Top-Down Parsing

ICOM 4029

Review

- A parser consumes a sequence of tokens s and produces a parse tree
- Issues:
 - How do we recognize that $s \in L(G)$?
 - A parse tree of s describes $\underline{how} s \in L(G)$
 - Ambiguity: more than one parse tree (interpretation) for some string s
 - Error: no parse tree for some string s
 - How do we construct the parse tree?

Ambiguity

• Grammar

$E \rightarrow E + E | E * E | (E) | int$

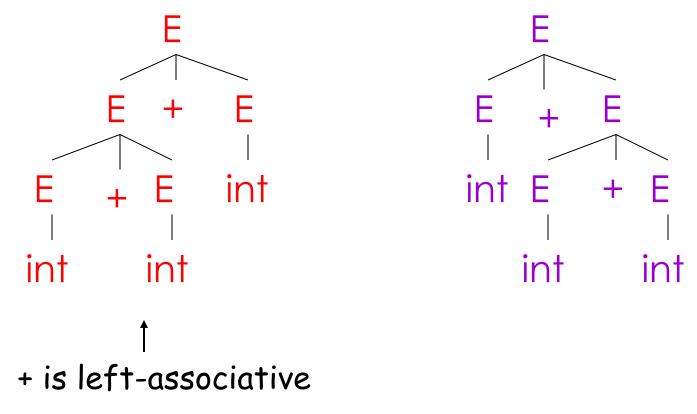
• Strings

int + int + int

int * int + int

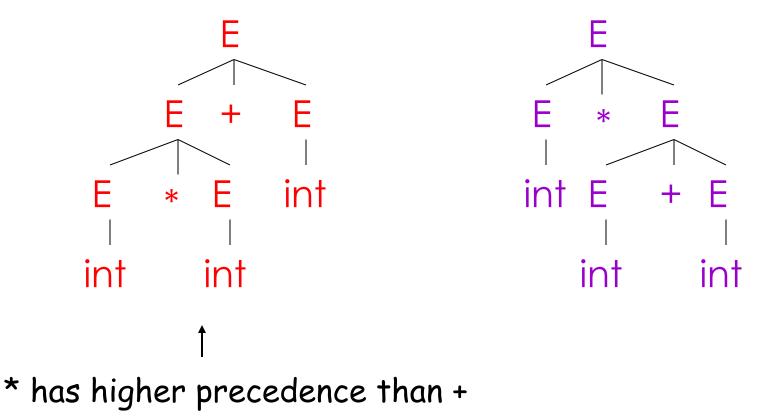
Ambiguity. Example

This string has two parse trees



Ambiguity. Example

This string has two parse trees



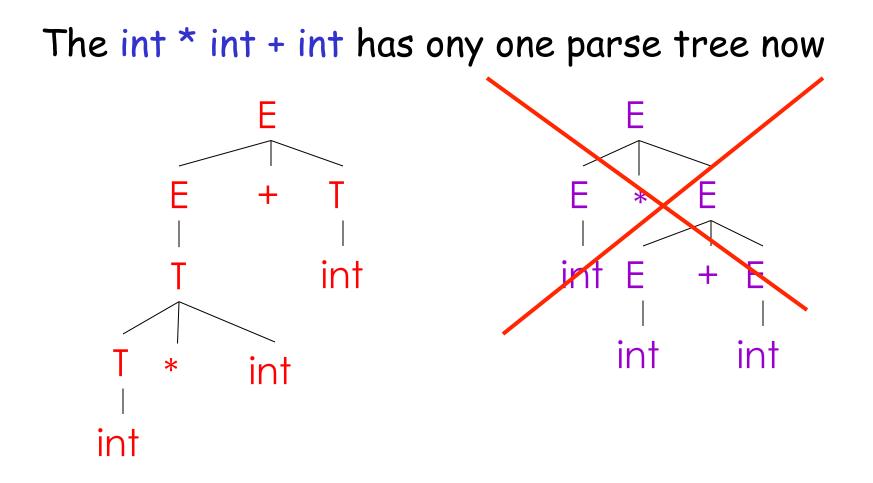
Ambiguity (Cont.)

- A grammar is *ambiguous* if it has more than one parse tree for some string
 - Equivalently, there is more than one right-most or left-most derivation for some string
- Ambiguity is <u>bad</u>
 - Leaves meaning of some programs ill-defined
- Ambiguity is <u>common</u> in programming languages
 - Arithmetic expressions
 - IF-THEN-ELSE

Dealing with Ambiguity

- There are several ways to handle ambiguity
- Most direct method is to rewrite the grammar unambiguously $E \rightarrow E + T \mid T$ $T \rightarrow T^*$ int | int | (E)
- Enforces precedence of * over +
- Enforces left-associativity of + and *

Ambiguity. Example



Ambiguity: The Dangling Else

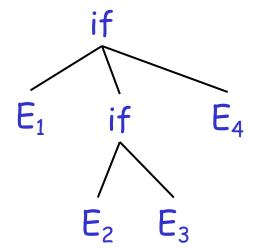
- Consider the grammar $E \rightarrow if E$ then E | if E then E else E | OTHER
- This grammar is also ambiguous

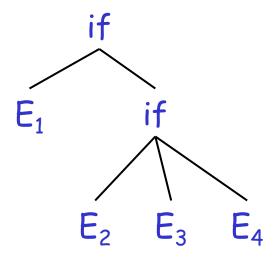
The Dangling Else: Example

• The expression

if E_1 then if E_2 then E_3 else E_4

has two parse trees





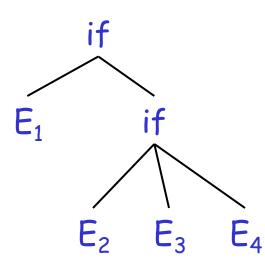
• Typically we want the second form

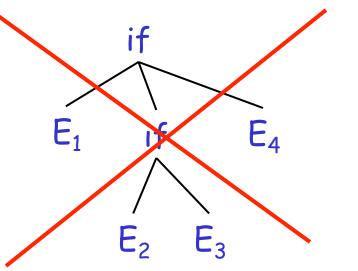
The Dangling Else: A Fix

- else matches the closest unmatched then
- We can describe this in the grammar (distinguish between matched and unmatched "then")
- Describes the same set of strings Profs. Necula CS 164 Lecture 6-7

The Dangling Else: Example Revisited

• The expression if E_1 then if E_2 then E_3 else E_4





 A valid parse tree (for a UIF)

 Not valid because the then expression is not a MIF

Ambiguity

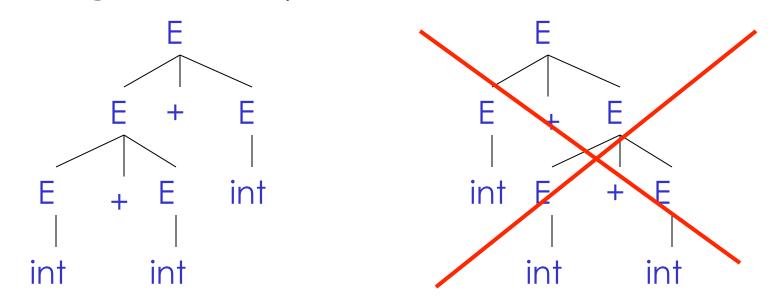
- No general techniques for handling ambiguity
- Impossible to convert automatically an ambiguous grammar to an unambiguous one
- Used with care, ambiguity can simplify the grammar
 - Sometimes allows more natural definitions
 - We need disambiguation mechanisms

Precedence and Associativity Declarations

- Instead of rewriting the grammar
 - Use the more natural (ambiguous) grammar
 - Along with disambiguating declarations
- Most tools allow <u>precedence and associativity</u> <u>declarations</u> to disambiguate grammars
- Examples ...

Associativity Declarations

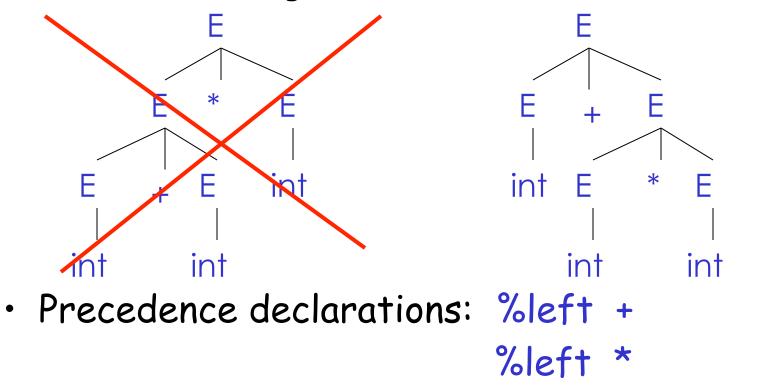
- Consider the grammar $E \rightarrow E + E \mid int$
- Ambiguous: two parse trees of int + int + int



Left-associativity declaration: %left +

Precedence Declarations

- Consider the grammar $E \rightarrow E + E \mid E * E \mid int$
 - And the string int + int * int



Profs. Necula CS 164 Lecture 6-7

Review

- We can specify language syntax using CFG
- A parser will answer whether $s \in L(G)$
- ... and will build a parse tree
- ... and pass on to the rest of the compiler
- Next:
 - How do we answer $s \in L(G)$ and build a parse tree?

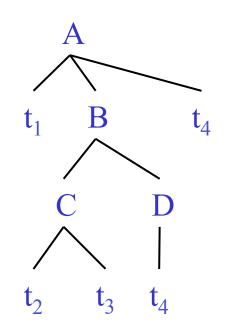
Approach 1 Top-Down Parsing

Intro to Top-Down Parsing

 Terminals are seen in order of appearance in the token stream:

 $t_1 t_2 t_3 t_4 t_5$

- The parse tree is constructed
 - From the top
 - From left to right



Recursive Descent Parsing

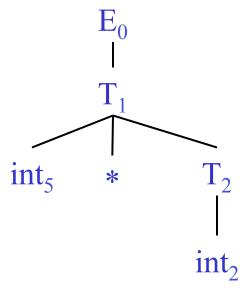
- Consider the grammar $E \rightarrow T + E \mid T$ $T \rightarrow int \mid int * T \mid (E)$
- Token stream is: $int_5 * int_2$
- Start with top-level non-terminal E
- Try the rules for E in order

Recursive Descent Parsing. Example (Cont.)

- Try $E_0 \rightarrow T_1 + E_2$
- Then try a rule for $T_1 \rightarrow (E_3)$
 - But (does not match input token int_5
- Try $T_1 \rightarrow int$. Token matches.
 - But + after T_1 does not match input token *
- Try $T_1 \rightarrow int * T_2$
 - This will match but + after T_1 will be unmatched
- Have exhausted the choices for T_1
 - Backtrack to choice for E_0

Recursive Descent Parsing. Example (Cont.)

- Try $E_0 \rightarrow T_1$
- Follow same steps as before for T_1
 - And succeed with $T_1 \rightarrow int * T_2$ and $T_2 \rightarrow int$
 - With the following parse tree



Recursive Descent Parsing. Notes.

- Easy to implement by hand
 - An example implementation is provided as a supplement "Recursive Descent Parsing"

• But does not always work ...

Recursive-Descent Parsing

- Parsing: given a string of tokens $t_1 t_2 \dots t_n$, find its parse tree
- Recursive-descent parsing: Try all the productions exhaustively
 - At a given moment the fringe of the parse tree is: $t_1 t_2 \dots t_k A \dots$
 - Try all the productions for A: if $A \rightarrow BC$ is a production, the new fringe is $t_1 t_2 \dots t_k BC$...
 - Backtrack when the fringe doesn't match the string
 - Stop when there are no more non-terminals Profs. Necula CS 164 Lecture 6-7

When Recursive Descent Does Not Work

- Consider a production $S \rightarrow S a$:
 - In the process of parsing 5 we try the above rule
 - What goes wrong?
- A left-recursive grammar has a non-terminal S $S \rightarrow^{+} S \alpha$ for some α
- Recursive descent does not work in such cases
 - It goes into an ∞ loop

Elimination of Left Recursion

- Consider the left-recursive grammar $S \rightarrow S \alpha \mid \beta$
- S generates all strings starting with a β and followed by a number of α
- Can rewrite using right-recursion $S \rightarrow \beta S'$ $S' \rightarrow \alpha S' \mid \epsilon$

Elimination of Left-Recursion. Example

• Consider the grammar $S \rightarrow 1 \mid S 0$ ($\beta = 1$ and $\alpha = 0$)

can be rewritten as $S \rightarrow 1 S'$ $S' \rightarrow 0 S' \mid \epsilon$

More Elimination of Left-Recursion

• In general

 $\textbf{S} \rightarrow \textbf{S} \; \alpha_1 \mid ... \mid \textbf{S} \; \alpha_n \mid \beta_1 \mid ... \mid \beta_m$

- All strings derived from S start with one of β_1, \dots, β_m and continue with several instances of $\alpha_1, \dots, \alpha_n$
- Rewrite as

 $S \rightarrow \beta_1 S' \mid \dots \mid \beta_m S'$ $S' \rightarrow \alpha_1 S' \mid \dots \mid \alpha_n S' \mid \varepsilon$

General Left Recursion

- The grammar $S \rightarrow A \alpha \mid \delta$ $A \rightarrow S \beta$ is also left-recursive because $S \rightarrow^{+} S \beta \alpha$
- This left-recursion can also be eliminated
- See Dragon Book, Section 4.3 for general algorithm

Summary of Recursive Descent

- Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - ... but that can be done automatically
- Unpopular because of backtracking
 - Thought to be too inefficient
- In practice, backtracking is eliminated by restricting the grammar

Predictive Parsers

- Like recursive-descent but parser can "predict" which production to use
 - By looking at the next few tokens
 - No backtracking
- Predictive parsers accept LL(k) grammars
 - L means "left-to-right" scan of input
 - L means "leftmost derivation"
 - k means "predict based on k tokens of lookahead"
- In practice, LL(1) is used

LL(1) Languages

- In recursive-descent, for each non-terminal and input token there may be a choice of production
- LL(1) means that for each non-terminal and token there is only one production that could lead to success
- Can be specified as a 2D table
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one production

Predictive Parsing and Left Factoring

- Recall the grammar $E \rightarrow T + E \mid T$ $T \rightarrow int \mid int * T \mid (E)$
- Impossible to predict because
 - For T two productions start with int
 - For E it is not clear how to predict
- A grammar must be <u>left-factored</u> before use for predictive parsing

Left-Factoring Example

- Recall the grammar $E \rightarrow T + E \mid T$ $T \rightarrow int \mid int * T \mid (E)$
- Factor out common prefixes of productions

$$E \rightarrow T X$$

$$X \rightarrow + E \mid \varepsilon$$

$$T \rightarrow (E) \mid int Y$$

$$Y \rightarrow * T \mid \varepsilon$$

LL(1) Parsing Table Example

• Left-factored grammar $E \rightarrow T X$ $X \rightarrow + E \mid \epsilon$ $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \epsilon$

• The LL(1) parsing table:

	int	*	+	()	\$
Т	int Y			(E)		
E	ТХ			ТΧ		
X			+ E		3	3
У		* T	3		3	8

LL(1) Parsing Table Example (Cont.)

- Consider the [E, int] entry
 - "When current non-terminal is E and next input is int, use production $E \rightarrow TX$
 - This production can generate an int in the first place
- Consider the [Y,+] entry
 - "When current non-terminal is Y and current token is +, get rid of Y"
 - We'll see later why this is so

LL(1) Parsing Tables. Errors

- Blank entries indicate error situations
 - Consider the [E,*] entry
 - "There is no way to derive a string starting with * from non-terminal E"

Using Parsing Tables

- Method similar to recursive descent, except
 - For each non-terminal S
 - We look at the next token a
 - And choose the production shown at [5,a]
- We use a stack to keep track of pending nonterminals
- We reject when we encounter an error state
- We accept when we encounter end-of-input

LL(1) Parsing Algorithm

initialize stack = <S, \$> and next (pointer to tokens) repeat case stack of <X, rest> : if T[X,*next] = $Y_1...Y_n$ then stack \leftarrow <Y $_1...Y_n$ rest>; else error (); <t, rest> : if t == *next ++ then stack \leftarrow <rest>; else error (); until stack == < >

LL(1) Parsing Example

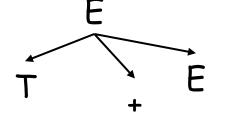
<u>Stack</u>	Input	Action
E \$	int * int \$	ТХ
ТХ\$	int * int \$	int Y
int Y X \$	int * int \$	terminal
УХ\$	* int \$	* T
* T X \$	* int \$	terminal
ТХ\$	int \$	int Y
int Y X \$	int \$	terminal
УХ\$	\$	8
X \$	\$	3
\$	\$	ACCEPT

Profs. Necula CS 164 Lecture 6-7

Constructing Parsing Tables

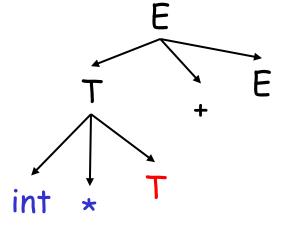
- LL(1) languages are those defined by a parsing table for the LL(1) algorithm
- No table entry can be multiply defined
- We want to generate parsing tables from CFG

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal



int * int + int

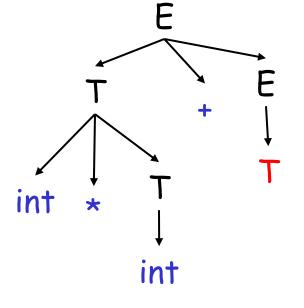
- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal



- The leaves at any point form a string $\beta A \gamma$
 - β contains only terminals
 - The input string is $\beta b \delta$
 - The prefix β matches
 - The next token is b

int * int + int

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal



int +

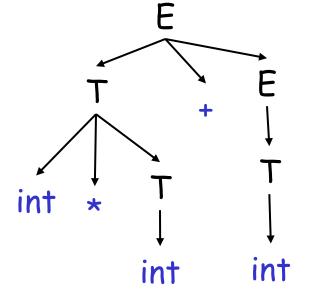
int

int

- The leaves at any point form a string $\beta \textbf{A} \gamma$
 - β contains only terminals
 - The input string is $\beta b \delta$
 - The prefix β matches
 - The next token is b

int

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal



int +

int

- The leaves at any point form a string $\beta A \gamma$
 - β contains only terminals
 - The input string is $\beta b \delta$
 - The prefix β matches
 - The next token is b

Predictive Parsing. Review.

- A predictive parser is described by a table
 - For each non-terminal A and for each token b we specify a production $A \rightarrow \alpha$
 - When trying to expand A we use A $\rightarrow \alpha$ if b follows next
- Once we have the table
 - The parsing algorithm is simple and fast
 - No backtracking is necessary

Constructing Predictive Parsing Tables

- Consider the state $S \rightarrow^* \beta A \gamma$
 - With b the next token
 - Trying to match $\beta b \delta$

There are two possibilities:

- 1. b belongs to an expansion of A
 - Any $A \rightarrow \alpha$ can be used if b can start a string derived from α

In this case we say that $b \in First(\alpha)$

Or...

Constructing Predictive Parsing Tables (Cont.)

2. b does not belong to an expansion of A

- The expansion of A is empty and b belongs to an expansion of γ
- Means that b can appear after A in a derivation of the form $S \rightarrow {}^*\beta Ab\omega$
- We say that $b \in Follow(A)$ in this case
- What productions can we use in this case?
 - Any $A \rightarrow \alpha$ can be used if α can expand to ε
 - We say that $\varepsilon \in First(A)$ in this case

Computing First Sets

Definition First(X) = { $b \mid X \rightarrow^* b\alpha$ } \cup { $\epsilon \mid X \rightarrow^* \epsilon$ } 1. First(b) = { b }

- 2. For all productions $X \rightarrow A_1 \dots A_n$
 - Add First(A_1) { ϵ } to First(X). Stop if $\epsilon \notin First(A_1)$
 - Add First(A_2) { ϵ } to First(X). Stop if $\epsilon \notin First(A_2)$
 - •

...

- Add First(A_n) { ϵ } to First(X). Stop if $\epsilon \notin First(A_n)$
- Add ε to First(X)

First Sets. Example

- Recall the grammar $E \rightarrow T X$ $T \rightarrow (E) \mid int Y$
- First sets

First(() = { (}
First()) = {) }
First(int) = { int }
First(+) = { + }
First(*) = { * }

 $\begin{array}{c} X \rightarrow + E \mid \epsilon \\ Y \rightarrow * T \mid \epsilon \end{array}$

```
First( T ) = {int, ( }
First( E ) = {int, ( }
First( X ) = {+, ε }
First( Y ) = {*, ε }
```

Computing Follow Sets

- Definition Follow(X) = { $b \mid S \rightarrow^* \beta X b \delta$ }
- 1. Compute the First sets for all non-terminals first
- 2. Add \$ to Follow(S) (if S is the start non-terminal)
- 3. For all productions $Y \rightarrow \dots X A_1 \dots A_n$
 - Add First(A_1) { ϵ } to Follow(X). Stop if $\epsilon \notin First(A_1)$
 - Add First(A_2) { ϵ } to Follow(X). Stop if $\epsilon \notin First(A_2)$
 - •
 - Add First(A_n) { ϵ } to Follow(X). Stop if $\epsilon \notin First(A_n)$
 - Add Follow(Y) to Follow(X)

Follow Sets. Example

- Recall the grammar $E \rightarrow T X$ $T \rightarrow (E) \mid int Y$
- Follow sets

Follow(+) = { int, (} Follow(*) = { int, (} Follow(() = { int, (} Follow(E) = {), \$ } Follow(X) = { \$,) } Follow(T) = { +,), \$ } Follow() = { +,), \$ Follow(Y) = { +,), \$ } Follow(int) = { *, +,), \$ }

 $X \rightarrow + E \mid \varepsilon$

 $Y \rightarrow T \mid \varepsilon$

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $b \in First(\alpha)$ do
 - T[A, b] = α
 - If $\alpha \rightarrow {}^{*} \epsilon$, for each $b \in Follow(A)$ do
 - T[A, b] = α
 - If $\alpha \rightarrow {}^{*} \epsilon$ and $\$ \in Follow(A)$ do
 - T[A, \$] = α

Constructing LL(1) Tables. Example

- Recall the grammar $E \rightarrow T X$ $T \rightarrow (E) \mid int Y$ $X \rightarrow + E \mid \varepsilon$ $Y \rightarrow * T \mid \varepsilon$
- Where in the row of Y do we put Y → * T?
 In the lines of First(*T) = { * }
- Where in the row of Y do we put $Y \rightarrow \epsilon$?
 - In the lines of $Follow(Y) = \{ \$, +, \}$

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - And in other cases as well
- Most programming language grammars are not LL(1)
- There are tools that build LL(1) tables

Review

- For some grammars there is a simple parsing strategy
 - Predictive parsing
- Next: a more powerful parsing strategy