

e Make the frame visible

Using Inheritance to Customize
Frames

Use inheritance for complex frames to make
programs easier to understand

Design a subclass of JFrame
Store the components as instance fields

Initialize them in the constructor of your
subclass

If initialization code gets complex, simply
add some helper methods

Layout Management

« Each container has a layout manager that
directs the arrangement of its components

 Three useful layout managers:
= Dborder layout
= flow layout
= grid layout

Layout Management

By default, JPanel places components from
left to right and starts a new row when

heeded

Panel layout carried out by FlowLayout
layout manager

Can set other layout managers

panel . setLayout (new BorderLayout()) ;

Border Layout

 Border layout groups container into five
areas: center, north, west, south and east

Center

Figure 1:

Components Expand to Fill Space in the Border Layout Continued...

Border Layout

Default layout manager for a frame
(technically, the frame's content pane)

When adding a component, specify the
position like this:

panel.add (component, BorderLayout.NORTH) ;

Expands each component to fill the entire

allotted area
If that is not desirable, place each component

inside a panel

Grid Layout

Arranges components in a grid with a fixed
number of rows and columns

Resizes each component so that they ali
have same size

Expands each component to fill the entire
allotted area

Grid Layout

 Add the components, row by row, left to
right:

JPanel numberPanel = new JPanel() ;
numberPanel . setLayout (new GridLayout(4, 3));
numberPanel . add (button?) ;
numberPanel . add (button8) ;
numberPanel . add (button9) ;
numberPanel . add (buttond) ;

Grid Layout

Figure 2:
The Grid Layout

Grid Bag Layout

 You can create acceptable-looking layouts
by nesting panels
= (Give each panel an appropriate layout manager
= Panels without visible borders

= Use as many panels as needed to organize
components

* Grid Bag provides a tabular arrangement of
components

= Columns can have different sizes
= Components can span multiple columns

 More complicated to use

Components - Choices

« Radio buttons

e Check boxes

« Combo boxes

Figure 3:

A Combo Box, Check Box,

and Radio Buttons

=]

v | Italic

Bold

Small Medium @ Large

Radio Buttons

For a small set of mutually exclusive
choices, use radio buttons or a combo box

In a radio button set, only one button can be
selected at a time

When a button is selected, previously
selected button in set is automatically
turned off

Radio Buttons

In previous figure, font sizes are mutually
exclusive:

JRadioButton smallButton = new JRadioButton("Small") ;
JRadioButton mediumButton = new JRadioButton ("Medium") ;
JRadioButton largeButton = new JRadioButton ("Large") ;

// Add radio buttons into a ButtonGroup so that
// only one button in group is on at any time
ButtonGroup group = new ButtonGroup() ;
group.add(smallButton) ;

group .add (mediumButton) ;

group.add (largeButton) ;

Check Boxes

Two states: checked and unchecked

Use a group of check boxes when one
selection does not exclude another

Construct by giving the name in the
constructor:

JCheckBox italicCheckBox = new JCheckBox("Italic") ;

Check Boxes

 Construct by giving the name in the
constructor:

JCheckBox italicCheckBox = new JCheckBox("Italic");

Combo Boxes

 For alarge set of choices, use a combo box
(dropdown menu)

» Uses less space than radio buttons

« "Combo": combination of a list and a text
field

* The text field displays the name of the current
selection

Serif
Sansserit
Monospaced

Combo Boxes

 Get user selection with getSelectedItem
(return type is Object)

String selectedString =
(String) facenameCombo.getSelectedItem() ;

« Select an item with setSelectedItem

Borders

Can add a border to any component, but
most commonly to panels:

Jpanel panel = new JPanel ()
panel . setBOrder (new EtchedBorder ());

Line Border: simple line

EtchedBorder: three-dimensional etched
effect

TitledBorder: a border with a title

Radio Buttons, Check Boxes, and
Combo Boxes

 They generate an ActionEvent whenever
the user selects an item

Continued...

Menus

A frame contains a menu bar
The menu bar contains menus

A menu contains submenus and menu
items

Figure 7:
Pull-Down Menus

File | Font
Face !
Size »
| Style »

Big Java

Plain
Eold
Itallc
Bold Italic

Menu bar

Menu

Menu item

Menu Items

Add menu items and submenus with the
add method:

JMenulItem fileExitItem = new JMenultem("Exit") ;
fileMenu.add (fileExitItem) ;

A menu item has no further submenus

Menu items generate action events

Continued...

Menu Items

« Add a listener to each menu item:

fileExitItem.addActionListener (listener) ;

 Add action listeners only to menu items, not
to menus or the menu bar

Visual Programming

 Allow you to have an overview of how the
frame will look.

« Palette for selecting components.
* Properties and Layout management.

* Eclipse Plugin — Window Builder

= http://www.eclipse.org/windowbuilder/

iIsual Programming

WindowBuilder Visual
Programming
Environment

o FrameExample2.java &3

A Structure

% Components + =

v j (javax.swing.,JFrame) - "Frame Ti
» =] myMenuBar
» | |jContentPane

= Properties

=) Source | -=| Design

[Menu

¥ E
4 Palette
= System

[selec... £, Marq...
°§Choo... 3Tab ...

=> Containers

|_|JPanel | H)Scrol...
[T]ysplit... [")JTabb...

EJTool... ULaye...
[fJDesk... [H])inter...

=> Layouts

i ¥ Absol... 15 FlowL...

i Bord... 1 GridL...
1t Grids... [[|Card...
@BOXL... TESprin...
FEForm... FHMigL...
'Fl'Crou...

[Struts & Springs
=> Components
4o)Label [JText...
{5f)Com... [=)Button
V] JChec... @ JRadi...
U JTog... [EHJText...

f#1)For... JPass...

|=[JText... [|JEdito...

[&)spin... [EfJList
fHJTable [E|JTree

JProg... [Hl)Scrol...

=)Sepa... {Oy)Slider
|__| Swing Actions

@ <system> v

Frame Title

Event Handling

e To understand the Java event model
 To install action and mouse event listeners

 To accept input from buttons, text fields, and
the mouse

Events, Event Sources, and Event
Listeners

* User interface events include key presses,
mouse moves, button clicks, and so on

* Most programs don't want to be flooded by

boring events

« A program can indicate that it only cares
about certain specific events

Events and Event Listeners

« Event listener:

= Notified when event happens

= Belongs to a class that is provided by the

application programmer

= |[ts methods describe the actions to be taken when

an event occurs

Events, Event Sources, and Event
Listeners

 Example: Use JButton components for
buttons; attach an ActionlListener to each
button

« ActionlListener Iinterface:

public interface ActionListener

{

void actionPerformed (ActionEvent event) ;

}

* Need to supply a class whose
actionPerformed method contains instruc-
tions to be executed when button is clicked

Events, Event Sources, and Event
Listeners

event parameter contains details about the
event, such as the time at which it occurred

Construct an object of the listener and add it
to the button:

ActionListener listener = new ClickListener() ;
button.addActionListener (listener) ;

Processing Text Input

 Use JTextField components to provide
space for user input

final int FIELD WIDTH = 10; // In characters
final JTextField rateField = new JTextField(FIELD WIDTH) ;

* Place a JL.abel next to each text field

JLabel ratelabel = new JLabel ("Interest Rate: ") ;

« Supply a button that the user can press to
indicate that the input is ready for processing

Continued...

Processing Text Input

Interest Rate: 5.0 Add Interest balance=1050.0

Figure 3:
An Application With a Text Field

Continued...

Processing Text Input

The button's actionPerformed method
reads the user input from the text fields (use
getText)

{

class AddInterestlListener implements Actionlistener

public void actionPerformed (ActionEvent event)

{
double rate = Double.parseDouble (rateField.getText()) ;

Mouse Events

 Use a mouse listener to capture mouse
events

* Implement the MouseListener interface:

public interface Mouselistener
{
void mousePressed (MouseEvent event) ;
// Called when a mouse button has been pressed on a component
void mouseReleased (MouseEvent event) ;
// Called when a mouse button has been released on a component
void mouseClicked (MouseEvent event) ;
// Called when the mouse has been clicked on a component
void mouseEntered (MouseEvent event) ;
// Called when the mouse enters a component
void mouseExited (MouseEvent event) ;
// Called when the mouse exits a component

Mouse Events

« mousePressed, mouseReleased: called
when a mouse button is pressed or released

« mouseClicked: if button is pressed and
released in quick succession, and mouse
hasn't moved

* mouseEntered, mouseExited: mouse has
entered or exited the component's area

Mouse Events

 Add a mouse listener to a component by
calling the addMouseListener method:

public class MyMouselistener implements Mouselistener

{
// Implements five methods

}
Mouselistener listener = new MyMouselistener() ;
component.addMouseListener (listener) ;

Continued...

2D Graphics - Drawing Shapes

 paintComponent: called whenever the
component needs to be repainted:

public class RectangleComponent extends JComponent
{
public void paintComponent (Graphics g)
{
// Recover Graphics2D
Graphics2D g2 = (Graphics2D) g;

Drawing Shapes

« Graphics class lets you manipulate the
graphics state (such as current color)

 Graphics2D class has methods to draw
shape objects

 Use a cast to recover the Graphics2D object
from the Graphics parameter

Rectangle box = new Rectangle (5, 10, 20, 30);
g2 .draw (box) ;

 java.awt package

A Frame Window

Figure 1:
A Frame Window

Drawing Rectangles

o Two rectangles

Figure 2:
Drawing Rectangles

Rectangle Drawing Program Classes

« RectangleComponent: its paintComponent
method produces the drawing

« RectangleViewer: its main method constructs
a frame and a RectangleComponent, adds the
component to the frame, and makes the frame
visible

Continued...

Rectangle Drawing Program Classes

e Construct a frame
e Construct an object of your component class:

RectangleComponent component = new RectangleComponent () ;

e Add the component to the frame

frame.add (component) ;

However, if you use an older version of Java (before
Version 5), you must make a slightly more
complicated call:

frame.getContentPane () .add (component) ;

e Make the frame visible

File RectangleComponent. java

01: import java.awt.Graphics;

02: import java.awt.Graphics2D;

03: import java.awt.Rectangle;

04: import javax.swing.JPanel;

05: import javax.swing.JComponent;

06:

07: /*x*

08: A component that draws two rectangles.
09:

10: RectangleComponent JComponent
11:

12: paintComponent (Graphics qg)
13:

14: // Recover Graphics2D

15: Graphics2D g2 = (Graphics2D) g;

16:

Continued...

File RectangleComponent. java

// Construct a rectangle and draw it
Rectangle box = Rectangle (), ,) ;
g2 .draw (box) ;

// Move rectangle 15 units to the right and 25 units

// down
box.translate (|-,)7

// Draw moved rectangle
g2 .draw (box) ;

Graphical Shapes

« Rectangle, Ellipse2D.Double, and
Line2D.Double describe graphical shapes

 We won't use the .Float classes

e These classes are inner classes—doesn't matter
to us except for the import statement:

import java.awt.geom.Ellipse2D; // no .Double

 Must construct and draw the shape

EllipseZ2D.Double ellipse = new Ellipse2D.Double(x, y, width, height);
g2.draw(ellipse) ;

An Ellipse

Width

Figure 6:
An Ellipse and Its Bounding Box

Drawing Lines

 To draw a line:

Line2D.Double segment =

new Line2D.Double (x1,

vl, x2,

v2);

or,

Point2D.Double from =
Point2D.Double to = new Point2D.Double (x2,
Line2D.Double segment =

new Point2D.Double (x1,

new Line2D.Double (from,

vl) s
v2) s
to);

Drawing Strings

g2.drawString ("Message", 50, 100);

Baseline

{

Basepoint

Figure 7:
Basepoint and Baseline

Colors

Standard colors Color.BLUE, Color.RED,
Color.PINK etc.

Specify red, green, blue between 0.0F and 1. 0F

Color magenta = new Color(1.0F, O0.0F,
1.0F); // F = float

Set color in graphics context

g2 .setColor (magenta) ;

Color is used when drawing and filling shapes
g2.fill (rectangle); // filled with current color

Drawing Graphical Shapes

Two lines (100 .\100) (130, 100)

_\
=~

,I -_’—/_/"
'~ (100, 160) (130, 160)

Two recrangles

(160, 100)

(160, 160)

—
—

~——

Rectangle leftRectangle = new Rectangle (100, 100,
Rectangle rightRectangle = new Rectangle (160, 100,
Line2D.Double toplLine

= new Line2D.Double (130, 100, 160, 100);
Line2D.Double bottomLine

= new Line2D.Double (130, 160, 160, 160);

30,
30,

60) ;
60) ;

(190/. 100)

(190, 160)

Void Space Game

 Main Game Loop

Gamelogic: Check Conditions

Asteroids Destroye d: 1

GameScreen.updateScreen(): Update te gam

graphics and handle events
* GraphicsManager: Draw Graphic Shapes
» Detect collisions and draw explosions
« SoundManager: Play sound effects
InputHandler: Handle game controls/input

GameScreen.repaint(): Repaint the screen using
updated image

