
ICOM 4015: Advanced
Programming	

Lecture 7

Big Java by Cay Horstmann
Copyright © 2009 by John
Wiley & Sons. All rights
reserved.

Reading: Chapter Seven: Arrays and ArrayLists

Chapter 7 – Arrays and Array Lists

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  To become familiar with using arrays and array lists

•  To learn about wrapper classes, auto-boxing and the
generalized for loop

•  To study common array algorithms

•  To learn how to use two-dimensional arrays

•  To understand when to choose array lists and arrays in your
programs

•  To implement partially filled arrays

T To understand the concept of regression testing

Chapter Goals

Arrays: Key Concepts

•  Array is one object that can enclose a set
of up to N “internal” objects

•  Arrays have fixed size but may not be full

•  Arrays are homogeneous, all internal
objects must be of the same type

•  Accessing an object in an array can be
done extremely efficiently

•  Array: Sequence of values of the same type

•  Construct array:
 new double[10]

•  Store in variable of type double[]:
 double[] data = new double[10];

•  When array is created, all values are initialized depending on
array type:

•  Numbers: 0

•  Boolean: false

•  Object References: null

Arrays

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Arrays

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Arrays

Use [] to access an element:
values[2] = 29.95;

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Using the value stored:
 System.out.println("The value of this data item is "
 + values[2]);

•  Get array length as values.length (Not a method!)

•  Index values range from 0 to length - 1

•  Accessing a nonexistent element results in a bounds error:
 double[] values = new double[10];
 values[10] = 29.95; // ERROR

•  Limitation: Arrays have fixed length

Arrays

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Declaring Arrays

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Syntax 7.1 Arrays

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

What elements does the data array contain after the following
statements?

double[] values = new double[10];
for (int i = 0; i < values.length; i++)
 values[i] = i * i;

 Answer: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, but not 100

Self Check 7.1

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

What do the following program segments print? Or, if there is an
error, describe the error and specify whether it is detected at
compile-time or at run-time.

a)  double[] a = new double[10];
 System.out.println(a[0]);

b)  double[] b = new double[10];
 System.out.println(b[10]);

c)  double[] c;
 System.out.println(c[0]);

Answer:
a)  0

b)  a run-time error: array index out of bounds

c)  a compile-time error: c is not initialized

Self Check 7.2

// Don't do this
int[] accountNumbers;
double[] balances;

Make Parallel Arrays into Arrays of Objects

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Avoid parallel arrays by changing them into arrays of objects:
BankAccount[] accounts;

Make Parallel Arrays into Arrays of Objects

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 An Early Internet Worm

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Array Lists

•  ArrayList class manages a sequence of objects

•  Can grow and shrink as needed

•  ArrayList class supplies methods for many common tasks,
such as inserting and removing elements

•  ArrayList is a generic class:

ArrayList<T>

collects objects of type parameter T:
ArrayList<String> names = new ArrayList<String>();
names.add("Emily");
names.add("Bob");
names.add("Cindy");

•  size method yields number of elements
Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Array List: Key Concepts

•  Array is one object that can enclose a set
of arbitrarily many objects

•  Array Lists have dynamic size

•  Arrays are homogeneous, all internal
objects must be of the same type

•  Accessing an object in an array list could
be slower than in an array

To add an object to the end of the array list, use the add
method:

names.add("Emily");
names.add("Bob");
names.add("Cindy");

Adding Elements

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  To obtain the value an element at an index, use the get
method

•  Index starts at 0

•  String name = names.get(2);
// gets the third element of the array list

•  Bounds error if index is out of range

•  Most common bounds error:
int i = names.size();
name = names.get(i); // Error
// legal index values are 0 ... i-1

Retrieving Array List Elements

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  To set an element to a new value, use the set method:
 names.set(2, "Carolyn");

Setting Elements

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  To remove an element at an index, use the remove method:
 names.remove(1);

Removing Elements

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

names.add("Emily");
names.add("Bob");
names.add("Cindy");
names.set(2, "Carolyn");
names.add(1, "Ann");
names.remove(1);

Adding and Removing Elements

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Working with Array Lists

ArrayList<String> names =
 new ArrayList<String>();

Constructs an empty array list that can hold
strings.

names.add("Ann");
names.add("Cindy");

Adds elements to the end.

System.out.println(names); Prints [Ann, Cindy].

names.add(1, "Bob"); Inserts an element at index 1. names is now
[Ann, Bob, Cindy].

names.remove(0); Removes the element at index 0. names is
now [Bob, Cindy].

names.set(0, "Bill"); Replaces an element with a different value.
names is now [Bill, Cindy].

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Working with Array Lists (cont.)

String name = names.get(i); Gets an element.

String last =
 names.get(names.size() - 1);

Gets the last element.

ArrayList<Integer> squares =
 new ArrayList<Integer>();
for (int i = 0; i < 10; i++)
{
 squares.add(i * i);
}

Constructs an array list holding the first ten
squares.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Syntax 7.2 Array Lists

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Traverses all elements of a collection:
 double[] values = ...;
 double sum = 0;
 for (double element : values)
 {
 sum = sum + element;
 }
•  Read the loop as “for each element in values”

•  Traditional alternative:
 double[] values = ...;
 double sum = 0;
 for (int i = 0; i < values.length; i++)
 {
 double element = values[i];
 sum = sum + element;
 }

The Enhanced for Loop

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Works for ArrayLists too:
 ArrayList<BankAccount> accounts = ...;
 double sum = 0;
 for (BankAccount account : accounts)
 {
 sum = sum + aaccount.getBalance();
 }

•  Equivalent to the following ordinary for loop:
 double sum = 0;
 for (int i = 0; i < accounts.size(); i++)
 {
 BankAccount account = accounts.get(i);
 sum = sum + account.getBalance();
 }

The Enhanced for Loop

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  The “for each loop” does not allow you to modify the contents of
an array:
for (double element : values)
{
 element = 0;
 // ERROR—this assignment does not
 // modify array element
}

•  Must use an ordinary for loop:
for (int i = 0; i < values.length; i++)
{
 values[i] = 0; // OK
}

The Enhanced for Loop

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Syntax 7.3 The “for each” Loop

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Write a “for each” loop that prints all elements in the array values.

Answer:

 for (double element : values)
 System.out.println(element);

Self Check 7.7

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

What does this “for each” loop do?

int counter = 0;
for (BankAccount a : accounts)
{
 if (a.getBalance() == 0) { counter++; }
}

Answer: It counts how many accounts have a zero
balance.

Self Check 7.8

 1 import java.util.ArrayList;
 2
 3 /**
 4 This program tests the ArrayList class.
 5 */
 6 public class ArrayListTester
 7 {
 8 public static void main(String[] args)
 9 {
 10 ArrayList<BankAccount> accounts = new ArrayList<BankAccount>();
 11 accounts.add(new BankAccount(1001));
 12 accounts.add(new BankAccount(1015));
 13 accounts.add(new BankAccount(1729));
 14 accounts.add(1, new BankAccount(1008));
 15 accounts.remove(0);
 16
 17 System.out.println("Size: " + accounts.size());
 18 System.out.println("Expected: 3");
 19 BankAccount first = accounts.get(0);
 20 System.out.println("First account number: "
 21 + first.getAccountNumber());
 22 System.out.println("Expected: 1008");
 23 BankAccount last = accounts.get(accounts.size() - 1);
 24 System.out.println("Last account number: "
 25 + last.getAccountNumber());
 26 System.out.println("Expected: 1729");
 27 }
 28 }

ch07/arraylist/ArrayListTester.java

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 1 /**
 2 A bank account has a balance that can be changed by
 3 deposits and withdrawals.
 4 */
 5 public class BankAccount
 6 {
 7 private int accountNumber;
 8 private double balance;
 9
 10 /**
 11 Constructs a bank account with a zero balance.
 12 @param anAccountNumber the account number for this account
 13 */
 14 public BankAccount(int anAccountNumber)
 15 {
 16 accountNumber = anAccountNumber;
 17 balance = 0;
 18 }
 19

ch07/arraylist/BankAccount.java

Continued
Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

 20 /**
 21 Constructs a bank account with a given balance
 22 @param anAccountNumber the account number for this account
 23 @param initialBalance the initial balance
 24 */
 25 public BankAccount(int anAccountNumber, double initialBalance)
 26 {
 27 accountNumber = anAccountNumber;
 28 balance = initialBalance;
 29 }
 30
 31 /**
 32 Gets the account number of this bank account.
 33 @return the account number
 34 */
 35 public int getAccountNumber()
 36 {
 37 return accountNumber;
 38 }
 39

ch07/arraylist/BankAccount.java (cont.)

Continued
Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

 40 /**
 41 Deposits money into the bank account.
 42 @param amount the amount to deposit
 43 */
 44 public void deposit(double amount)
 45 {
 46 double newBalance = balance + amount;
 47 balance = newBalance;
 48 }
 49
 50 /**
 51 Withdraws money from the bank account.
 52 @param amount the amount to withdraw
 53 */
 54 public void withdraw(double amount)
 55 {
 56 double newBalance = balance - amount;
 57 balance = newBalance;
 58 }
 59

ch07/arraylist/BankAccount.java (cont.)

Continued
Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Program Run:
Size: 3
Expected: 3
First account number: 1008
Expected: 1008
Last account number: 1729
Expected: 1729

ch07/arraylist/BankAccount.java (cont.)

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 60 /**
 61 Gets the current balance of the bank account.
 62 @return the current balance
 63 */
 64 public double getBalance()
 65 {
 66 return balance;
 67 }
 68 }

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

How do you construct an array of 10 strings? An array list of
strings?

Answer:
 new String[10];
 new ArrayList<String>();

Self Check 7.3

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

What is the content of names after the following statements?

 ArrayList<String> names = new ArrayList<String>();
 names.add("A");
 names.add(0, "B");
 names.add("C");
 names.remove(1);

Answer: names contains the strings "B" and "C" at
positions 0 and 1

Self Check 7.4

•  For each primitive type there is a wrapper class for storing
values of that type:
Double d = new Double(29.95);

ArrayList’s of Primitive Types: Use Wrapper Classes

•  Wrapper objects can be used anywhere that objects are
required instead of primitive type values:

 ArrayList<Double> values= new ArrayList<Double>();
 data.add(29.95);
 double x = data.get(0); Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

There are wrapper classes for all eight primitive types:

Wrappers

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Auto-boxing: Automatic conversion between primitive types
and the corresponding wrapper classes:
Double d = 29.95; // auto-boxing; same as
 // Double d = new Double(29.95);
double x = d; // auto-unboxing; same as
 // double x = d.doubleValue();

•  Auto-boxing even works inside arithmetic expressions:
d = d + 1;

 Means:
•  auto-unbox d into a double
•  add 1
•  auto-box the result into a new Double
•  store a reference to the newly created wrapper object in d

Auto-boxing

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  To collect numbers in an array list, use the wrapper type as the
type parameter, and then rely on auto-boxing:
ArrayList<Double> values = new ArrayList<Double>();
values.add(29.95);
double x = values.get(0);

•  Storing wrapped numbers is quite inefficient
•  Acceptable if you only collect a few numbers

•  Use arrays for long sequences of numbers or characters

Auto-boxing and Array Lists

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

What is the difference between the types double and Double?

Answer: double is one of the eight primitive types. Double is
a class type.

Self Check 7.5

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose values is an ArrayList<Double> of size > 0. How
do you increment the element with index 0?

Answer:

values.set(0, values.get(0) + 1);

Self Check 7.6

•  Array length = maximum number of elements in array

•  Usually, array is partially filled

•  Need companion variable to keep track of current size

•  Uniform naming convention:

final int VALUES_LENGTH = 100;
double[] values = new double[VALUES_LENGTH];
int valuesSize = 0;

•  Update valuesSize as array is filled:

values[valuesSize] = x;
valuesSize++;

Partially Filled Arrays

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 Partially Filled Arrays

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Example: Read numbers into a partially filled array:
int valuesSize = 0;
Scanner in = new Scanner(System.in);
while (in.hasNextDouble())
{
 if (valuesSize < values.length)
 {
 values[valuesSize] = in.nextDouble();
 valuesSize++;
 }
}

•  To process the gathered array elements, use the companion
variable, not the array length:

for (int i = 0; i < valuesSize; i++)
{
 System.out.println(values[i]);
}

Partially Filled Arrays

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Write a loop to print the elements of the partially filled array
values in reverse order, starting with the last element.

Answer:

for (int i = valuesSize - 1; i >= 0; i--)
 System.out.println(values[i]);

Self Check 7.9

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

How do you remove the last element of the partially filled array
values?

Answer:

valuesSize--;

Self Check 7.10

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Why would a programmer use a partially filled array of numbers
instead of an array list?

Answer: You need to use wrapper objects in an
ArrayList<Double>, which is less efficient.

Self Check 7.11

•  Fill an array with zeroes:
for (int i = 0; i < values.length; i++)
{
 values[i] = 0;
}

•  Fill an array list with squares (0, 1, 4, 9, 16, ...):
for (int i = 0; i < values.size(); i++)
{
 values.set(i, i * i;
}

Common Array Algorithm: Filling

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  To compute the sum of all elements, keep a running total:
double total = 0;
for (double element : values)
{
 total = total + element;
}

•  To obtain the average, divide by the number of elements:
double average = total /values.size();
// for an array list

•  Be sure to check that the size is not zero

Common Array Algorithm: Computing Sum and Average

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Check all elements and count the matches until you reach the
end

•  Example: Count the number of accounts whose balance is at
least as much as a given threshold:
public class Bank
{
 private ArrayList<BankAccount> accounts;

 public int count(double atLeast)
 {
 int matches = 0;
 for (BankAccount account : accounts)
 {
 if (account.getBalance() >= atLeast) matches++;

 // Found a match
 }
 return matches;
 }
 . . .
}

Common Array Algorithm: Counting Matches

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Initialize a candidate with the starting element

•  Compare candidate with remaining elements

•  Update it if you find a larger or smaller value

Common Array Algorithm: Finding the Maximum or
Minimum

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Example: Find the account with the largest balance in
the bank:

 BankAccount largestYet = accounts.get(0);
 for (int i = 1; i < accounts.size(); i++)
 {
 BankAccount a = accounts.get(i);
 if (a.getBalance() > largestYet.getBalance())
 largestYet = a;
}
return largestYet;

• Works only if there is at least one element in the array
list — if list is empty, return null:

 if (accounts.size() == 0) return null;
 BankAccount largestYet = accounts.get(0);
 ...

Common Array Algorithm: Finding the Maximum or
Minimum

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Check all elements until you have found a match

•  Example: Determine whether there is a bank account with a
particular account number in the bank:

public class Bank
{
 public BankAccount find(int accountNumber)
 {
 for (BankAccount account : accounts)
 {
 if (account.getAccountNumber() == accountNumber)
 // Found a match
 return account;
 }
 return null; // No match in the entire array list
 }
 ...
}

Common Array Algorithm: Searching for a Value

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  The process of checking all elements until you have found a
match is called a linear search

Common Array Algorithm: Searching for a Value

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Problem: Locate the position of an element so that you can
replace or remove it

•  Use a variation of the linear search algorithm, but remember
the position instead of the matching element

•  Example: Locate the position of the first element that is larger
than 100:

int pos = 0;
boolean found = false;
while (pos < values.size() && !found)
{
 if (values.get(pos) > 100) { found = true; }
 else { pos++; }
}
if (found) { System.out.println("Position: " + pos); }
else { System.out.println("Not found"); }

Common Array Algorithm:
Locating the Position of an Element

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Array list ⇒ use method remove

•  Unordered array ⇒
1.  Overwrite the element to be removed with the last element of the array

2.  Decrement the variable tracking the size of the array

values[pos] = values[valuesSize - 1];
valuesSize--;

Common Array Algorithm: Removing an Element

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Ordered array ⇒
1.  Move all elements following the element to be removed to a lower

index

2.  Decrement the variable tracking the size of the array

for (int i = pos; i < valuesSize - 1; i++)
{
 values[i] = values[i + 1];
}
valuesSize--;

Common Array Algorithm: Removing an Element

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Common Array Algorithm: Removing an Element

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Animation 7.1: Removing from an Array

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Array list ⇒ use method add

•  Unordered array ⇒
1.  Insert the element as the last element of the array

2.  Increment the variable tracking the size of the array

if (valuesSize < values.length)
{
 values[valuesSize] = newElement;
 valuesSize++;
}

Common Array Algorithm: Inserting an Element

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Ordered array ⇒
1.  Start at the end of the array, move that element to a higher index, then

move the one before that, and so on until you finally get to the
insertion location

2.  Insert the element

3.  Increment the variable tracking the size of the array

if (valuesSize < values.length)
{
 for (int i = valuesSize; i > pos; i--)
 {
 values[i] = values[i - 1];
 }
 values[pos] = newElement;
 valuesSize++;
}

Common Array Algorithm: Inserting an Element

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Common Array Algorithm: Inserting an Element

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Animation 7.2: Inserting into an Array

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Copying an array variable yields a second reference to the
same array:

double[] values = new double[6];
. . . // Fill array
double[] prices = values;

Common Array Algorithm: Copying an Array

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  To make a true copy of an array, call the Arrays.copyOf
method:
double[] prices = Arrays.copyOf(values, values.length);

Common Array Algorithm: Copying an Array

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  To grow an array that has run out of space, use the
Arrays.copyOf method:

values = Arrays.copyOf(values, 2 * values.length);

Common Array Algorithm: Copying an Array

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Example: Read an arbitrarily long sequence numbers into an
array, without running out of space:

int valuesSize = 0;
while (in.hasNextDouble())
{
 if (valuesSize == values.length)
 values = Arrays.copyOf(values, 2 * values.length);
 values[valuesSize] = in.nextDouble();
 valuesSize++;
}

Common Array Algorithm: Growing an Array

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  When you display the elements of an array or array list, you
usually want to separate them:

Ann | Bob | Cindy

•  Print the separator before each element except the initial one
(with index 0):

for (int i = 0; i < names.size(); i++)
{
 if (i > 0)
 {
 System.out.print(" | ");
 }
 System.out.print(names.get(i));
}

Common Array Algorithm: Printing Element Separators

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Bank class stores an array list of bank accounts

•  Methods of the Bank class use some of the previous
algorithms:

 import java.util.ArrayList;

 /**
 This bank contains a collection of bank accounts.
 */
 public class Bank
 {
 private ArrayList<BankAccount> accounts;

 /**
 Constructs a bank with no bank accounts.
 */
 public Bank()
 {
 accounts = new ArrayList<BankAccount>();
 }

ch07/bank/Bank.java

Continued
Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

 /**
 Adds an account to this bank.
 @param a the account to add
 */
 public void addAccount(BankAccount a)
 {
 accounts.add(a);
 }

 /**
 Gets the sum of the balances of all accounts in this bank.
 @return the sum of the balances
 */
 public double getTotalBalance()
 {
 double total = 0;
 for (BankAccount a : accounts)
 {
 total = total + a.getBalance();
 }
 return total;
 }

ch07/bank/Bank.java (cont.)

Continued
Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

 /**
 Counts the number of bank accounts whose balance is at
 least a given value.
 @param atLeast the balance required to count an account
 @return the number of accounts having least the given balance
 */
 public int countBalancesAtLeast(double atLeast)
 {
 int matches = 0;
 for (BankAccount a : accounts)
 {
 if (a.getBalance() >= atLeast) matches++; // Found a match
 }
 return matches;
 }

ch07/bank/Bank.java (cont.)

Continued
Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

 /**
 Finds a bank account with a given number.
 @param accountNumber the number to find
 @return the account with the given number, or null if there
 is no such account
 */
 public BankAccount find(int accountNumber)
 {
 for (BankAccount a : accounts)
 {
 if (a.getAccountNumber() == accountNumber) // Found a match
 return a;
 }
 return null; // No match in the entire array list
 }

ch07/bank/Bank.java (cont.)

Continued
Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

 /**
 Gets the bank account with the largest balance.
 @return the account with the largest balance, or null if the
 bank has no accounts
 */
 public BankAccount getMaximum()
 {
 if (accounts.size() == 0) return null;
 BankAccount largestYet = accounts.get(0);
 for (int i = 1; i < accounts.size(); i++)
 {
 BankAccount a = accounts.get(i);
 if (a.getBalance() > largestYet.getBalance())
 largestYet = a;
 }
 return largestYet;
 }
 }

ch07/bank/Bank.java (cont.)

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 /**
 This program tests the Bank class.
 */
 public class BankTester
 {
 public static void main(String[] args)
 {
 Bank firstBankOfJava = new Bank();
 firstBankOfJava.addAccount(new BankAccount(1001, 20000));
 firstBankOfJava.addAccount(new BankAccount(1015, 10000));
 firstBankOfJava.addAccount(new BankAccount(1729, 15000));

 double threshold = 15000;
 int count = firstBankOfJava.countBalancesAtLeast(threshold);
 System.out.println("Count: " + count);
 System.out.println("Expected: 2");

ch07/bank/BankTester.java

Continued
Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

 int accountNumber = 1015;
 BankAccount account = firstBankOfJava.find(accountNumber);
 if (account == null)
 System.out.println("No matching account");
 else
 System.out.println("Balance of matching account: "
 + account.getBalance());
 System.out.println("Expected: 10000");

 BankAccount max = firstBankOfJava.getMaximum();
 System.out.println("Account with largest balance: "
 + max.getAccountNumber());
 System.out.println("Expected: 1001");
 }
 }

Program Run:
Count: 2
Expected: 2
Balance of matching account: 10000.0
Expected: 10000
Account with largest balance: 1001
Expected: 1001

ch07/bank/BankTester.java (cont.)

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

What does the find method do if there are two bank accounts
with a matching account number?

Answer: It returns the first match that it finds.

Self Check 7.12

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Would it be possible to use a “for each” loop in the getMaximum
method?

Answer: Yes, but the first comparison would always fail.

Self Check 7.13

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

When printing separators, we skipped the separator before the
initial element. Rewrite the loop so that the separator is printed
after each element, except for the last element.

Answer:
for (int i = 0; i < values.size(); i++)
{
 System.out.print(values.get(i));
 if (i < values.size() - 1)
 {
 System.out.print(" | ");
 }
}
Now you know why we set up the loop the other way.

Self Check 7.14

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

The following replacement has been suggested for the algorithm
that prints element separators:

System.out.print(names.get(0));
for (int i = 1; i < names.size(); i++)
 System.out.print(" | " + names.get(i));

What is problematic about this suggestion?
Answer: If names happens to be empty, the first line causes a
bounds error.

Self Check 7.15

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Test suite: a set of tests for repeated testing

•  Cycling: bug that is fixed but reappears in later versions

•  Regression testing: repeating previous tests to ensure that
known failures of prior versions do not appear in new versions

Regression Testing

 1 import java.util.Scanner;
 2
 3 /**
 4 This program tests the Bank class.
 5 */
 6 public class BankTester
 7 {
 8 public static void main(String[] args)
 9 {
 10 Bank firstBankOfJava = new Bank();
 11 firstBankOfJava.addAccount(new BankAccount(1001, 20000));
 12 firstBankOfJava.addAccount(new BankAccount(1015, 10000));
 13 firstBankOfJava.addAccount(new BankAccount(1729, 15000));
 14
 15 Scanner in = new Scanner(System.in);
 16
 17 double threshold = in.nextDouble();
 18 int c = firstBankOfJava.count(threshold);
 19 System.out.println("Count: " + c);
 20 int expectedCount = in.nextInt();
 21 System.out.println("Expected: " + expectedCount);
 22

ch07/regression/BankTester.java

Continued
Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

 23 int accountNumber = in.nextInt();
 24 BankAccount a = firstBankOfJava.find(accountNumber);
 25 if (a == null)
 26 System.out.println("No matching account");
 27 else
 28 {
 29 System.out.println("Balance of matching account: " + a.getBalance());
 30 int matchingBalance = in.nextInt();
 31 System.out.println("Expected: " + matchingBalance);
 32 }
 33 }
 34 }

 ch07/regression/BankTester.java (cont.)

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Store the inputs in a file

•  ch07/regression/input1.txt:
15000
2
1015
10000

•  Type the following command into a shell window:
java BankTester < input1.txt

•  Program Run:
Count: 2
Expected: 2
Balance of matching account: 10000
Expected: 10000

Regression Testing: Input Redirection

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Output redirection:
java BankTester < input1.txt > output1.txt

Regression Testing: Output Redirection

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose you modified the code for a method. Why do you want to
repeat tests that already passed with the previous version of the
code?

Answer: It is possible to introduce errors when modifying
code.

Self Check 7.16

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose a customer of your program finds an error. What action
should you take beyond fixing the error?

Answer: Add a test case to the test suite that verifies that the
error is fixed.

Self Check 7.17

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Why doesn’t the BankTester program contain prompts for the
inputs?

Answer: There is no human user who would see the prompts
because input is provided from a file.

Self Check 7.18

Therac-25 Facility

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  When constructing a two-dimensional array, specify how
 many rows and columns are needed:
 final int ROWS = 3;
 final int COLUMNS = 3;
 String[][] board = new String[ROWS][COLUMNS];

•  Access elements with an index pair:

board[1][1] = "x";
board[2][1] = "o";

Two-Dimensional Arrays

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  It is common to use two nested loops when filling or searching:

for (int i = 0; i < ROWS; i++)
 for (int j = 0; j < COLUMNS; j++)
 board[i][j] = " ";

Traversing Two-Dimensional Arrays

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  You can also recover the array dimensions from the array
variable:

•  board.length is the number of rows

•  board[0].length is the number of columns

•  Rewrite the loop for filling the tic-tac-toe board:
for (int i = 0; i < board.length; i++)
 for (int j = 0; j < board[0].length; j++)
 board[i][j] = " ";

Traversing Two-Dimensional Arrays

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 /**
 A 3 x 3 tic-tac-toe board.
 */
 public class TicTacToe
 {
 private String[][] board;
 private static final int ROWS = 3;
 private static final int COLUMNS = 3;

 /**
 Constructs an empty board.
 */
 public TicTacToe()
 {
 board = new String[ROWS][COLUMNS];
 // Fill with spaces
 for (int i = 0; i < ROWS; i++)
 for (int j = 0; j < COLUMNS; j++)
 board[i][j] = " ";
 }

ch07/twodim/TicTacToe.java

Continued
Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

 /**
 Sets a field in the board. The field must be unoccupied.
 @param i the row index
 @param j the column index
 @param player the player ("x" or "o")
 */
 public void set(int i, int j, String player)
 {
 if (board[i][j].equals(" "))
 board[i][j] = player;
 }

ch07/twodim/TicTacToe.java (cont.)

Continued
Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

 Creates a string representation of the board, such as
 |x o|
 | x |
 | o|
 @return the string representation
 */
 public String toString()
 {
 String r = "";
 for (int i = 0; i < ROWS; i++)
 {
 r = r + "|";
 for (int j = 0; j < COLUMNS; j++)
 r = r + board[i][j];
 r = r + "|\n";
 }
 return r;
 }
 }

ch07/twodim/TicTacToe.java (cont.)

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 import java.util.Scanner;

 /**
 This program runs a TicTacToe game. It prompts the
 user to set positions on the board and prints out the
 result.
 */
 public class TicTacToeRunner
 {
 public static void main(String[] args)
 {
 Scanner in = new Scanner(System.in);
 String player = "x";
 TicTacToe game = new TicTacToe();

ch07/twodim/TicTacToeRunner.java

Continued
Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

 boolean done = false;
 while (!done)
 {
 System.out.print(game.toString());
 System.out.print(
 "Row for " + player + " (-1 to exit): ");
 int row = in.nextInt();
 if (row < 0) done = true;
 else
 {
 System.out.print("Column for " + player + ": ");
 int column = in.nextInt();
 game.set(row, column, player);
 if (player.equals("x"))
 player = "o";
 else
 player = "x";
 }
 }
 }
 }

ch07/twodim/TicTacToeRunner.java (cont.)

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Program Run:
| |
| |
| |
Row for x (-1 to exit): 1
Column for x: 2
| |
| x |
| |
Row for o (-1 to exit): 0
Column for o: 0
|o |
| x|
| |
Row for x (-1 to exit): -1

ch07/twodim/TicTacToeRunner.java (cont.)

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

How do you declare and initialize a 4-by-4 array of integers?
Answer:
 int[][] array = new int[4][4];

Self Check 7.19

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

How do you count the number of spaces in the tic-tac-toe board?
Answer:
 int count = 0;
 for (int i = 0; i < ROWS; i++)
 for (int j = 0; j < COLUMNS; j++)
 if (board[i][j] == ' ') count++;

Self Check 7.20

