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Top-Down Parsing 

ICOM 4029 
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Review 

•  A parser consumes a sequence of tokens s and 
produces a parse tree 

•  Issues: 
–  How do we recognize that s ∈ L(G) ? 
–  A parse tree of s describes how s ∈ L(G)  
–  Ambiguity: more than one parse tree 

(interpretation) for some string s  
–  Error: no parse tree for some string s 
–  How do we construct the parse tree? 
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Ambiguity 

•  Grammar 
         E → E + E | E * E |  ( E ) | int 

•  Strings 
        int + int + int  

 
          int * int + int 
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Ambiguity. Example 

This string has two parse trees 

E 

E 

E E 

E +

int + 

int int 

E 

E 

E E 

E + 

int + 

int int 

+ is left-associative 
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Ambiguity. Example 

This string has two parse trees 

E 

E 

E E 

E *

int + 

int int 

E 

E 

E E 

E + 

int * 

int int 

* has higher precedence than + 
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Ambiguity (Cont.) 

•  A grammar is ambiguous if it has more than 
one parse tree for some string 
–  Equivalently, there is more than one right-most or 

left-most derivation for some string 
•  Ambiguity is bad 

–  Leaves meaning of some programs ill-defined 
•  Ambiguity is common in programming languages 

–  Arithmetic expressions 
–  IF-THEN-ELSE 
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Dealing with Ambiguity 

•  There are several ways to handle ambiguity 

•  Most direct method is to rewrite the grammar 
unambiguously 
    E → E + T | T 
    T → T * int | int | ( E ) 

•  Enforces precedence of * over + 
•  Enforces left-associativity of + and *  
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Ambiguity. Example 

The int * int + int has ony one parse tree now 
 E 

E 

E E 

E *

int + 

int int 

E 

T 

T int 

T + 

int 

* 

E 

int 
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Ambiguity: The Dangling Else 

•  Consider the grammar 
       E → if E then E 
            | if E then E else E 
            | OTHER 

•  This grammar is also ambiguous 
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The Dangling Else: Example 

•  The expression 
               if E1 then if E2 then E3 else E4  
has two parse trees 

if 

E1 if 

E2 E3 E4 

if 

E1 if 

E2 E3 

E4 

•  Typically we want the second form 
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The Dangling Else: A Fix 

•  else matches the closest unmatched then  
•  We can describe this in the grammar 

(distinguish between matched and unmatched “then”)  

    E →   MIF                   /* all then are matched */       
     |  UIF                   /* some then are unmatched */ 
MIF → if E then MIF else MIF     
        |   OTHER 
UIF → if E then E 
        |   if E then MIF else UIF   

•  Describes the same set of strings 
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The Dangling Else: Example Revisited 

•  The expression if E1 then if E2 then E3 else E4  

if 

E1 if 

E2 E3 E4 

if 

E1 if 

E2 E3 

E4 

•  Not valid because the 
then expression is not 
a MIF 

•  A valid parse tree 
(for a UIF) 
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Ambiguity 

•  No general techniques for handling ambiguity 

•  Impossible to convert automatically an 
ambiguous grammar to an unambiguous one 

•  Used with care, ambiguity can simplify the 
grammar 
–  Sometimes allows more natural definitions 
–  We need disambiguation mechanisms 
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Precedence and Associativity Declarations 

•  Instead of rewriting the grammar 
–  Use the more natural (ambiguous) grammar 
–  Along with disambiguating declarations 

•  Most tools allow precedence and associativity 
declarations to disambiguate grammars 

•  Examples … 
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Associativity Declarations 

•  Consider the grammar            E → E + E | int  
•  Ambiguous: two parse trees of int + int + int 

E 

E 

E E 

E +

int + 

int int 

E 

E 

E E 

E + 

int + 

int int 

•  Left-associativity declaration:   %left  + 
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Precedence Declarations 

•  Consider the grammar  E → E + E | E  * E | int  
–  And the string int + int * int 

E 

E 

E E 

E +

int * 

int int 

E 

E 

E E 

E * 

int + 

int int 
•  Precedence declarations:  %left  + 
                                            %left  * 
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Review 

•  We can specify language syntax using CFG 
•  A parser will answer whether s ∈ L(G) 
•  … and will build a parse tree 
•  … and pass on to the rest of the compiler 

•  Next: 
–  How do we answer s ∈ L(G) and build a parse tree? 
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Approach 1 
Top-Down Parsing 
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Intro to Top-Down Parsing 

•  Terminals are seen in order of 
appearance in the token 
stream:  
           t1  t2  t3  t4  t5 

  
•  The parse tree is constructed 

–  From the top 
–  From left to right 

A 

t1 B 

C 

t2 

D 

t3 

t4 

t4 
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Recursive Descent Parsing 

•  Consider the grammar 
      E → T + E | T 
      T → int  | int * T | ( E ) 

•  Token stream is:   int5 * int2 

•  Start with top-level non-terminal E 

•  Try the rules for E in order 
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Recursive Descent Parsing. Example (Cont.) 

•  Try E0 → T1 + E2  
•  Then try a rule for T1 → ( E3 ) 

–  But ( does not match input token int5 
•  Try T1 → int . Token matches.  

–  But + after T1 does not match input token * 
•  Try T1 → int * T2 

–  This will match but + after T1 will be unmatched 
•  Have exhausted the choices for T1 

–  Backtrack to choice for E0 
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Recursive Descent Parsing. Example (Cont.) 

•  Try E0 → T1 
•  Follow same steps as before for T1 

–  And succeed with T1 → int * T2 and T2 → int 

–  With the following parse tree 
E0 

T1 

int5 * T2 

int2 
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Recursive Descent Parsing. Notes. 

•  Easy to implement by hand 
–  An example implementation is provided as a 

supplement “Recursive Descent Parsing” 

•  But does not always work … 
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Recursive-Descent Parsing 

•  Parsing: given a string of tokens t1 t2 ... tn, find 
its parse tree 

•  Recursive-descent parsing: Try all the 
productions exhaustively 
–  At a given moment the fringe of the parse tree is: 

t1 t2 … tk A … 
–  Try all the productions for A: if A → BC is a 

production, the new fringe is t1 t2 … tk B C …  
–  Backtrack when the fringe doesn’t match the 

string   
–  Stop when there are no more non-terminals 
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When Recursive Descent Does Not Work 

•  Consider a production S → S a: 
–  In the process of parsing S we try the above rule 
–  What goes wrong? 

•  A left-recursive grammar has a non-terminal S 
           S →+ Sα   for some α 
 

•  Recursive descent does not work in such cases 
–  It goes into an ∞ loop 
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Elimination of Left Recursion 

•  Consider the left-recursive grammar 
                       S → S α | β 

•  S generates all strings starting with a β and 
followed by a number of α 

•  Can rewrite using right-recursion 
                 S → β S’ 
                 S’ → α S’ | ε 
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Elimination of Left-Recursion. Example 

•  Consider the grammar 
    S → 1 | S 0     ( β = 1 and α = 0 ) 
 
can be rewritten as 

   S → 1 S’ 
     S’ → 0 S’ | ε 
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More Elimination of Left-Recursion 

•  In general 
                  S → S α1 | … | S αn | β1 | … | βm 
•  All strings derived from S start with one of 
β1,…,βm and continue with several instances of 
α1,…,αn  

•  Rewrite as 
             S → β1 S’ | … | βm S’ 

             S’ → α1 S’ | … | αn S’ | ε  
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General Left Recursion 

•  The grammar  
         S → A α | δ 
         A → S β 
 is also left-recursive because 

            S →+ S β α 

•  This left-recursion can also be eliminated 
•  See Dragon Book, Section 4.3 for general 

algorithm 
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Summary of Recursive Descent 

•  Simple and general parsing strategy 
–  Left-recursion must be eliminated first 
–  … but that can be done automatically 

•  Unpopular because of backtracking 
–  Thought to be too inefficient 

•  In practice, backtracking is eliminated by 
restricting the grammar 
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Predictive Parsers 

•  Like recursive-descent but parser can 
“predict” which production to use 
–  By looking at the next few tokens 
–  No backtracking  

•  Predictive parsers accept LL(k) grammars 
–  L means “left-to-right” scan of input 
–  L means “leftmost derivation” 
–  k means “predict based on k tokens of lookahead” 

•  In practice, LL(1) is used 
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LL(1) Languages 

•  In recursive-descent, for each non-terminal 
and input token there may be a choice of 
production 

•  LL(1) means that for each non-terminal and 
token there is only one production that could 
lead to success 

•  Can be specified as a 2D table 
–  One dimension for current non-terminal to expand 
–  One dimension for next token 
–  A table entry contains  one production 
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Predictive Parsing and Left Factoring 

•  Recall the grammar 
      E → T + E | T 
      T → int  | int * T | ( E ) 
 

•  Impossible to predict because 
–  For T two productions start with int 
–  For E it is not clear how to predict 

•  A grammar must be left-factored before use 
for predictive parsing 



Profs. Necula  CS 164  Lecture 6-7 34 

Left-Factoring Example 

•  Recall the grammar 
      E → T + E | T 
      T → int  | int * T | ( E ) 
 

•  Factor out common prefixes of productions 
     E → T X 
     X → + E | ε  
     T → ( E ) | int Y 
     Y → * T | ε  
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LL(1) Parsing Table Example 

•  Left-factored grammar 
E → T X                               X → + E | ε  
T → ( E ) | int Y                   Y → * T | ε  

•  The LL(1) parsing table: 
int * + ( ) $ 

T int Y ( E ) 
E T X T X 
X + E ε ε 
Y * T  ε ε ε 
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LL(1) Parsing Table Example (Cont.) 

•  Consider the [E, int] entry 
–  “When current non-terminal is E and next input is 

int, use production  E →  T X 
–  This production can generate an int in the first 

place 
•  Consider the [Y,+] entry 

–  “When current non-terminal is Y and current token 
is +, get rid of Y” 

–  We’ll see later why this is so 
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LL(1) Parsing Tables. Errors 

•  Blank entries indicate error situations 
–  Consider the [E,*] entry 
–  “There is no way to derive a string starting with * 

from non-terminal E” 
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Using Parsing Tables 

•  Method similar to recursive descent, except 
–  For each non-terminal S 
–  We look at the next token a 
–  And choose the production shown at [S,a] 

•  We use a stack to keep track of pending non-
terminals 

•  We reject when we encounter an error state 
•  We accept when we encounter end-of-input  
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LL(1) Parsing Algorithm 

initialize stack = <S, $> and next (pointer to tokens) 
repeat 
   case stack of 
      <X, rest>  : if T[X,*next] = Y1…Yn 
                            then stack ← <Y1… Yn rest>; 
                            else  error ();    
      <t, rest>   : if t == *next ++  
                            then  stack ← <rest>; 
                            else error (); 
until stack == < > 
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LL(1) Parsing Example 

Stack                        Input                            Action 
E $                            int * int $                     T X 
T X $                        int * int $                      int Y 
int Y X $                   int * int $                      terminal 
Y X $                        * int $                            * T 
* T X $                     * int $                            terminal 
T X $                        int $                               int Y 
int Y X $                   int $                               terminal 
Y X $                        $                                     ε 
X $                           $                                     ε 
$                              $                                     ACCEPT 
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Constructing Parsing Tables 

•  LL(1) languages are those defined by a parsing 
table for the LL(1) algorithm 

•  No table entry can be multiply defined 
 
•  We want to generate parsing tables from CFG 
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Top-Down Parsing. Review 

•  Top-down parsing expands a parse tree from 
the start symbol to the leaves 
–  Always expand the leftmost non-terminal 

E 

T E 
+ 

int   *    int  +   int 
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Top-Down Parsing. Review 

•  Top-down parsing expands a parse tree from 
the start symbol to the leaves 
–  Always expand the leftmost non-terminal 

E 

int T 
* 

T E 
+ 

int   *    int  +   int 

•  The leaves at any point 
form a string βAγ 
–   β contains only terminals 
–  The input string is βbδ	


–  The prefix β matches 
–  The next token is b 
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Top-Down Parsing. Review 

•  Top-down parsing expands a parse tree from 
the start symbol to the leaves 
–  Always expand the leftmost non-terminal 

E 

int T 
* 

int 

T E 
+ 

T 

int   *    int  +   int 

•  The leaves at any point 
form a string βAγ 
–   β contains only terminals 
–  The input string is βbδ	


–  The prefix β matches 
–  The next token is b 
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Top-Down Parsing. Review 

•  Top-down parsing expands a parse tree from 
the start symbol to the leaves 
–  Always expand the leftmost non-terminal 

E 

int T 
* 

int 

T E 
+ 

T 

int 

int   *    int  +   int 

•  The leaves at any point 
form a string βAγ 
–   β contains only terminals 
–  The input string is βbδ	


–  The prefix β matches 
–  The next token is b 
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Predictive Parsing. Review. 

•  A predictive parser is described by a table 
–  For each non-terminal A and for each token b we 

specify a production A → α  
–  When trying to expand A we use A → α if b follows 

next 

•  Once we have the table 
–  The parsing algorithm is simple and fast 
–  No backtracking is necessary 
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Constructing Predictive Parsing Tables 

•  Consider the state S →* βAγ 
–  With b the next token 
–  Trying to match βbδ 

There are two possibilities: 
1.   b belongs to an expansion of A 

•  Any A → α can be used if b can start a string 
derived from α 

     In this case we say that b ∈ First(α) 

Or… 
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Constructing Predictive Parsing Tables (Cont.) 

2.  b does not belong to an expansion of A 
–  The expansion of A is empty and b belongs to an 

expansion of γ 
–  Means that b can appear after A in a derivation of 

the form S → * βAbω  
–  We say that b ∈ Follow(A) in this case 

–  What productions can we use in this case? 
•  Any A → α can be used if α can expand to ε	


•  We say that ε ∈ First(A) in this case 
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Computing First Sets 

Definition      First(X) = { b | X →* bα} ∪ {ε | X →* ε} 
1.  First(b) = { b } 

2.  For all productions X → A1 … An 
•  Add First(A1) – {ε} to First(X). Stop if  ε ∉ First(A1) 
•  Add First(A2) – {ε} to First(X). Stop if  ε ∉ First(A2) 
•  … 
•  Add First(An) – {ε} to First(X). Stop if  ε ∉ First(An) 
•  Add ε to First(X) 
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First Sets. Example 

•  Recall the grammar  
    E → T X                               X → + E | ε  
    T → ( E ) | int Y                   Y → * T | ε 

•  First sets 
       First( ( ) = { ( }            First( T ) = {int, ( } 
       First( ) ) = { ) }            First( E ) = {int, ( } 
       First( int) = { int }       First( X ) = {+, ε } 
       First( + ) = { + }            First( Y ) = {*, ε } 
       First( * ) = { * }   
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Computing Follow Sets 

Definition      Follow(X) = { b | S →* β X b δ } 
1.  Compute the First sets for all non-terminals first 
2.  Add $ to Follow(S) (if S is the start non-terminal) 

3.  For all productions Y → … X A1 … An 
•  Add First(A1) – {ε} to Follow(X). Stop if  ε ∉ First(A1)  
•  Add First(A2) – {ε} to Follow(X). Stop if  ε ∉ First(A2) 
•  … 
•  Add First(An) – {ε} to Follow(X). Stop if  ε ∉ First(An) 
•  Add Follow(Y) to Follow(X) 
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Follow Sets. Example 

•  Recall the grammar  
    E → T X                               X → + E | ε  
    T → ( E ) | int Y                   Y → * T | ε 

•  Follow sets 
    Follow( + ) = { int, ( }    Follow( * ) = { int, ( }  
    Follow( ( ) = { int, ( }     Follow( E ) = {), $}  
    Follow( X ) = {$, ) }       Follow( T ) = {+, ) , $} 
    Follow( ) ) = {+, ) , $}     Follow( Y ) = {+, ) , $} 
    Follow( int) = {*, +, ) , $}   
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Constructing LL(1) Parsing Tables 

•  Construct a parsing table T for CFG G 

•  For each production  A → α in G do: 
–  For each terminal b ∈ First(α) do 

•  T[A, b] = α  
–  If α → * ε, for each b ∈ Follow(A) do 

•  T[A, b] = α 
–  If α → * ε and $ ∈ Follow(A) do 

•  T[A, $] = α  
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Constructing LL(1) Tables. Example 

•  Recall the grammar  
    E → T X                               X → + E | ε  
    T → ( E ) | int Y                   Y → * T | ε 

•  Where in the row of Y do we put Y → * T ? 
–  In the lines of First( *T) = { * } 

•  Where in the row of Y do we put Y → ε   ? 
–  In the lines of Follow(Y) = { $, +, ) } 
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Notes on LL(1) Parsing Tables 

•  If any entry is multiply defined then G is not 
LL(1) 
–  If G is ambiguous 
–  If G is left recursive 
–  If G is not left-factored 
–  And in other cases as well 

•  Most programming language grammars are not 
LL(1) 

•  There are tools that build LL(1) tables 
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Review 

•  For some grammars there is a simple parsing 
strategy 
–  Predictive parsing 

•  Next: a more powerful parsing strategy 


