ICOM 4015: Advanced
Programming

Lecture 5

Reading: Chapter Five: Decisions

Big Java by Cay Horstmann
Copyright © 2009 by John
Wiley & Sons. All rights
reserved.

Compatible with Java 5, 6, & 7

Y

\ﬁ@ = WO

‘\ﬁ ORSTMANN) .

- { s

Chapter 5 — Decisions

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Chapter Goals

* To be able to implement decisions using i £ statements
* To understand how to group statements into blocks

* To learn how to compare integers, floating-point numbers,
strings, and objects

 To recognize the correct ordering of decisions in multiple
branches

* To program conditions using Boolean operators and variables

T To understand the importance of test coverage

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Syntax of the Java If Statement

1f (condi tl@nz) Conditional

statemen tl : Expressions

else 1f (condition,)

statement,;
e]lse Optional
Clauses

statement,;

Blocks Used to
Enclose Multiple

Statements

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

The if Statement

* The if statement lets a program carry out different actions

depending on a condition

1f (amount <= balance)
balance = balance - amount;

Condition
amount < False
balance?

True
Body
balance =
balance - amount
Figure 1

Flowchart for an if Statement

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

The if/else Statement

1f (amount <= balance)
balance = balance - amount;
else
balance = balance - OVERDRAFT PENALTY

Condition
True FR—— False
balance?
balance = balance = balance -
balance - amount OVERDRAFT_PENALTY
Figure 2
Flowchart for an if/else Statement Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Statement Types

« Simple statement:
balance = balance - amount;

« Compound statement:

1f (balance >= amount) balance = balance - amount;
Also loop statements — Chapter 6

* Block statement:
{

double newBalance = balance - amount;
balance = newBRalance;

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Syntax 5.1 The if Statement

Braces are not required
if the body contains a

single statement. Y

Owmit the el1se branch
if there is wothing to do.

Syntax if (condition) if (condition)
statement Statementl
else
statement,
Example

Mﬁ is a good idea.

A condition that is true or false.

Often uses relational operators: == != < <= > >=
Pon't put a semicolon here!

if (amount <= balance) \fb
{

balance = balance - amount;]——— If the condition is true, the statement(s)
} in this branch are executed in sequence;
else if the condition is false, they are skipped.
{

System.out.printin("Insufficient funds");

balance = balance - OVERDRAFT_PENALTY;
} If condition is false, the statement(s)

in this branch are executed in sequence;

4 Lining up braces if the condition is frue, they are skipped.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Self Check 5.1

Why did we use the condition amount <= balance and not
amount < balance in the example for the 1 f/e1se statement?

Answer: If the withdrawal amount equals the balance, the
result should be a zero balance and no penalty.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Self Check 5.2

What is logically wrong with the statement

if (amount <= balance)
newBalance = balance - amount;
balance = newBalance;

and how do you fix it?

Answer: Only the first assignment statement is part of the i f
statement. Use braces to group both assignment statements
Into a block statement.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Conditional (Boolean) Expressions

Boolean literals: True, False

Relational operations: <, <, <=, >=, |=

Boolean methods: equals

Logical operations: && (and), || (or), ! (not)

Boolean variables

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Using Boolean Expressions: The boolean Type

« (George Boole (1815-1864): pioneer in the study of logic

« value of expression amount < 1000 IS true OF false

* boolean type: one of these 2 truth values

Big Java by Cay Horstmann

. : Big Java by Cay Horstmann
Copyright © 2009 by John Wil : ;
Sons. Al rights regg?egggﬂ é 2009 by John Wiley & Sons. All rights reserved.

Comparing Values: Relational Operators

» Relational operators compare values

Java | Math Notation Description
> > Greater than
>= > Greater than or equal
< < Less than
<= < Less than or equal
== = Equal
= # Not equal

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Comparing Values: Relational Operators

* The == denotes equality testing:

a =>5; // Assign 5 to a
if (a == 5) ... // Test whether a equals 5

» Relational operators have lower precedence than arithmetic
operators:

amount + fee <= balance

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Comparing Floating-Point Numbers

e Consider this code:

double r = Math.sqgrt (2);
double d = r * r - 2;

if (d == 0)
System.out.println ("sgrt (2) squared minus 2 is 0");
else
System.out.println ("sgrt (2) squared minus 2 is not 0 but "
+ d);
e It prints:

sgrt (2) squared minus 2 1s not 0 but 4.440892098500626E-16

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Comparing Floating-Point Numbers

« To avoid roundoff errors, don’ t use == to compare floating-point
numbers

« To compare floating-point numbers test whether they are close
enough: |x-y|<¢

final double EPSILON = 1E-14;
1f (Math.abs(x - y) <= EPSILON)
// x 1s approximately equal to y

e £is a small number such as 10-14

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Comparing Strings

« To test whether two strings are equal to each other, use equals
method:

1f (stringl.equals(stringZ2))
« Don’ t use == for strings!

if (stringl == string2) // Not useful
- == tests identity, equals tests equal contents
« Case insensitive test:

1f (stringl.equalsIgnoreCase(string2))

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Comparing Strings

*stringl.compareTo (stringZ) < 0 means:

stringl comes before st ring2 in the dictionary

stringl.compareTo (stringZ2) > 0 Means.

stringl comes after string2

stringl.compareTo(string2) == 0 Means.
stringl equals string?

« "car" comes before "cargo"

 All uppercase letters come before lowercase:

"Hello" comes before "car"

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Lexicographic Comparison

c argo

c at h o d e

i g
Figure 3 Letters r comes
Lexicographic Comparison match before t

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Syntax 5.2 Comparisons

Examples

Check that you have
the right direction:
> (greater) or < (less)

Use ==, not =.

These quantities are compared.

N\

floor > 13
\Oneof:== l= < <= > >=
Check the boundary condition:
Po you want to include (>=) or exclude (>)7
floor == 13
N\ Checks for equality.

String input;
if (input.equals("Y"))

Use equals to compare strings.

double x; double y; final double EPSILON = 1E-14;
if (Math.abs(x - y) < EPSILON)

N
Checks that these floating-point numbers are very close.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Comparing Objects

== tests for identity, equals for identical content

Rectangle boxl = new Rectangle(5, 10, 20, 30);

Rectangle box2 = boxl;
Rectangle box3 = new Rectangle(b, 10, 20, 30);

boxl != box3, but boxl.equals (box3)
boxl == box?

Caveat: equals must be defined for the class

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Object Comparison

box1

box2

box3

Figure 4
Comparing Object References

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Testing for null

null reference refers to no object:
String middleInitial = null; // Not set

if (...)
middleInitial = middleName.substring (0, 1);

« Can be used in tests:

1f (middleInitial == null)
System.out.println (firstName + " " + lastName) ;
else
System.out.println(firstName + " " + middleInitial +

". " + lastName);
« Use ==, not equals, to test for nu11

* nullis not the same as the empty string "

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Relational Operator Examples

Table 1 Relational Operator Examples

Expression Value Comment
3 <=4 true 3 is less than 4; <= tests for “less than or equal”.
® 3 =<4 Error The “less than or equal” operator is <=, not =<,

with the “less than” symbol first.

3>4 false > is the opposite of <=.
4<4 false The left-hand side must be strictly smaller than
the right-hand side.
4 <=4 true Both sides are equal; <= tests for “less than or equal”.
3==05-2 true == tests for equality.
31=5-1 true !=tests for inequality. It is true that 3 is not 5 — 1.
® 3=6/2 Error Use == to test for equality.
1.0 / 3.0 == 0.333333333 false Although the values are very close to one

another, they are not exactly equal. See
Common Error 4.3.

® "10" > 5 Error You cannot compare a string to a number.

"Tomato".substring(0, 3).equals("Tom") true Always use the equals method to check whether
two strings have the same contents.

"Tomato".substring(0, 3) == ("Tom") false Never use == to compare strings; it only checks
whether the strings are stored in the same
location. See Common Error 5.2 on page 180.

"Tom".equalsIgnoreCase("TOM") true Use the equalsIgnoreCase method if you don’t want to
distinguish between uppercase and lowercase letters.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Self Check 5.3

What is the value of s.1ength () if sis

a. the empty string ""?
b. the string " " containing a space?
C. null?

Answer: (a) 0; (b) 1; (c) an exception occurs.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Self Check 5.4

Which of the following comparisons are syntactically incorrect? Which of
them are syntactically correct, but logically questionable?

String
String
double
double

Q™0 Q0T

a ="1";
b = "one";

x = 1;

y =3 * (1.0 / 3);
a=="1"

a == null

a.equals(™)

a ==

a==X

X==Y

X -y ==null

x.equals(y)

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Using Boolean Expressions: Predicate Method

« A predicate method returns a boolean value:

public boolean 1sOverdrawn ()

{

return balance < 0;

}

 Use in conditions:

1f (harrysChecking.isOverdrawn ())

» Useful predicate methods in Character class:
1sDigit
isLetter
1sUpperCase
isLowerCase

Big Java by Cay Horstmann

. : Big Java by Cay Horstmann
Copyright © 2009 by John Wil : ;
Sons. Al rights regg?eggg% é 2009 by John Wiley & Sons. All rights reserved.

Using Boolean Expressions: Predicate Method

e 1f (Character.isUpperCase(ch))

» Useful predicate methods in Scanner class: hasNextInt ()
and hasNextDouble ():

1f (in.hasNextInt()) n = in.nextInt ()

Big Java by Cay Horstmann Big Java by Cay Horstmann

Copyright © 2009 by John Wil : ;
Sons. Al rights regg?%(qg% é 2009 by John Wiley & Sons. All rights reserved.

Using Boolean Expressions: The Boolean Operators

e & and
e || or
o | not

1f (0 < amount && amount < 1000)

*if (input.equals("S") ||
input.equals ("M"))

e 1f (!input.equals ("S"))

Big Java by Cay Horstmann Big Java by Cay Horstmann

Copyright © 2009 by John Wil : ;
Sons. Al rights reg?%ggﬂ é) 2009 by John Wiley & Sons. All rights reserved.

&& and | | Operators

0 < amount && amount < 1000 input.equals("S") || input.equals("M")
False S nout False . £ False
0 < amount pu" " 1 npljll "
equals "S equals "M
True True True
False

amount < 1000

True
“and” condition “or” condition
fulfilled fulfilled

Figure 6 Flowcharts for & and || Combinations

Big Java by Cay Horstmann Big Java by Cay Horstmann

Copyright © 2009 by John Wil : ;
Sons. Al rights reg?%ggﬂ é 2009 by John Wiley & Sons. All rights reserved.

Boolean Operators

Table 3 Boolean Operators

Expression Value Comment
0 < 200 & 200 < 100 false Only the first condition is true.
0 < 200 || 200 < 100 true The first condition is true.
0 < 200 || 100 < 200 true The || is not a test for “either-or”. If
both conditions are true, the result is true.
® 0 < 100 < 200 Syntax error Error: The expression 0 < 100 is true,
which cannot be compared against 200.
® 0<x || x <100 true Error: This condition is always true.
The programmer probably intended
0 < x & x < 100. (See Common Error 5.5).
0 <x& x <100 || x==-1 (0 < x & x < 100) The && operator binds more strongly than
|| x == -1 the || operator.
1(0 < 200) false 0 < 200 is true, therefore its negation
1s false.
frozen == true frozen There is no need to compare a

Boolean variable with true.

frozen == false !frozen It is clearer to use ! than to compare
with false.

Big yava by Cay Horstmann Big Java by Cay Horstmann

Copyright © 2009 by John Wil : ;
Sons. Al rights reg?%ggﬂ é 2009 by John Wiley & Sons. All rights reserved.

Truth Tables

A B A:ss B

true true true

true false false

false | Any false

A B Al B

true Any true

false true true

false false false

A 1A

true false

false true]
Big Java by Cay Horstmann

. : Big Java by Cay Horstmann
Copyright © 2009 by John Wil : ;
Sons. Al rights regg%gg_gﬁ% é 2009 by John Wiley & Sons. All rights reserved.

Using Boolean Variables

e private boolean married;

e Set to truth value:
married = input.equals("M");
 Use in conditions:

1f (married) ... else
1f (!married)

 Also called flag

* It is considered gauche to write a test such as

if (married == true) ... // Don't

 Just use the simpler test

1f (married)
Big Java by Cay Horstmann
Copyright © 2009 by John Wil
Sons. All rights reg?%(qgﬂ

Big Java by Cay Horstmann
& 2009 by John Wiley & Sons. All rights reserved.

Self Check 5.7

When does the statement

system.out.println (x > 0 || x < 0);

print false?

Answer: When x Is zero.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Self Check 5.8

Rewrite the following expression, avoiding the comparison with
false:

1f (character.isDigit(ch) == false)

Answer: i1 f (!Character.isDigit (ch))

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Multiple Alternatives: Sequences of Comparisons

*1f (condition;)

statement,;
else 1f (condition,)

statement,;

else
statement,;

* The first matching condition is executed
* Order matters:

if (richter >= 0) // always passes

r = "Generally not felt by people";
else if (richter >= 3.5) // not tested
r = "Felt by many people, no destruction";

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Multiple Alternatives: Sequences of Comparisons

e Don’tomit else:

1f (richter >= 8.0)
r = "Most structures fall";

if (richter >= 7.0) // omitted else--ERROR
r = "Many buildings destroyed";

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch05/quake/Earthquake.java

/ * x
A class that describes the effects of an earthquake.
*/
public class Earthquake
{

private double richter;

/ * %
Constructs an Earthquake object.
@param magnitude the magnitude on the Richter scale
*/
public Earthquake (double magnitude)
{

richter = magnitude;

Continued

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch05/quake/Earthquake.java (cont.)

/**

*/

public String getDescription ()

{

Gets a description of the effect of the earthquake.

@return the description of the effect

String r;
if (richter >=

r
else
r
else
r
else
r
else
r
else
r
else
r

1if

return

(richter

(richter

(richter

(richter

(richter

ry

>=

>=

>=

>=

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch05/quake/EarthquakeRunner.java
import java.util.Scanner;

/ *x %

This program prints a description of an earthquake of a given magnitude.
*/
public class EarthquakeRunner

{

public static void main (String[] args)

{

Scanner in = new Scanner (System.in);

System.out.print ()

double magnitude = in.nextDouble();
FEarthquake quake = new Earthquake (magnitude) ;
System.out.println (quake.getDescription());

}
Program Run:

Enter a magnitude on the Richter scale: 7.1

Many buildings destroyed

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Multiple Alternatives: Nested Branches

 Branch inside another branch:

1f (condition,)

{
1f (condition,.)
statement,;
else
statement,,;
J
else

statement,;

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Tax Schedule

If your filing status is Single If your filing status is Married
Tax Bracket Percentage Tax Bracket Percentage
$0 ... $32,000 10% 0 ... $64,000 10%
Amount over $32,000 25% Amount over $64,000 25%

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Nested Branches

« Compute taxes due, given filing status and income figure:
1. branch on the filing status

2. for each filing status, branch on income level

* The two-level decision process is reflected in two levels of i ¢
statements

« \WWe say that the income test is nested inside the test for filing
status

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Nested Branches

income True 10%
<32,000 bracket
False
25%
bracket

True

Single? False
income True 10%
<64,000 bracket
False
25%
bracket

Figure 5 Income Tax Computation Using Simplified 2008 Schedule

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch05/tax/TaxReturn.java

/**

*/

A tax return of a taxpayer in 2008.

public class TaxReturn

{

public static final int SINGLE =
public static final int MARRIED =

private
private
private
private

private
private

static
static
static
static

double

final double RATE1l =
final double RATE2 =

.
4
.
4
— .
4

.
4

final double RATEl_SINGLE_LIMIT = ;
final double RATEl_MARRIED_LIMIT = ;
income;

int status;

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch05/tax/TaxReturn.java (cont.)

/ * %
Constructs a TaxReturn object for a given income and
marital status.

@param anIncome the taxpayer income
@param aStatus either SINGLE or MARRIED

*/
public TaxReturn (double anIncome, int aStatus)
{

income = anlncome;

status = aStatus;

public double getTax ()
{
double taxl = (U;
double tax2 =

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch05/tax/TaxReturn.java (cont.)

if (status == SINGLE)
{
if (income <= RATEl_SINGLE_LIMIT)
{
taxl = RATE1l * income;
}

else
{
taxl = RATE1l * RATEl_SINGLE_LIMIT;
tax?2 = RATE2 * (income - RATEl_SINGLE_LIMIT);

}

else

{
if (income <= RATEl_MARRIED_LIMIT)
{

taxl = RATE1l * income;

}

else
{
taxl = RATE1l * RATEl_MARRIED_LIMIT;
tax2 = RATEZ * (income - RATE1l MARRIED LIMIT);

return taxl + tax2;
} Big Java by Cay Horstmann
\ Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch05/tax/TaxCalculator.java

import java.util.Scanner;

/ * %

This program calculates a simple tax return.
*/
public class TaxCalculator

{

public static void main(String[] args)

{

Scanner in = new Scanner (System.in);

System.out.print () ;
double income = in.nextDouble() ;

System.out.print () ;
String input = in.next();
int status;
if (input.equalsIgnoreCase ())
status = TaxReturn.MARRIED;

else
status = TaxReturn.SINGLE;
TaxReturn aTaxReturn = new TaxReturn (income, status);

System.out.println (
+ aTaxReturn.getTax()); Continued

Big Java by Cay Horstmann
J Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch05/tax/TaxCalculator.java (cont.)

Program Run:

Please enter vyour income: 50000
Are you married? (Y/N) N
Tax: 11211.5

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Self Check 5.5

The if/c1se/e1se statement for the earthquake strength first
tested for higher values, then descended to lower values. Can you

reverse that order?

Answer: Yes, if you also reverse the comparisons:

1f (richter < 3.DH)

r = "Generally not felt by people";
else 1f (richter < 4.5)

r = "Felt by many people, no destruction";
else 1f (richter < 0©6.0)

r = "Damage to poorly constructed buildings";

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Self Check 5.6

Some people object to higher tax rates for higher incomes,
claiming that you might end up with less money after taxes when
you get a raise for working hard. What is the flaw in this
argument?

Answer: The higher tax rate is only applied on the income
in the higher bracket. Suppose you are single and make $31,900.
Should you try to get a $200 raise? Absolutely: you get to keep 90
percent of the first $100 and 75 percent of the next $100.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Code Coverage

« Black-box testing: Test functionality without consideration of
internal structure of implementation

* White-box testing: Take internal structure into account when
designing tests

« Test coverage: Measure of how many parts of a program have
been tested

« Make sure that each part of your program is exercised at least
once by one test case
E.g., make sure to execute each branch in at least one test case

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Code Coverage

* Include boundary test cases: Legal values that lie at the
boundary of the set of acceptable inputs

 Tip: Write first test cases before program is written
completely — gives insight into what program should do

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Self Check 5.9

How many test cases do you need to cover all branches of the
getDescription method of the Earthquake class?

Answer: 7.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Self Check 5.10

Give a boundary test case for the EarthquakeRunner program.
What output do you expect?

Answer: An input of 0 should yield an output of "Generally
not felt by people". (If the outputis "Negative
numbers are not allowed™", thereis an error in the
program.)

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

