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ICOM 4029 - Outline 

•  Prontuario 
•  Course Outline 
•  Brief History of PLs 
•  Programming Language Design Criteria 
•  Programming Language Implementation 
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Programming Assignments Highlights 

•  Implement a compiler in four phases 
•  Teams of two students (Choose your partner!) 
•  Development in Java 
•  Use Academic Computer Center (Amadeus) if needed 
•  Can work on your personal computers 
•  Source Language = COOL (UC Berkeley CS164) 
•  Target Language = MIPS Assembly (SPIM) 
•  Each compiler must pass a minimal set of tests in 

order to pass the class. 
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Homework for next week 

•  Read the COOL Reference Manual 
•  Choose your partner 

–  notify me by email 
•  Read the JLex (Java) manual 
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(Short) History of High-Level Languages 

•  1953 IBM develops the 701  

•  All programming done in assembly 

•  Problem: Software costs exceeded hardware 
costs! 

•  John Backus: “Speedcoding” 
–  An interpreter 
–  Ran 10-20 times slower than hand-written assembly 
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FORTRAN I 

•  1954 IBM develops the 704 
•  John Backus 

–  Idea: translate high-level code to assembly 
–  Many thought this impossible 

•  Had already failed in other projects 

•  1954-7 FORTRAN I project 
•  By 1958, >50% of all software is in FORTRAN 
•  Cut development time dramatically  

–  (2 wks → 2 hrs) 
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FORTRAN I 

•  The first compiler 
–  Produced code almost as good as hand-written 
–  Huge impact on computer science 

•  Led to an enormous body of theoretical work 

•  Modern compilers preserve the outlines of 
FORTRAN I 
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History of Ideas: Abstraction 

•  Abstraction = detached from concrete details 
•  Abstraction necessary to build software 

systems 
•  Modes of abstraction 

–  Via languages/compilers: 
•  Higher-level code, few machine dependencies 

–  Via subroutines 
•  Abstract interface to behavior 

–  Via modules 
•  Export interfaces; hide implementation 

–  Via abstract data types 
•  Bundle data with its operations 
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History of Ideas: Types 

•  Originally, few types 
–  FORTRAN: scalars, arrays 
–  LISP: no static type distinctions 

•  Realization: Types help 
–  Allow the programmer to express abstraction 
–  Allow the compiler to check against many frequent errors 
–  Sometimes to the point that programs are guaranteed “safe” 

•  More recently 
–  Lots of interest in types 
–  Experiments with various forms of parameterization 
–  Best developed in functional programming 
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History of Ideas: Reuse 

•  Reuse = exploits common patterns in software systems  
•  Goal: mass-produced software components 
•  Reuse is difficult 
•  Two popular approaches (combined in C++) 

–  Type parameterization (List(int), List(double)) 
–  Classes and inheritance: C++ derived classes 

•  Inheritance allows 
–  Specialization of existing abstraction 
–  Extension, modification, hiding behavior 
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Programming Language Economics 101 

•  Languages are adopted to fill a void 
–  Enable a previously difficult/impossible application 
–  Orthogonal to language design quality (almost) 

•  Programmer training is the dominant cost 
–  Languages with many users are replaced rarely 
–  Popular languages become ossified 
–  But easy to start in a new niche . . . 
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Why So Many Languages? 

•  Application domains have distinctive (and 
conflicting) needs 

•  Examples: 
–  Scientific Computing: high performance 
–  Business: report generation  
–  Artificial intelligence: symbolic computation 
–  Systems programming: low-level access 
–  Special purpose languages 
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Topic: Language Design 

•  No universally accepted metrics for design 

•  “A good language is one people use” ? 

•  NO ! 
–  Is COBOL the best language? 

•  Good language design is hard 
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Language Evaluation Criteria 

Characteristic Criteria 
Readability Writeability Reliability 

Simplicity * * * 
Data types * * * 
Syntax design * * * 
Abstraction * * 
Expressivity * * 
Type checking * 
Exception handling * 
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Why Study Languages and Compilers ? 

•  Increase capacity of expression 
•  Improve understanding of program behavior 
•  Increase ability to learn new languages 

•  Learn to build a large and reliable system  
•  See many basic CS concepts at work 
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Trends 

•  Language design 
–  Many new special-purpose languages 
–  Popular languages to stay 

•  Compilers 
–  More needed and more complex 
–  Driven by increasing gap between 

•  new languages 
•  new architectures 

–  Venerable and healthy area 
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How are Languages Implemented? 

•  Two major strategies: 
–  Interpreters (older, less studied) 
–  Compilers (newer, much more studied) 

•  Interpreters run programs “as is” 
–  Little or no preprocessing 

•  Compilers do extensive preprocessing 
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Language Implementations 

•  Batch compilation systems dominate 
–  E.g., gcc 

•  Some languages are primarily interpreted 
–  E.g., Java bytecode 

•  Some environments (Lisp) provide both 
–  Interpreter for development 
–  Compiler for production 
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The Structure of a Compiler 

1.  Lexical Analysis 
2.  Parsing 
3.  Semantic Analysis 
4.  Optimization 
5.  Code Generation 

  The first 3, at least, can be understood by 
analogy to how humans comprehend English. 
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Lexical Analysis 

•  First step: recognize words. 
–  Smallest unit above letters 

 
This is a sentence. 

•  Note the 
–  Capital “T” (start of sentence symbol) 
–  Blank “ “ (word separator) 
–  Period “.” (end of sentence symbol) 
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More Lexical Analysis 

•  Lexical analysis is not trivial.  Consider: 
ist his ase nte nce 

•  Plus, programming languages are typically more 
cryptic than English: 

*p->f ++ = -.12345e-5 
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And More Lexical Analysis 

•  Lexical analyzer divides program text into 
“words” or “tokens” 

if x == y then z = 1; else z = 2; 

•  Units:  
if, x, ==, y, then, z, =, 1, ;, else, z, =, 2, ; 
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Parsing 

•  Once words are understood, the next step is 
to understand sentence structure 

•  Parsing = Diagramming Sentences 
–  The diagram is a tree 
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Diagramming a Sentence 

This line is a longer sentence 

verb article noun article adjective noun 

subject object 

sentence 
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Parsing Programs 

•  Parsing program expressions is the same 
•  Consider: 

If x == y then z = 1; else z = 2; 
•  Diagrammed: 
 

if-then-else 

x y z 1 z 2 == 

assign relation assign 

predicate else-stmt then-stmt 
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Semantic Analysis 

•  Once sentence structure is understood, we 
can try to understand “meaning” 
–  But meaning is too hard for compilers 

•  Compilers perform limited analysis to catch 
inconsistencies 

•  Some do more analysis to improve the 
performance of the program 
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Semantic Analysis in English 

•  Example: 
Jack said Jerry left his assignment at home. 
What does “his” refer to? Jack or Jerry? 

•  Even worse: 
Jack said Jack left his assignment at home? 

How many Jacks are there? 
Which one left the assignment? 
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Semantic Analysis in Programming 

•  Programming 
languages define 
strict rules to avoid 
such ambiguities 

•  This C++ code prints 
“4”; the inner 
definition is used 

{ 
 int Jack = 3; 
 { 
  int Jack = 4; 
  cout << Jack; 
 } 

} 
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More Semantic Analysis 

•  Compilers perform many semantic checks 
besides variable bindings 

•  Example: 
Jack left her homework at home. 

•  A “type mismatch” between her and Jack; we 
know they are different people 
–  Presumably Jack is male 
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Examples of Semantic Checks in PLs 

•  Variables defined before used 
•  Variables defined once 
•  Type compatibility 
•  Correct arguments to functions 
•  Constants are not modified 
•  Inheritance hierarchy has no cycles 
•  … 
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Optimization 

•  No strong counterpart in English, but akin to 
editing 

•  Automatically modify programs so that they 
–  Run faster 
–  Use less memory 
–  In general, conserve some resource 

•  The project has no optimization component 
ICOM 4029 Fall 2014 



Adapted from: Prof. Necula  UCB CS 164 32 

Optimization Example 

 
 

X = Y * 0   is the same as  X = 0 
 

NO! 
 

Valid for integers, but not for floating point 
numbers 
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Examples of common optimizations in PLs 

•  Dead code elimination 
•  Evaluating repeated expressions only once 
•  Replace expressions by simpler equivalent 

expressions 
•  Evaluate expressions at compile time 
•  Inline procedures 
•  Move constant expressions out of loops 
•  … 
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Code Generation 

•  Produces assembly code (usually) 

•  A translation into another language 
–  Analogous to human translation 
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Intermediate Languages 

•  Many compilers perform translations between 
successive intermediate forms 
–  All but first and last are intermediate languages 

internal to the compiler 
–  Typically there is 1 IL 

•  IL’s generally ordered in descending level of 
abstraction 
–  Highest is source 
–  Lowest is assembly 

ICOM 4029 Fall 2014 



Adapted from: Prof. Necula  UCB CS 164 36 

Intermediate Languages (Cont.) 

•  IL’s are useful because lower levels expose 
features hidden by higher levels 
–  registers 
–  memory layout 
–  etc. 

•  But lower levels obscure high-level meaning 
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Issues 

•  Compiling is almost this simple, but there are 
many pitfalls. 

•  Example: How are erroneous programs 
handled? 

•  Language design has big impact on compiler 
–  Determines what is easy and hard to compile 
–  Course theme: many trade-offs in language design 
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Compilers Today 

•  The overall structure of almost every compiler 
adheres to our outline 

•  The proportions have changed since FORTRAN 
–  Early: lexing, parsing most complex, expensive 

–  Today: optimization dominates all other phases, 
lexing and parsing are cheap 
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Trends in Compilation 

•  Compilation for speed is less interesting. But: 
–  scientific programs 
–  advanced processors (Digital Signal Processors, 

advanced speculative architectures) 

•  Ideas from compilation used for improving 
code reliability: 
–  memory safety 
–  detecting concurrency errors (data races) 
–  ...  
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