Top-Down Parsing

ICOM 4029

Profs. Necula CS 164 Lecture 6-7

Review

» A parser consumes a sequence of tokens s and
produces a parse tree

- Issues:
- How do we recognize that s € L(G) ?
- A parse tree of s describes how s € L(G)

- Ambiguity: more than one parse tree
(interpretation) for some string s

- Error: no parse tree for some string s
- How do we construct the parse tree?

Profs. Necula CS 164 Lecture 6-7 2

Ambiguity

* Grammar
E-E+E|E*E| (E)|int

- Strings
int + int + int

int * int + int

Profs. Necula CS 164 Lecture 6-7

Ambiguity. Example

This string has two parse trees

E E
T~ /’\
E + E E 4+ E
T | I
E + E Int int E + E
| | | |
INt INt INt INt

+ is left-associative

Profs. Necula CS 164 Lecture 6-7

Ambiguity. Example

This string has two parse trees

E E
T~ /’\
E + E E x E
T | I
E =« E Int iINntf E + E
| | | |
INt INt INt INt

* has higher precedence than +
Profs. Necula CS 164 Lecture 6-7

Ambiguity (Cont.)

* A grammar is ambiguous if it has more than
one parse tree for some string

- Equivalently, there is more than one right-most or
left-most derivation for some string

- Ambiguity is bad
- Leaves meaning of some programs ill-defined

* Ambiguity is common in programming languages
- Arithmetic expressions
- IF-THEN-ELSE

Profs. Necula CS 164 Lecture 6-7 6

Dealing with Ambiguity

* There are several ways to handle ambiguity

* Most direct method is to rewrite the grammar
unambiguously

E-E+T|T
T-T*int|int | (E)

+ Enforces precedence of * over +
+ Enforces left-associativity of + and *

Profs. Necula CS 164 Lecture 6-7 7

Ambiguity. Example

The int * int + int has ony one parse tree now

Profs. Necula CS 164 Lecture 6-7

Ambiguity: The Dangling Else

» Consider the grammar
E—if EthenE
| if E then E else E
| OTHER

» This grammar is also ambiguous

Profs. Necula CS 164 Lecture 6-7

The Dangling Else: Example

+ The expression
|f El then |f EZ then E3 else E4
has two parse trees

if if
/R N
El lf E4 El /Ifm
E, E; E, E; E4

+ Typically we want the second form

Profs. Necula CS 164 Lecture 6-7 10

The Dangling Else: A Fix

- else matches the closest unmatched then

- We can describe this in the grammar
(distinguish between matched and unmatched “then™)

E— MIF /* all then are matched */
| UIF /* some then are unmatched */
MIF — if E then MIF else MIF
| OTHER

UIF — if E then E
| if E then MIF else UIF

+ Describes the same set of strings

Profs. Necula CS 164 Lecture 6-7 11

The Dangling Else: Example Revisited

* The expression if E; then if E, then E; else E,

if
N
e, if
E, E; E, E;
* A valid parse free - Not valid because the
(for a UIF) then expression is not

a MIF

Profs. Necula CS 164 Lecture 6-7 12

Ambiguity

* No general techniques for handling ambiguity

 Impossible to convert automatically an
ambiguous grammar to an unambiguous one

+ Used with care, ambiguity can simplify the
grammar
- Sometimes allows more natural definitions
- We need disambiguation mechanisms

Profs. Necula CS 164 Lecture 6-7 13

Precedence and Associativity Declarations

+ Instead of rewriting the grammar
- Use the more natural (ambiguous) grammar
- Along with disambiguating declarations

* Most tools allow precedence and associativity
declarations to disambiguate grammars

»+ Examples ...

Profs. Necula CS 164 Lecture 6-7 14

Associativity Declarations

+ Consider the grammar E—-E+E|int
* Ambiguous: two parse trees of int + int + int
E
/‘\
E + E
/l\ .
E + E 18l
| |
Nt Nt

+ Left-associativity declaration: 7%left +

Profs. Necula CS 164 Lecture 6-7 15

Precedence Declarations

+ Consider the grammar E-E+E|E *E | int
- And the string int + int * int

int E * E
| |

Nt Nt
- Precedence declarations: %left +

°/o|efT *

Profs. Necula CS 164 Lecture 6-7 16

Review

* We can specify language syntax using CFG
» A parser will answer whether s € L(G)

» ... and will build a parse tree

» ... and pass on to the rest of the compiler

+ Next:
- How do we answer s € L(G) and build a parse tree?

Profs. Necula CS 164 Lecture 6-7 17

Approach 1
Top-Down Parsing

Profs. Necula CS 164 Lecture 6-7

18

Intro to Top-Down Parsing

- Terminals are seen in order of
appearance in the token

stream.:
T, 1, T3 T4 15

» The parse tree is constructed

- From the top
- From left to right

Profs. Necula CS 164 Lecture 6-7

19

Recursive Descent Parsing

» Consider the grammar
E-T+E|T
T—int |int*T|(E)
- Token stream is: ints ™ int,
+ Start with top-level non-terminal E

» Try the rules for E in order

Profs. Necula CS 164 Lecture 6-7

20

Recursive Descent Parsing. Example (Cont.)

¢ TPYEOQTI"‘EZ
* Thentry arule for T, — (E3)
- But (does not match input token inty

+ Try T, — int . Token matches.
- But + after T, does not match input token *

* Try T;—=int * T,
- This will match but + after T, will be unmatched

+ Have exhausted the choices for T,
- Backtrack to choice for E,

Profs. Necula CS 164 Lecture 6-7 21

Recursive Descent Parsing. Example (Cont.)

+ Try Ep — T,

+ Follow same steps as before for T,
- And succeed with T, = int * T, and T, — int
- With the following parse tree

E,
1
/ \
int; * T,

int,
Profs. Necula CS 164 Lecture 6-7 22

Recursive Descent Parsing. Notes.

+ Easy to implement by hand

- An example implementation is provided as a
supplement “Recursive Descent Parsing”

* But does not always work ...

Profs. Necula CS 164 Lecture 6-7

23

Recursive-Descent Parsing

* Parsing: given a string of tokens t; 1, ... T,, find
Its parse tree

* Recursive-descent parsing: Try all the
productions exhaustively

- At a given moment the fringe of the parse tree is:
tot, T A

- Try all the productions for A:if A—BCisa
production, the new fringe is t; t, ... 1, B C ...

- Backtrack when the fringe doesn’ match the
string

- Stop when there are no more non-terminals
Profs. Necula CS 164 Lecture 6-7

When Recursive Descent Does Not Work

» Consider a production S — S a:
- In the process of parsing S we try the above rule
- What goes wrong?

* A left-recursive grammar has a non-terminal S
S —*"Sa for some a

- Recursive descent does not work in such cases
- It goes into an « loop

Profs. Necula CS 164 Lecture 6-7 25

Elimination of Left Recursion

» Consider the left-recursive grammar
S—=Salp

* S generates all strings starting with a 5 and
followed by a number of o

- Can rewrite using right-recursion
S—BS
S —-a¥s |¢

Profs. Necula CS 164 Lecture 6-7 26

Elimination of Left-Recursion. Example

» Consider the grammar
S—1|/5S0 (B=landa=0)

can be rewritten as
S—15
S =05 |¢

Profs. Necula CS 164 Lecture 6-7

27

More Elimination of Left-Recursion

* In generdl
S—=Soy|.|Sa Bl .. |B,

» All strings derived from S start with one of
B1,....0,, and continue with several instances of

A1,..., A

Ol
« Rewrite as
S—=p;S |..|B,S

S - S |.]la S |e

Profs. Necula CS 164 Lecture 6-7 28

General Left Recursion

+ The grammar
S—Aald
A—Sp
IS also left-recursive because

S—=*"SPa

- This left-recursion can also be eliminated

+ See Dragon Book, Section 4.3 for general
algorithm

Profs. Necula CS 164 Lecture 6-7

29

Summary of Recursive Descent

- Simple and general parsing strategy
- Left-recursion must be eliminated first
- ... but that can be done automatically

» Unpopular because of backtracking
- Thought to be too inefficient

» In practice, backtracking is eliminated by
restricting the grammar

Profs. Necula CS 164 Lecture 6-7 30

Predictive Parsers

- Like recursive-descent but parser can
“predict” which production to use

- By looking at the next few tokens
- No backtracking

* Predictive parsers accept LL(k) grammars
- L means “left-to-right” scan of input
- L means “leftmost derivation”
- k means “predict based on k tokens of lookahead”

* In practice, LL(1) is used

Profs. Necula CS 164 Lecture 6-7 31

LL(1) Languages

* In recursive-descent, for each non-terminal
and input token there may be a choice of
production

+ LL(1) means that for each non-terminal and

token there is only one production that could
lead to success

» Can be specified as a 2D table
- One dimension for current non-terminal to expand
- One dimension for next token

- A table entry contains one production
Profs. Necula CS 164 Lecture 6-7 32

Predictive Parsing and Left Factoring

» Recall the grammar
E-T+E|T
T—int |int*T|(E)

 Impossible to predict because
- For T two productions start with int
- For E it is not clear how to predict

* A grammar must be left-factored before use
for predictive parsing

Profs. Necula CS 164 Lecture 6-7 33

Left-Factoring Example

» Recall the grammar
E-T+E|T
T—int |int*T|(E)

» Factor out common prefixes of productions
E—-TX
X—=+E|¢
T—(E)]|intVY
Y—=*T]|c¢

Profs. Necula CS 164 Lecture 6-7 34

LL(1) Parsing Table Example

+ Left-factored grammar

E—-TX X—=+E]|¢
T—(E)|intY Y —=*T]|e
* The LL(1) parsing table:
int * + (

int Y (E)

TX TX

<|X|m|H
+
m

*T e

Profs. Necula CS 164 Lecture 6-7

LL(1) Parsing Table Example (Cont.)

* Consider the [E, int] entry

— “When current non-terminal is E and next input is
int, use production E— T X

- This production can generate an int in the first
place
» Consider the [Y +] entry

— “When current non-terminal is Y and current token
is +, get rid of ¥”

- We'll see later why this is so

Profs. Necula CS 164 Lecture 6-7 36

LL(1) Parsing Tables. Errors

- Blank entries indicate error situations
- Consider the [E,*] entry

— “There is no way to derive a string starting with *
from non-terminal E”

Profs. Necula CS 164 Lecture 6-7 37

Using Parsing Tables

Method similar to recursive descent, except
- For each non-terminal S

- We look at the next token a

- And choose the production shown at [S,a]

We use a stack to keep track of pending non-
terminals

We reject when we encounter an error state
We accept when we encounter end-of-input

Profs. Necula CS 164 Lecture 6-7 38

LL(1) Parsing Algorithm

initialize stack = <S5, $> and next (pointer to tokens)
repeat

case stack of
<X, rest> :if T[X,*next] = Y,...Y,
then stack < <Y,... Y, rest>;
else error ();
<t, rest> :ift == *next ++
then stack < <rest>;

else error ();
until stack == < >

Profs. Necula CS 164 Lecture 6-7 39

LL(1) Parsing Example

Stack Input Action
E$ int *int $ T X
TX$ int * int $ int Y
intY X$ int *int $ terminal
YX$ *int $ * T
*TX$ *int $ terminal
TX$ int $ int Y
intY X$% int $ terminal
YX$ $ 5

X$ $ 5

$ $ ACCEPT

Profs. Necula CS 164 Lecture 6-7

40

Constructing Parsing Tables

» LL(1) languages are those defined by a parsing
table for the LL(1) algorithm

* No table entry can be multiply defined

+ We want to generate parsing tables from CFG

Profs. Necula CS 164 Lecture 6-7 41

Top-Down Parsing. Review

+ Top-down parsing expands a parse tree from
the start symbol to the leaves

- Always expand the leftmost non-terminal
E

T

int * int + int

Profs. Necula CS 164 Lecture 6-7 42

Top-Down Parsing. Review

+ Top-down parsing expands a parse tree from
the start symbol to the leaves

- Always expand the leftmost non-terminal
E

N * The leaves at any point
T . E form a string BAy
/,\ - [contains only terminals
T - The input string is fbd
- The prefix f matches
- The next token is b

° * ° 3
Int iInt + Int
Profs. Necula CS 164 Lecture 6-7 43

Top-Down Parsing. Review

+ Top-down parsing expands a parse tree from
the start symbol to the leaves

- Always expand the leftmost non-terminal

/Ev, * The leaves at any point
T . E form a string pAy
/’\ l - [contains only terminals
LT T - The input string is pbd
| - The prefix B matches
int - The next token is b

° * ° °
Int Int + Int
Profs. Necula CS 164 Lecture 6-7 44

Top-Down Parsing. Review

+ Top-down parsing expands a parse tree from
the start symbol to the leaves

- Always expand the leftmost non-terminal

/Ev, * The leaves at any point
T . E form a string pAy
/’\ l - [contains only terminals
LT T - The input string is pbd
| l - The prefix f matches
int int - The next tokenis b

° * ° °
Int Int + Int
Profs. Necula CS 164 Lecture 6-7 45

Predictive Parsing. Review.

» A predictive parser is described by a table

- For each non-terminal A and for each token b we
specify a production A — «a

- When trying to expand A we use A — o if b follows
hext

- Once we have the table

- The parsing algorithm is simple and fast
- No backtracking is necessary

Profs. Necula CS 164 Lecture 6-7 46

Constructing Predictive Parsing Tables

Consider the state S =" BAy
- With b the next token
- Trying to match pbd

There are two possibilities:

1. b belongs to an expansion of A

Any A — a can be used if b can start a string
derived from

In this case we say that b € First(a)

Or...

Profs. Necula CS 164 Lecture 6-7 47

Constructing Predictive Parsing Tables (Cont.)

2. b does not belong to an expansion of A

The expansion of A is empty and b belongs to an
expansion of y

Means that b can appear after A in a derivation of
the form S — " BAbw

We say that b € Follow(A) in this case

What productions can we use in this case?
Any A — o can be used if o can expand to ¢
We say that ¢ € First(A) in this case

Profs. Necula CS 164 Lecture 6-7 48

Computing First Sets

Definition First(X\))={b | X="ba} U {e | X =" ¢}
1. First(b)={b}

2. Forall productions X — A, .. A,
* Add First(A;) - {¢} to First(X). Stop if & ¢ First(A,)
Add First(A,) - {e} to First(X). Stop if ¢ ¢ First(A,)

Add First(A,) - {e} to First(X). Stop if ¢ & First(A,)
Add ¢ to First(X)

Profs. Necula CS 164 Lecture 6-7 49

First Sets. Example

» Recall the grammar

E—-TX X—=+E|e¢
T—(E)|intY Y =*T|e

* First sets
First(()={(} First(T) = {int, (}
First())={)} First(E) = {int, (}
First(int) ={int } First(X)={+, ¢}
First(+)={+} First(Y)={*, ¢}

First(*)={*}

Profs. Necula CS 164 Lecture 6-7 50

Computing Follow Sets

Definition Follow(X)={b | S —="BXbd}
1. Compute the First sets for all non-terminals first
2. Add $ to Follow(S) (if S is the start non-terminal)

3. Forall productionsY — .. X A, .. A,
« Add First(A,) - {¢} to Follow(X). Stop if ¢ ¢ First(A)
Add First(A,) - {¢} to Follow(X). Stop if ¢ ¢ First(A,)

Add First(A,) - {e} o Follow(X). Stop if ¢ & First(A,)
Add Follow(Y) to Follow(X)

Profs. Necula CS 164 Lecture 6-7 51

Follow Sets. Example

» Recall the grammar

* Fol
Fo
Fo
Fo
Fo
Fo

E—-TX

T—=(E)|intY

ow sets
ow(+)={int,(} Fol

ow(()={int,(} Fo
ow(X)={$,)} Fo

ow(int) ={*,+,), $}

X—=+E|e¢
Y—=*T]|e¢

ow(*)={int, (}
low(E) ={), $}
low(T)={+), %}

ow())={+,).$} Follow(Y)={+), 9%}

Profs. Necula CS 164 Lecture 6-7 oY

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG 6

* For each production A — o in G do:
- For each terminal b € First(a) do
- T[A,b] =«
- If o —= "¢, for each b € Follow(A) do
- T[A,b] = @
- If o —"¢and $ € Follow(A) do
- T[A, $] =«

Profs. Necula CS 164 Lecture 6-7

53

Constructing LL(1) Tables. Example

» Recall the grammar
E—-TX X—=+E|e¢
T—(E)|intY Y—=*T]|¢
* Where in the row of Y dowe put Y —* T?
- In the lines of First(*T)={*}

* Where in the row of Y dowe put Y — ¢ ?
- In the lines of Follow(Y)={$,+,)}

Profs. Necula CS 164 Lecture 6-7 b4

Notes on LL(1) Parsing Tables

+ If any entry is multiply defined then G is not
LL(1)
- If G is ambiguous
- If G is left recursive
- If G is not left-factored
- And in other cases as well

* Most programming language grammars are not
LL(1)

+ There are tools that build LL(1) tables

Profs. Necula CS 164 Lecture 6-7 55

Review

* For some grammars there is a simple parsing
strategy

- Predictive parsing

* Next: a more powerful parsing strategy

Profs. Necula CS 164 Lecture 6-7 b6

