
ICOM 4015: Advanced
Programming	

Lecture 10

Big Java by Cay Horstmann
Copyright © 2009 by John
Wiley & Sons. All rights
reserved.

Reading: Chapter Ten: Inheritance

Chapter 10 – Inheritance

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  To learn about inheritance

•  To understand how to inherit and override superclass methods

•  To be able to invoke superclass constructors

•  To learn about protected and package access control

•  To understand the common superclass Object and to override
its toString and equals methods

G To use inheritance for customizing user interfaces

Chapter Goals

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Often categorize concepts into hierarchies:

Inheritance Hierarchies

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Set of classes can form an inheritance hierarchy
•  Classes representing the most general concepts are near the root, more

specialized classes towards the branches:

Inheritance Hierarchies

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Superclass: more general class

•  Subclass: more specialized class that inherits from the
superclass

•  Example: JPanel is a subclass of JComponent

Inheritance Hierarchies

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Example: Different account types:
1.  Checking account:

•  No interest

•  Small number of free transactions per month

•  Charges transaction fee for additional transactions

2.  Savings account:

•  Earns interest that compounds monthly

•  Superclass: BankAccount

•  Subclasses: CheckingAccount & SavingsAccount

Inheritance Hierarchies

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Behavior of account classes:
•  All support getBalance method

•  Also support deposit and withdraw methods, but implementation
details differ

•  Checking account needs a method deductFees to deduct the monthly
fees and to reset the transaction counter

•  Checking account must override deposit and withdraw methods to
count the transactions

Inheritance Hierarchies

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Inheritance Hierarchies

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

What is the purpose of the JTextComponent class in Figure 2?

Answer: To express the common behavior of text variables
and text components.

Self Check 10.1

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Why don’t we place the addInterest method in the
BankAccount class?

Answer: Not all bank accounts earn interest.

Self Check 10.2

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Inheritance is a mechanism for extending existing classes by
adding instance variables and methods:
class SavingsAccount extends BankAccount
{
 added instance variables
 new methods
}

•  A subclass inherits the methods of its superclass:
SavingsAccount collegeFund = new SavingsAccount(10);
// Savings account with 10% interest
collegeFund.deposit(500);
// OK to use BankAccount method with SavingsAccount object

Inheritance Hierarchies

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  In subclass, specify added instance variables, added methods,
and changed or overridden methods:

 public class SavingsAccount extends BankAccount
 {
 private double interestRate;

 public SavingsAccount(double rate)
 {
 Constructor implementation
 }

 public void addInterest()
 {
 Method implementation
 }
 }

Inheritance Hierarchies

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Instance variables declared in the superclass are present in
subclass objects

• SavingsAccount object inherits the balance instance variable
from BankAccount, and gains one additional instance variable,
interestRate:

Inheritance Hierarchies

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Implement the new addInterest method:
public class SavingsAccount extends BankAccount
{
 private double interestRate;
 public SavingsAccount(double rate)
 {
 interestRate = rate;
 }
 public void addInterest()
 {
 double interest = getBalance() * interestRate / 100;
 deposit(interest);
 }
}

Inheritance Hierarchies

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  A subclass has no access to private instance variables of its
superclass

•  Encapsulation: addInterest calls getBalance rather than
updating the balance variable of the superclass (variable is
private)

•  Note that addInterest calls getBalance without specifying
an implicit parameter (the calls apply to the same object)

•  Inheriting from a class differs from implementing an interface:
the subclass inherits behavior from the superclass

Inheritance Hierarchies

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 /**
 An account that earns interest at a fixed rate.
 */
 public class SavingsAccount extends BankAccount
 {
 private double interestRate;

 /**
 Constructs a bank account with a given interest rate.
 @param rate the interest rate
 */
 public SavingsAccount(double rate)
 {
 interestRate = rate;
 }

ch10/accounts/SavingsAccount.java

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 /**
 Adds the earned interest to the account balance.
 */
 public void addInterest()
 {
 double interest = getBalance() * interestRate / 100;
 deposit(interest);
 }
 }

ch10/accounts/SavingsAccount.java (cont.)

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Syntax 10.1 Inheritance

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Which instance variables does an object of class
SavingsAccount have?

Answer: Two instance variables: balance and
interestRate.

Self Check 10.3

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Name four methods that you can apply to SavingsAccount
objects.

Answer: deposit, withdraw, getBalance, and
addInterest.

Self Check 10.4

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

If the class Manager extends the class Employee, which class is
the superclass and which is the subclass?

Answer: Manager is the subclass; Employee is the
superclass.

Self Check 10.5

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  A subclass has no access to the private instance variables of the
superclass:
public class SavingsAccount extends BankAccount
{
 public void addInterest()
 {
 double interest = getBalance() * interestRate / 100;
 balance = balance + interest; // Error
 }
 . . .
}

Common Error: Shadowing Instance Variables

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Beginner’s error: “solve” this problem by adding another
instance variable with same name:
public class SavingsAccount extends BankAccount
{
 private double balance; // Don’t
 public void addInterest()
 {
 double interest = getBalance() * interestRate / 100;
 balance = balance + interest; // Compiles but doesn’t
 // update the correct balance
 }
 . . .
}

Common Error: Shadowing Instance Variables

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Now the addInterest method compiles, but it doesn’t update the
correct balance!

Common Error: Shadowing Instance Variables

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  A subclass method overrides a superclass method if it has the
same name and parameter types as a superclass method

•  When such a method is applied to a subclass object, the overriding
method is executed

Overriding Methods

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Example: deposit and withdraw methods of the
CheckingAccount class override the deposit and withdraw
methods of the BankAccount class to handle transaction fees:
public class BankAccount
{
 . . .
 public void deposit(double amount) { . . . }
 public void withdraw(double amount) { . . . }
 public double getBalance() { . . . }
}
public class CheckingAccount extends BankAccount
{
 . . .
 public void deposit(double amount) { . . . }
 public void withdraw(double amount) { . . . }
 public void deductFees() { . . . }
}

Overriding Methods

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Problem: Overriding method deposit can't simply add amount
to balance:
public class CheckingAccount extends BankAccount
{
 . . .
 public void deposit(double amount)
 {
 transactionCount++;
 // Now add amount to balance
 balance = balance + amount; // Error
 }
}

•  If you want to modify a private superclass instance variable, you
must use a public method of the superclass

•  deposit method of CheckingAccount must invoke the
deposit method of BankAccount

Overriding Methods

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Idea:
public class CheckingAccount extends BankAccount
{
 public void deposit(double amount)
 {
 transactionCount++;
 // Now add amount to balance
 deposit; // Not complete
 }
}

•  Won't work because compiler interprets
deposit(amount);

as
this.deposit(amount);

which calls the method we are currently writing ⇒ infinite
recursion

Overriding Methods

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Use the super reserved word to call a method of the
superclass:

public class CheckingAccount extends BankAccount
{
 public void deposit(double amount)
 {
 transactionCount++;
 // Now add amount to balance
 super.deposit(amount);
 }
}

Overriding Methods

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Remaining methods of CheckingAccount also invoke a
superclass method:
public class CheckingAccount extends BankAccount
{
 private static final int FREE_TRANSACTIONS = 3;
 private static final double TRANSACTION_FEE = 2.0;
 private int transactionCount;
 . . .
 public void withdraw(double amount
 {
 transactionCount++;
 // Now subtract amount from balance
 super.withdraw(amount);
 }

Overriding Methods

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 public void deductFees()
 {
 if (transactionCount > FREE_TRANSACTIONS)
 {
 double fees = TRANSACTION_FEE *
 (transactionCount - FREE_TRANSACTIONS);
 super.withdraw(fees);
 }
 transactionCount = 0;
 }
 . . .
}

Overriding Methods (cont.)

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Syntax 10.2 Calling a Superclass Method

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Animation 10.1: Inheritance

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Categorize the methods of the SavingsAccount class as
inherited, new, and overridden.

Answer: The SavingsAccount class inherits the deposit,
withdraw, and getBalance methods. The addInterest
method is new. No methods override superclass methods.

Self Check 10.6

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Why does the withdraw method of the CheckingAccount
class call super.withdraw?

Answer: It needs to reduce the balance, and it cannot access
the balance variable directly.

Self Check 10.7

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Why does the deductFees method set the transaction count to
zero?

Answer: So that the count can reflect the number of
transactions for the following month.

Self Check 10.8

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  To call the superclass constructor, use the super reserved word
in the first statement of the subclass constructor:

 public class CheckingAccount extends BankAccount
 {
 public CheckingAccount(double initialBalance)
 {
 // Construct superclass
 super(initialBalance);
 // Initialize transaction count
 transactionCount = 0;
 }
 ...
 }

Subclass Construction

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  When subclass constructor doesn't call superclass constructor,
the superclass must have a constructor with no parameters

•  If, however, all constructors of the superclass require parameters, then
the compiler reports an error

Subclass Construction

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 /**
 A checking account that charges transaction fees.
 */
 public class CheckingAccount extends BankAccount
 {
 private static final int FREE_TRANSACTIONS = 3;
 private static final double TRANSACTION_FEE = 2.0;

 private int transactionCount;

 /**
 Constructs a checking account with a given balance.
 @param initialBalance the initial balance
 */
 public CheckingAccount(double initialBalance)
 {
 // Construct superclass
 super(initialBalance);

 // Initialize transaction count
 transactionCount = 0;
 }

ch10/accounts/CheckingAccount.java

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 public void deposit(double amount)
 {
 transactionCount++;
 // Now add amount to balance
 super.deposit(amount);
 }

 public void withdraw(double amount)
 {
 transactionCount++;
 // Now subtract amount from balance
 super.withdraw(amount);
 }

ch10/accounts/CheckingAccount.java (cont.)

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 /**
 Deducts the accumulated fees and resets the
 transaction count.
 */
 public void deductFees()
 {
 if (transactionCount > FREE_TRANSACTIONS)
 {
 double fees = TRANSACTION_FEE *
 (transactionCount - FREE_TRANSACTIONS);
 super.withdraw(fees);
 }
 transactionCount = 0;
 }
 }

ch10/accounts/CheckingAccount.java (cont.)

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Syntax 10.3 Calling a Superclass Constructor

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Why didn’t the SavingsAccount constructor in Section 10.2
call its superclass constructor?

Answer: It was content to use the default constructor of the
superclass, which sets the balance to zero.

Self Check 10.9

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

When you invoke a superclass method with the super keyword,
does the call have to be the first statement of the subclass
method?

Answer: No — this is a requirement only for constructors. For
example, the SavingsAccount.deposit method first
increments the transaction count, then calls the superclass
method.

Self Check 10.10

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  OK to convert subclass reference to superclass reference:
 SavingsAccount collegeFund = new SavingsAccount(10);
 BankAccount anAccount = collegeFund;
 Object anObject = collegeFund;

•  The three object references stored in collegeFund,
anAccount, and anObject all refer to the same object of type
SavingsAccount

Converting Between Subclass and Superclass Types

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Superclass references don’t know the full story:
 anAccount.deposit(1000); // OK
 anAccount.addInterest();
 // No--not a method of the class to which anAccount
 // belongs

•  Why would anyone want to know less about an object?
•  Reuse code that knows about the superclass but not the subclass:

public void transfer(double amount, BankAccount other)
{
 withdraw(amount);
 other.deposit(amount);
}

Can be used to transfer money from any type of BankAccount

Converting Between Subclass and Superclass Types

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Occasionally you need to convert from a superclass reference
 to a subclass reference:

 BankAccount anAccount = (BankAccount) anObject;

•  This cast is dangerous: If you are wrong, an exception is thrown

•  Solution: Use the instanceof operator

•  instanceof: Tests whether an object belongs to a particular
type:

 if (anObject instanceof BankAccount)
 {
 BankAccount anAccount = (BankAccount) anObject;
 ...
 }

Converting Between Subclass and Superclass Types

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Syntax 10.4 The instanceof Operator

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Why did the second parameter of the transfer method have to
be of type BankAccount and not, for example,
SavingsAccount?

Answer: We want to use the method for all kinds of bank
accounts. Had we used a parameter of type
SavingsAccount, we couldn’t have called the method with a
CheckingAccount object.

Self Check 10.11

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Why can’t we change the second parameter of the transfer
method to the type Object?

Answer: We cannot invoke the deposit method on a
variable of type Object.

Self Check 10.12

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Type of a variable doesn’t completely determine type of object
to which it refers:
BankAccount aBankAccount = new SavingsAccount(1000);
// aBankAccount holds a reference to a SavingsAccount

•  BankAccount anAccount = new CheckingAccount();
anAccount.deposit(1000);

 Which deposit method is called?

•  Dynamic method lookup: When the virtual machine calls an
instance method, it locates the method of the implicit
parameter's class

Polymorphism and Inheritance

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Example:
public void transfer(double amount, BankAccount other)
{
 withdraw(amount);
 other.deposit(amount);
}

•  When you call
anAccount.transfer(1000, anotherAccount);

two method calls result:
anAccount.withdraw(1000);
anotherAccount.deposit(1000);

Polymorphism and Inheritance

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Polymorphism: Ability to treat objects with differences in
behavior in a uniform way

•  The first method call
withdraw(amount);

is a shortcut for
this.withdraw(amount);

• this can refer to a BankAccount or a subclass object

Polymorphism and Inheritance

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 /**
 This program tests the BankAccount class and
 its subclasses.
 */
 public class AccountTester
 {
 public static void main(String[] args)
 {
 SavingsAccount momsSavings = new SavingsAccount(0.5);

 CheckingAccount harrysChecking = new CheckingAccount(100);

 momsSavings.deposit(10000);

 momsSavings.transfer(2000, harrysChecking);
 harrysChecking.withdraw(1500);
 harrysChecking.withdraw(80);

 momsSavings.transfer(1000, harrysChecking);
 harrysChecking.withdraw(400);

ch10/accounts/AccountTester.java

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 // Simulate end of month
 momsSavings.addInterest();
 harrysChecking.deductFees();

 System.out.println("Mom’s savings balance: "
 + momsSavings.getBalance());
 System.out.println("Expected: 7035");

 System.out.println("Harry’s checking balance: "
 + harrysChecking.getBalance());
 System.out.println("Expected: 1116");
 }
 }

ch10/accounts/AccountTester.java (cont.)

Program Run:
Mom's savings balance: 7035.0
Expected: 7035
Harry's checking balance: 1116.0
Expected: 1116

Super Classes vs. Interfaces

•  Every class can inherit from ONLY ONE class

•  Every class can be super class of MANY classes

•  Every class can implement MANY interfaces

•  Every interface can be implemented by MANY
classes

•  Interfaces do not inherit components

•  Interfaces cannot be instantiated

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Polymorphism
Super Classes vs. Interfaces

•  Use inheritance when:
–  There is some inherent semantic relationship between

classes
–  Objects have common properties/methods that you

do not want to duplicate
•  Use interfaces when:

–  Classes can act in similar fashion yet they do not
represent objects of the same nature

•  Remember: you only have one shot at selecting
the super class. Use it wisely.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

If a is a variable of type BankAccount that holds a non-null
reference, what do you know about the object to which a refers?

Answer: The object is an instance of BankAccount or one of
its subclasses.

Self Check 10.13

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

If a refers to a checking account, what is the effect of calling
a.transfer(1000, a)?

Answer: The balance of a is unchanged, and the transaction
count is incremented twice.

Self Check 10.14

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Protected features can be accessed by all subclasses and by all
classes in the same package

•  Solves the problem that CheckingAccount methods need
access to the balance instance variable of the superclass
BankAccount:
public class BankAccount
{
 . . .
 protected double balance;
}

Protected Access

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  The designer of the superclass has no control over the authors
of subclasses:

•  Any of the subclass methods can corrupt the superclass data

•  Classes with protected instance variables are hard to modify — the
protected variables cannot be changed, because someone somewhere
out there might have written a subclass whose code depends on them

•  Protected data can be accessed by all methods of classes in the
same package

•  It is best to leave all data private and provide accessor methods
for the data

Protected Access

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

• All classes defined without an explicit extends clause
automatically extend Object:

Object: The Cosmic Superclass

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Object: The Cosmic Superclass

•  Most useful methods:
• String toString()

• boolean equals(Object otherObject)

• Object clone()

•  Good idea to override these methods in your classes

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Returns a string representation of the object

•  Useful for debugging:
 Rectangle box = new Rectangle(5, 10, 20, 30);
 String s = box.toString();
 // Sets s to "java.awt.Rectangle[x=5,y=10,width=20,
// height=30]"

• toString is called whenever you concatenate a string with an
object:

 "box=" + box;
 // Result: "box=java.awt.Rectangle[x=5,y=10,width=20,
// height=30]"

Overriding the toString Method

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Object.toString prints class name and the hash code of
the object:

 BankAccount momsSavings = new BankAccount(5000);
 String s = momsSavings.toString();
 // Sets s to something like "BankAccount@d24606bf"

Overriding the toString Method

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  To provide a nicer representation of an object, override
toString:

 public String toString()
 {
 return "BankAccount[balance=" + balance + "]";
 }

•  This works better:
 BankAccount momsSavings = new BankAccount(5000);
 String s = momsSavings.toString();
 // Sets s to "BankAccount[balance=5000]"

Overriding the toString Method

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Overriding the equals Method

• equals tests for same contents:
if (coin1.equals(coin2)) . . .
// Contents are the same

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Overriding the equals Method

• == tests for references to the same object:
if (coin1 == (coin2)) . . .
// Objects are the same

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Need to override the equals method of the Object class:

 public class Coin
 {
 ...
 public boolean equals(Object otherObject)
 {
 ...
 }
 ...
 }

Overriding the equals Method

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Cannot change parameter type; use a cast instead:
 public class Coin
 {
 ...
 public boolean equals(Object otherObject)
 {
 Coin other = (Coin) otherObject;
 return name.equals(other.name) && value ==
 other.value;
 }
 ...
 }

•  You should also override the hashCode method so that equal
objects have the same hash code

Overriding the equals Method

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Copying an object reference gives two references to same
object:
BankAccount account = newBankAccount(1000);
BankAccount account2 = account;
account2.deposit(500); // Now both account and account2
 // refer to a bank account with a balance of 1500

•  Sometimes, need to make a copy of the object:

The clone Method

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Implement clone method to make a new object with the same
state as an existing object

•  Use clone:
BankAccount clonedAccount =
 (BankAccount) account.clone();

•  Must cast return value because return type is Object

The clone Method

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

The Object.clone Method

•  Creates shallow copies:

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Does not systematically clone all subobjects

•  Must be used with caution

•  It is declared as protected; prevents from accidentally calling
x.clone() if the class to which x belongs hasn’t redefined
clone to be public

•  You should override the clone method with care (see Special
Topic 10.6)

The Object.clone Method

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Should the call x.equals(x) always return true?

Answer: It certainly should — unless, of course, x is null.

Self Check 10.15

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Can you implement equals in terms of toString? Should you?

Answer: If toString returns a string that describes all
instance variables, you can simply call toString on the
implicit and explicit parameters, and compare the results.
However, comparing the variables is more efficient than
converting them into strings.

Self Check 10.16

Scripting Languages

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Use inheritance for complex frames to make programs easier to
understand

•  Design a subclass of JFrame

•  Store the components as instance variables

•  Initialize them in the constructor of your subclass

•  If initialization code gets complex, simply add some helper
methods

Using Inheritance to Customize Frames

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch10/frame/InvestmentFrame.java

 import java.awt.event.ActionEvent;
 import java.awt.event.ActionListener;
 import javax.swing.JButton;
 import javax.swing.JFrame;
 import javax.swing.JLabel;
 import javax.swing.JPanel;
 import javax.swing.JTextField;

 public class InvestmentFrame extends JFrame
 {
 private JButton button;
 private JLabel label;
 private JPanel panel;
 private BankAccount account;

 private static final int FRAME_WIDTH = 400;
 private static final int FRAME_HEIGHT = 100;

 private static final double INTEREST_RATE = 10;
 private static final double INITIAL_BALANCE = 1000;

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

ch10/frame/InvestmentFrame.java

 public InvestmentFrame()
 {
 account = new BankAccount(INITIAL_BALANCE);

 // Use instance variables for components
 label = new JLabel("balance: " + account.getBalance());

 // Use helper methods
 createButton();
 createPanel();

 setSize(FRAME_WIDTH, FRAME_HEIGHT);
 }

 private void createButton()
 {
 button = new JButton("Add Interest");
 ActionListener listener = new AddInterestListener();
 button.addActionListener(listener);
 }

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Example: Investment Viewer Program (cont.)

 private void createPanel()
 {
 panel = new JPanel();
 panel.add(button);
 panel.add(label);
 add(panel);
 }

 class AddInterestListener implements ActionListener
 {
 public void actionPerformed(ActionEvent event)
 {
 double interest = account.getBalance() * INTEREST_RATE / 100;
 account.deposit(interest);
 label.setText("balance: " + account.getBalance());
 }
 }
 }

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Of course, we still need a class with a main method:
 import javax.swing.JFrame;

 /**
 This program displays the growth of an investment.
 */
 public class InvestmentViewer2
 {
 public static void main(String[] args)
 {
 JFrame frame = new InvestmentFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
 }

Example: Investment Viewer Program

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

How many Java source files are required by the investment viewer
application when we use inheritance to define the frame class?

Answer: Three: InvestmentFrameViewer,
InvestmentFrame, and BankAccount.

Self Check 10.17

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Why does the InvestmentFrame constructor call
setSize(FRAME_WIDTH, FRAME_HEIGHT), whereas the main
method of the investment viewer class in Chapter 9 called
frame.setSize(FRAME_WIDTH, FRAME_HEIGHT)?

Answer: The InvestmentFrame constructor adds the panel
to itself.

Self Check 10.18

