
Profs. Necula CS 164 Lecture 6-7 1

Top-Down Parsing

ICOM 4029

Profs. Necula CS 164 Lecture 6-7 2

Review

•  A parser consumes a sequence of tokens s and
produces a parse tree

•  Issues:
–  How do we recognize that s ∈ L(G) ?
–  A parse tree of s describes how s ∈ L(G)
–  Ambiguity: more than one parse tree

(interpretation) for some string s
–  Error: no parse tree for some string s
–  How do we construct the parse tree?

Profs. Necula CS 164 Lecture 6-7 3

Ambiguity

•  Grammar
 E → E + E | E * E | (E) | int

•  Strings
 int + int + int

 int * int + int

Profs. Necula CS 164 Lecture 6-7 4

Ambiguity. Example

This string has two parse trees

E

E

E E

E +

int +

int int

E

E

E E

E +

int +

int int

+ is left-associative

Profs. Necula CS 164 Lecture 6-7 5

Ambiguity. Example

This string has two parse trees

E

E

E E

E *

int +

int int

E

E

E E

E +

int *

int int

* has higher precedence than +

Profs. Necula CS 164 Lecture 6-7 6

Ambiguity (Cont.)

•  A grammar is ambiguous if it has more than
one parse tree for some string
–  Equivalently, there is more than one right-most or

left-most derivation for some string
•  Ambiguity is bad

–  Leaves meaning of some programs ill-defined
•  Ambiguity is common in programming languages

–  Arithmetic expressions
–  IF-THEN-ELSE

Profs. Necula CS 164 Lecture 6-7 7

Dealing with Ambiguity

•  There are several ways to handle ambiguity

•  Most direct method is to rewrite the grammar
unambiguously
 E → E + T | T
 T → T * int | int | (E)

•  Enforces precedence of * over +
•  Enforces left-associativity of + and *

Profs. Necula CS 164 Lecture 6-7 8

Ambiguity. Example

The int * int + int has ony one parse tree now
 E

E

E E

E *

int +

int int

E

T

T int

T +

int

*

E

int

Profs. Necula CS 164 Lecture 6-7 9

Ambiguity: The Dangling Else

•  Consider the grammar
 E → if E then E
 | if E then E else E
 | OTHER

•  This grammar is also ambiguous

Profs. Necula CS 164 Lecture 6-7 10

The Dangling Else: Example

•  The expression
 if E1 then if E2 then E3 else E4
has two parse trees

if

E1 if

E2 E3 E4

if

E1 if

E2 E3

E4

•  Typically we want the second form

Profs. Necula CS 164 Lecture 6-7 11

The Dangling Else: A Fix

•  else matches the closest unmatched then
•  We can describe this in the grammar

(distinguish between matched and unmatched “then”)

 E → MIF /* all then are matched */
 | UIF /* some then are unmatched */
MIF → if E then MIF else MIF
 | OTHER
UIF → if E then E
 | if E then MIF else UIF

•  Describes the same set of strings

Profs. Necula CS 164 Lecture 6-7 12

The Dangling Else: Example Revisited

•  The expression if E1 then if E2 then E3 else E4

if

E1 if

E2 E3 E4

if

E1 if

E2 E3

E4

•  Not valid because the
then expression is not
a MIF

•  A valid parse tree
(for a UIF)

Profs. Necula CS 164 Lecture 6-7 13

Ambiguity

•  No general techniques for handling ambiguity

•  Impossible to convert automatically an
ambiguous grammar to an unambiguous one

•  Used with care, ambiguity can simplify the
grammar
–  Sometimes allows more natural definitions
–  We need disambiguation mechanisms

Profs. Necula CS 164 Lecture 6-7 14

Precedence and Associativity Declarations

•  Instead of rewriting the grammar
–  Use the more natural (ambiguous) grammar
–  Along with disambiguating declarations

•  Most tools allow precedence and associativity
declarations to disambiguate grammars

•  Examples …

Profs. Necula CS 164 Lecture 6-7 15

Associativity Declarations

•  Consider the grammar E → E + E | int
•  Ambiguous: two parse trees of int + int + int

E

E

E E

E +

int +

int int

E

E

E E

E +

int +

int int

•  Left-associativity declaration: %left +

Profs. Necula CS 164 Lecture 6-7 16

Precedence Declarations

•  Consider the grammar E → E + E | E * E | int
–  And the string int + int * int

E

E

E E

E +

int *

int int

E

E

E E

E *

int +

int int
•  Precedence declarations: %left +
 %left *

Profs. Necula CS 164 Lecture 6-7 17

Review

•  We can specify language syntax using CFG
•  A parser will answer whether s ∈ L(G)
•  … and will build a parse tree
•  … and pass on to the rest of the compiler

•  Next:
–  How do we answer s ∈ L(G) and build a parse tree?

Profs. Necula CS 164 Lecture 6-7 18

Approach 1
Top-Down Parsing

Profs. Necula CS 164 Lecture 6-7 19

Intro to Top-Down Parsing

•  Terminals are seen in order of
appearance in the token
stream:
 t1 t2 t3 t4 t5

•  The parse tree is constructed

–  From the top
–  From left to right

A

t1 B

C

t2

D

t3

t4

t4

Profs. Necula CS 164 Lecture 6-7 20

Recursive Descent Parsing

•  Consider the grammar
 E → T + E | T
 T → int | int * T | (E)

•  Token stream is: int5 * int2

•  Start with top-level non-terminal E

•  Try the rules for E in order

Profs. Necula CS 164 Lecture 6-7 21

Recursive Descent Parsing. Example (Cont.)

•  Try E0 → T1 + E2
•  Then try a rule for T1 → (E3)

–  But (does not match input token int5
•  Try T1 → int . Token matches.

–  But + after T1 does not match input token *
•  Try T1 → int * T2

–  This will match but + after T1 will be unmatched
•  Have exhausted the choices for T1

–  Backtrack to choice for E0

Profs. Necula CS 164 Lecture 6-7 22

Recursive Descent Parsing. Example (Cont.)

•  Try E0 → T1
•  Follow same steps as before for T1

–  And succeed with T1 → int * T2 and T2 → int

–  With the following parse tree
E0

T1

int5 * T2

int2

Profs. Necula CS 164 Lecture 6-7 23

Recursive Descent Parsing. Notes.

•  Easy to implement by hand
–  An example implementation is provided as a

supplement “Recursive Descent Parsing”

•  But does not always work …

Profs. Necula CS 164 Lecture 6-7 24

Recursive-Descent Parsing

•  Parsing: given a string of tokens t1 t2 ... tn, find
its parse tree

•  Recursive-descent parsing: Try all the
productions exhaustively
–  At a given moment the fringe of the parse tree is:

t1 t2 … tk A …
–  Try all the productions for A: if A → BC is a

production, the new fringe is t1 t2 … tk B C …
–  Backtrack when the fringe doesn’t match the

string
–  Stop when there are no more non-terminals

Profs. Necula CS 164 Lecture 6-7 25

When Recursive Descent Does Not Work

•  Consider a production S → S a:
–  In the process of parsing S we try the above rule
–  What goes wrong?

•  A left-recursive grammar has a non-terminal S
 S →+ Sα for some α

•  Recursive descent does not work in such cases
–  It goes into an ∞ loop

Profs. Necula CS 164 Lecture 6-7 26

Elimination of Left Recursion

•  Consider the left-recursive grammar
 S → S α | β

•  S generates all strings starting with a β and
followed by a number of α

•  Can rewrite using right-recursion
 S → β S’
 S’ → α S’ | ε

Profs. Necula CS 164 Lecture 6-7 27

Elimination of Left-Recursion. Example

•  Consider the grammar
 S → 1 | S 0 (β = 1 and α = 0)

can be rewritten as

 S → 1 S’
 S’ → 0 S’ | ε

Profs. Necula CS 164 Lecture 6-7 28

More Elimination of Left-Recursion

•  In general
 S → S α1 | … | S αn | β1 | … | βm
•  All strings derived from S start with one of
β1,…,βm and continue with several instances of
α1,…,αn

•  Rewrite as
 S → β1 S’ | … | βm S’

 S’ → α1 S’ | … | αn S’ | ε

Profs. Necula CS 164 Lecture 6-7 29

General Left Recursion

•  The grammar
 S → A α | δ
 A → S β
 is also left-recursive because

 S →+ S β α

•  This left-recursion can also be eliminated
•  See Dragon Book, Section 4.3 for general

algorithm

Profs. Necula CS 164 Lecture 6-7 30

Summary of Recursive Descent

•  Simple and general parsing strategy
–  Left-recursion must be eliminated first
–  … but that can be done automatically

•  Unpopular because of backtracking
–  Thought to be too inefficient

•  In practice, backtracking is eliminated by
restricting the grammar

Profs. Necula CS 164 Lecture 6-7 31

Predictive Parsers

•  Like recursive-descent but parser can
“predict” which production to use
–  By looking at the next few tokens
–  No backtracking

•  Predictive parsers accept LL(k) grammars
–  L means “left-to-right” scan of input
–  L means “leftmost derivation”
–  k means “predict based on k tokens of lookahead”

•  In practice, LL(1) is used

Profs. Necula CS 164 Lecture 6-7 32

LL(1) Languages

•  In recursive-descent, for each non-terminal
and input token there may be a choice of
production

•  LL(1) means that for each non-terminal and
token there is only one production that could
lead to success

•  Can be specified as a 2D table
–  One dimension for current non-terminal to expand
–  One dimension for next token
–  A table entry contains one production

Profs. Necula CS 164 Lecture 6-7 33

Predictive Parsing and Left Factoring

•  Recall the grammar
 E → T + E | T
 T → int | int * T | (E)

•  Impossible to predict because
–  For T two productions start with int
–  For E it is not clear how to predict

•  A grammar must be left-factored before use
for predictive parsing

Profs. Necula CS 164 Lecture 6-7 34

Left-Factoring Example

•  Recall the grammar
 E → T + E | T
 T → int | int * T | (E)

•  Factor out common prefixes of productions
 E → T X
 X → + E | ε
 T → (E) | int Y
 Y → * T | ε

Profs. Necula CS 164 Lecture 6-7 35

LL(1) Parsing Table Example

•  Left-factored grammar
E → T X X → + E | ε
T → (E) | int Y Y → * T | ε

•  The LL(1) parsing table:
int * + () $

T int Y (E)
E T X T X
X + E ε ε
Y * T ε ε ε

Profs. Necula CS 164 Lecture 6-7 36

LL(1) Parsing Table Example (Cont.)

•  Consider the [E, int] entry
–  “When current non-terminal is E and next input is

int, use production E → T X
–  This production can generate an int in the first

place
•  Consider the [Y,+] entry

–  “When current non-terminal is Y and current token
is +, get rid of Y”

–  We’ll see later why this is so

Profs. Necula CS 164 Lecture 6-7 37

LL(1) Parsing Tables. Errors

•  Blank entries indicate error situations
–  Consider the [E,*] entry
–  “There is no way to derive a string starting with *

from non-terminal E”

Profs. Necula CS 164 Lecture 6-7 38

Using Parsing Tables

•  Method similar to recursive descent, except
–  For each non-terminal S
–  We look at the next token a
–  And choose the production shown at [S,a]

•  We use a stack to keep track of pending non-
terminals

•  We reject when we encounter an error state
•  We accept when we encounter end-of-input

Profs. Necula CS 164 Lecture 6-7 39

LL(1) Parsing Algorithm

initialize stack = <S, $> and next (pointer to tokens)
repeat
 case stack of
 <X, rest> : if T[X,*next] = Y1…Yn
 then stack ← <Y1… Yn rest>;
 else error ();
 <t, rest> : if t == *next ++
 then stack ← <rest>;
 else error ();
until stack == < >

Profs. Necula CS 164 Lecture 6-7 40

LL(1) Parsing Example

Stack Input Action
E $ int * int $ T X
T X $ int * int $ int Y
int Y X $ int * int $ terminal
Y X $ * int $ * T
* T X $ * int $ terminal
T X $ int $ int Y
int Y X $ int $ terminal
Y X $ $ ε
X $ $ ε
$ $ ACCEPT

Profs. Necula CS 164 Lecture 6-7 41

Constructing Parsing Tables

•  LL(1) languages are those defined by a parsing
table for the LL(1) algorithm

•  No table entry can be multiply defined

•  We want to generate parsing tables from CFG

Profs. Necula CS 164 Lecture 6-7 42

Top-Down Parsing. Review

•  Top-down parsing expands a parse tree from
the start symbol to the leaves
–  Always expand the leftmost non-terminal

E

T E
+

int * int + int

Profs. Necula CS 164 Lecture 6-7 43

Top-Down Parsing. Review

•  Top-down parsing expands a parse tree from
the start symbol to the leaves
–  Always expand the leftmost non-terminal

E

int T
*

T E
+

int * int + int

•  The leaves at any point
form a string βAγ
–  β contains only terminals
–  The input string is βbδ	

–  The prefix β matches
–  The next token is b

Profs. Necula CS 164 Lecture 6-7 44

Top-Down Parsing. Review

•  Top-down parsing expands a parse tree from
the start symbol to the leaves
–  Always expand the leftmost non-terminal

E

int T
*

int

T E
+

T

int * int + int

•  The leaves at any point
form a string βAγ
–  β contains only terminals
–  The input string is βbδ	

–  The prefix β matches
–  The next token is b

Profs. Necula CS 164 Lecture 6-7 45

Top-Down Parsing. Review

•  Top-down parsing expands a parse tree from
the start symbol to the leaves
–  Always expand the leftmost non-terminal

E

int T
*

int

T E
+

T

int

int * int + int

•  The leaves at any point
form a string βAγ
–  β contains only terminals
–  The input string is βbδ	

–  The prefix β matches
–  The next token is b

Profs. Necula CS 164 Lecture 6-7 46

Predictive Parsing. Review.

•  A predictive parser is described by a table
–  For each non-terminal A and for each token b we

specify a production A → α
–  When trying to expand A we use A → α if b follows

next

•  Once we have the table
–  The parsing algorithm is simple and fast
–  No backtracking is necessary

Profs. Necula CS 164 Lecture 6-7 47

Constructing Predictive Parsing Tables

•  Consider the state S →* βAγ
–  With b the next token
–  Trying to match βbδ

There are two possibilities:
1.  b belongs to an expansion of A

•  Any A → α can be used if b can start a string
derived from α

 In this case we say that b ∈ First(α)

Or…

Profs. Necula CS 164 Lecture 6-7 48

Constructing Predictive Parsing Tables (Cont.)

2.  b does not belong to an expansion of A
–  The expansion of A is empty and b belongs to an

expansion of γ
–  Means that b can appear after A in a derivation of

the form S → * βAbω
–  We say that b ∈ Follow(A) in this case

–  What productions can we use in this case?
•  Any A → α can be used if α can expand to ε	

•  We say that ε ∈ First(A) in this case

Profs. Necula CS 164 Lecture 6-7 49

Computing First Sets

Definition First(X) = { b | X →* bα} ∪ {ε | X →* ε}
1.  First(b) = { b }

2.  For all productions X → A1 … An
•  Add First(A1) – {ε} to First(X). Stop if ε ∉ First(A1)
•  Add First(A2) – {ε} to First(X). Stop if ε ∉ First(A2)
•  …
•  Add First(An) – {ε} to First(X). Stop if ε ∉ First(An)
•  Add ε to First(X)

Profs. Necula CS 164 Lecture 6-7 50

First Sets. Example

•  Recall the grammar
 E → T X X → + E | ε
 T → (E) | int Y Y → * T | ε

•  First sets
 First(() = { (} First(T) = {int, (}
 First()) = {) } First(E) = {int, (}
 First(int) = { int } First(X) = {+, ε }
 First(+) = { + } First(Y) = {*, ε }
 First(*) = { * }

Profs. Necula CS 164 Lecture 6-7 51

Computing Follow Sets

Definition Follow(X) = { b | S →* β X b δ }
1.  Compute the First sets for all non-terminals first
2.  Add $ to Follow(S) (if S is the start non-terminal)

3.  For all productions Y → … X A1 … An
•  Add First(A1) – {ε} to Follow(X). Stop if ε ∉ First(A1)
•  Add First(A2) – {ε} to Follow(X). Stop if ε ∉ First(A2)
•  …
•  Add First(An) – {ε} to Follow(X). Stop if ε ∉ First(An)
•  Add Follow(Y) to Follow(X)

Profs. Necula CS 164 Lecture 6-7 52

Follow Sets. Example

•  Recall the grammar
 E → T X X → + E | ε
 T → (E) | int Y Y → * T | ε

•  Follow sets
 Follow(+) = { int, (} Follow(*) = { int, (}
 Follow(() = { int, (} Follow(E) = {), $}
 Follow(X) = {$,) } Follow(T) = {+,) , $}
 Follow()) = {+,) , $} Follow(Y) = {+,) , $}
 Follow(int) = {*, +,) , $}

Profs. Necula CS 164 Lecture 6-7 53

Constructing LL(1) Parsing Tables

•  Construct a parsing table T for CFG G

•  For each production A → α in G do:
–  For each terminal b ∈ First(α) do

•  T[A, b] = α
–  If α → * ε, for each b ∈ Follow(A) do

•  T[A, b] = α
–  If α → * ε and $ ∈ Follow(A) do

•  T[A, $] = α

Profs. Necula CS 164 Lecture 6-7 54

Constructing LL(1) Tables. Example

•  Recall the grammar
 E → T X X → + E | ε
 T → (E) | int Y Y → * T | ε

•  Where in the row of Y do we put Y → * T ?
–  In the lines of First(*T) = { * }

•  Where in the row of Y do we put Y → ε ?
–  In the lines of Follow(Y) = { $, +,) }

Profs. Necula CS 164 Lecture 6-7 55

Notes on LL(1) Parsing Tables

•  If any entry is multiply defined then G is not
LL(1)
–  If G is ambiguous
–  If G is left recursive
–  If G is not left-factored
–  And in other cases as well

•  Most programming language grammars are not
LL(1)

•  There are tools that build LL(1) tables

Profs. Necula CS 164 Lecture 6-7 56

Review

•  For some grammars there is a simple parsing
strategy
–  Predictive parsing

•  Next: a more powerful parsing strategy

