
University of Puerto Rico
Mayagüez Campus

College of Engineering
Department of Electrical and Computer Engineering

ICOM4029 – Compilers

Professor: Bienvenido Vélez

Lab 1 – Introduction to Cool

Cool, or Class Object-Oriented Language, is a simple language specifically designed for use in a
compilers course. It contains enough necessary properties and features for learning how a
compiler works and to be used as a basis for developing your own compiler.
The following steps will guide you on creating your first Cool program, compiling it, and running it
using the spim MIPS emulator.

Side note: Linux Access
To complete this lab you will need access to a Linux system. You may install a Linux VM on your
laptop or PC or get an account at the Amadeus computing lab. To request an account send an
email to Bienvenido.Velez@upr.edu.

1. Preparation	

Step 1. Get access to a linux distribution
An easy way is to get an account for the Amadeus lab PCs or to install a Linux
distribution as a VM on you PC.

Step 2. Download and extract the Cool language support code
You may download the distribution from the course website using a browser running on
your Linux machine.

Step 3. Install emacs and spim
Install the following tools in your linux environment if they do not already exist: emacs,
spim. In Fedora you can use yum to install packages easily as follows:

yum –i install emacs
yum –i install spim

You must be connected to the Internet for yum to be able to download these packages.

Step 4. Login and setup your environment variables
After logging on, open a terminal window and enter the following commands in the order they
appear:

export PATH=$PATH:~<userid>/cool/bin:~

You should add this line to the .bashrc_profile file in your home directory so that
you can use Cool executables from any folder.

2. Writing	
 the	
 Program	

Now, we are going to write a simple Cool program that displays “Hello World!”. Open
up emacs or any other text editor and write the following code:

class Main {
 out : IO <- new IO;

 main(): Object {
 out.out_string("Hello World!\n")
 };
};

Save your file as hello.cl when finished.

3. Compiling	
 it	

To compile your program, go to the folder where you saved it and enter:

 coolc –o hello.s hello.cl

(the “–o hello.s” can be omitted). This will create a file named hello.s which is the MIPS
assembly code that resulted from the compilation.

4. Running	
 it	

To actually run the program and see its output we are going to use a MIPS emulator called spim
since the lab’s computers have a different architecture (x86).

To run your compiled Hello World program (hello.s), enter the following:

spim –trap_file ~<userid>/lib/trap.handler –file hello.s

The screen will display spim’s initialization messages and then run the program, which will output

“Hello World!”

5. Sample	
 Program	
 2	

Write the following Cool program (stat.cl):

class Main inherits IO {
 i : Int <- 0;
 number : Int;
 max : Int <- 0;
 sum : Int <- 0;
 maxStr : String;
 avgStr : String;
 conv : A2I <- new A2I;

 main() : Object {
 {
 while (i < 4) loop {
 out_string("Enter an integer: ");
 number <- in_int();
 if (max < number)
 then max <- number
 else 0
 fi;
 i <- i + 1;
 sum <- sum + number;
 } pool;
 maxStr <- conv.i2a(max);
 out_string(("The greatest # was: ".concat(maxStr)).concat("\n"));
 avgStr <- conv.i2a(sum / 4);
 out_string((("The average is: ").concat(avgStr)).concat("\n"));
 }
 };
};

Copy the atoi.cl sample program from the Cool examples directory:

 cp ~<userid>/cool/examples/atoi.cl .

Compile the program:

coolc –o stat.s atoi.cl stat.cl

Run it:
spim –trap_file ~<userid>/lib/trap.handler –file stat.s

VI. Closing Notes
There are some sample cool programs at ~<userid>/cool/examples. Your first programming
assignment (PA1) will have you writing a stack machine in cool so you should take a look at the
examples, read the cool manual at least up to Section 11 and get familiar with cool by writing
some sample programs of your own.

