
ICOM 4029 Compiler Writing Handout 3

Fall 2004 page 1 of 5

Programming Assignment III
A Parser for COOL

Due Monday, October 20, 2014

1. Introduction
In this assignment you will write a parser for Cool. The assignment makes use of two tools: the parser
generator (the Java tool is called CUP) and a package for manipulating trees. The output of your parser
will be an abstract syntax tree (AST). You will construct this AST using semantic actions of the parser
generator.

You certainly will need to refer to the syntactic structure of Cool, found in Figure 1 of the CoolAid
manual available at the course website, as well as other portions of the reference manual.

Documentation for CUP may be found online at:
http://www.cs.princeton.edu/~appel/modern/java/CUP/manual.html

The documentation for the tree package is described in the Cool JavaDoc available online at:
http://ece.uprm.edu/~bvelez/courses/Fall2014/icom4029/cooldoc/

(browse to the “TreeNode” class)

You will need the tree package information for this and future assignments.

There is a lot of information in this handout, and you need to know most of it to write a working parser.
Please read the handout thoroughly.

You must work in a group for this assignment (where a group consists of two people).

2. Setting Up the Base Code
For this phase of your project you will be using the files in the assignments/PA3J directory in
the Cool distribution code that you already downloaded and unpacked for previous assignments.
Begin by creating a new directory named MyPA3J within the assignments directory. You will
put your source files in this directory.

 > cd ~/cool

> mkdir MyPA3J
> cd MyPA3J

You must now edit the Makefile inside the original PA3J directory to make it point to your
cool source code directory. Replace the text that reads /home/you/cool by the pathname to
your cool directory. If you extracted the code in your home directory you may simply use
~/cool as the new pathname.

Next copy all the relevant PA3J files from the Cool source distribution into your MyPA3J
directory by using the make command and the Makefile that you edited before:

 > cd ~/cool/assignments/MyPA3J
 > make –f ~/cool/assignments/PA3J/Makefile source

ICOM 4029 Compiler Writing Handout 3

Fall 2004 page 2 of 5

Your must now rename two files in your MyPA3J directory to avoid conflicts with Eclipse:

 > cd ~/cool/assignments/MyPA3J

> mv README README-PA3J
> mv cool-tree.java CoolTree.java

Open Eclipse on the same workspace used for PA2. Make sure that you have tagged the
CoolCompiler project with the version of the lexer that you submitted for grading before
you do any of the following modifications to the project. Otherwise you may no easily
recover the status of the lexer that was ready for grading. Only one of the project members
needs to tag the project. We recommend that you visit GitHub with a browser and verify that the
tag exists in the remote repository.

Remember to tag your lexer code in order to be able to go back in time to a working version of
your lexer if needed (see PA2 instructions). Proceed by copying all the Java (.java extension)
files into the default package on your Eclipse CoolCompiler project. There is no need to create
a new project. Some of these files may already be part of your project as they were used during
the lexer phase. It is ok to replace them since you should not have modified them for PA2.

There are a few additional files that you should copy to the root of the CoolCompiler project:
cool.cup, good.cl, bad.cl, and README-PA3J. As soon as you copy cool.cup the JFlex
plugin will automatically generate a new CoolLexer.java file in your default package. This
file contains the class that does the actual lexical analysis. Confirm that this is the case. You
should never modify this file directly as JFlex refreshes it every time you modify and save
cool.cup.

The next step requires you to refactor/rename three classes in the CoolTree.java file to avoid
conflicts with Eclipse. To refactor/rename a class just right-click on the class name that appears
on its class declaration and select Refactor -> Rename. The name of the class will be
highlighted allowing you to replace the name as follows:

• Rename Class_ to ClassAbstract
• Rename Program to ProgramAbstract
• Rename Formal to FormalAbstract

If you attempt to rename the classes using Find/Replace you may have a hard time finding all
references to these classes across multiple files. Refactor/rename does this automatically. You
should learn to use your software development tools wisely to achieve maximal productivity.

3. Files and Directories
Your MyPAJ3 directory now contains a number of files some of which were copied read-only (using
symbolic links). You should not edit these files. In fact, if you make and modify private copies of these
files, you may find it impossible to complete the assignment. See the instructions in the README file. The
files that you will need to modify are:

• cool.cup

ICOM 4029 Compiler Writing Handout 3

Fall 2004 page 3 of 5

This file contains a start towards a parser description for Cool. You will need to add more rules. The
declaration section is mostly complete; all you need to do is add type declarations for new
nonterminals. (We have given you names and type declarations for the terminals.) The rule section is
very incomplete.

• good.cl and bad.cl

These files test a few features of the grammar. You should add tests to ensure that good.cl
exercises every legal construction of the grammar and that bad.cl exercises as many types of
parsing errors as possible in a single file. Explain your tests in these files and put any overall
comments in the README file.

• README

As usual, this file will contain the write-up for your assignment. Explain your design decisions, your
test cases, and why you believe your program is correct and robust. It is part of the assignment to
explain things in text, as well as to comment your code.

Follow the instructions at the end of this document to turn in your assignment, not the ones in the
README file.

4. Testing the Parser
The main class of your parser phase is Parser.java. In order to make this class use your own
lexer, you must rename all references to CoolTokenLexer within its main method to
references to CoolLexer, the name of the lexer class generated by the JFlex plugin from your
cool.lex specification developed in PA2. To run your parser you can run Parser.java as a
Java application and paste Cool code into the console to test it. To use the reference lexer use
the CoolTokenLexer class in place of the CoolLexer class in Parser.java and paste lexer
output into the console to test your app. You can generate sample lexer output by running the
reference-lexer available on the cool/bin directory with some Cool input file.

To complete your parser you must add grammar rules to the CUP specification in the cool.cup
file with appropriate LALR reduce rules that would build the Abstract Syntax Tree (AST) from
the bottom up as studied in class. The top call to parser.parse()in Parser.java returns
the root of the AST representing the entire input cool program. Parser.java will then dump
a textual representation of the tree to the console which you should make sure is as similar as
possible to the output generated by the reference parser (ref-parser) available in your PA3J
directory.

You may run your Parser.java app adding a -p flag to your run configuration for debugging the
parser. Using this flag causes lots of information about what the parser is doing to be printed on
stdout. CUP produces a human-readable dump of the LALR(1) parsing tables in the
cool.output file. Examining this dump is frequently useful for debugging the parser
definition.

You should test this parser on both good and bad inputs to see if everything is working.
Remember, bugs in your parser may manifest themselves anywhere.

ICOM 4029 Compiler Writing Handout 3

Fall 2004 page 4 of 5

Your parser will be graded using the reference-lexer. Thus, even if you do most of the work
using your own lexer you should configure and test your parser with the reference-lexer before
tagging your project for grading.

5. Parser Output
Your semantic actions should build an AST. The root (and only the root) of the AST should be of type
program. For programs that parse successfully, the output of Parser.java is a listing of the AST.

For programs that have errors, the output is the error messages of the parser. We have supplied you with
an error reporting routine that prints error messages in a standard format; please do not modify it. You
should not invoke this routing directly in the semantic actions; CUP automatically invokes it when a
problem is detected.

Your parser need only work for programs contained in a single file. You don't have to worry about
compiling multiple files.

6. Error Handling
You should use the error pseudo-nonterminal to add error handling capabilities in the parser. The
purpose of error is to permit the parser to continue after some anticipated error. It is not a panacea and the
parser may become completely confused. See the CUP documentation for how best to use error. In your
README, describe which errors you attempt to catch. Your test file bad.cl should have some instances
that illustrate the errors from which your parser can recover. To receive full credit, your parser should
recover in at least the following situations:

• If there is an error in a class definition but the class is terminated properly and the next class is
syntactically correct, the parser should be able to restart at the next class definition.

• Similarly, the parser should recover from errors in features (going on to the next feature), a let
binding (going on to the next variable), and an expression inside a {...} block.

Do not be overly concerned about the line numbers that appear in the error messages your parser
generates. If your parser is working correctly, the line number will generally be the line where the error
occurred. For erroneous constructs broken across multiple lines, the line number will probably be the last
line of the construct.

7. Remarks
You may use precedence declarations, but only for expressions. Do not use precedence declarations
blindly (i.e. do not respond to a shift-reduce conflict in your grammar by adding precedence rules until it
goes away). If you find yourself making up rules for many things other than operators in expressions and
for let, you are probably doing something wrong.

The Cool let construct introduces an ambiguity into the language (try to construct an example if you are
not convinced). The manual resolves the ambiguity by saying that a let expression extends as far to the
right as possible. The ambiguity will show up in your parser as a shift-reduce conflict involving the
productions for let.

This problem has a simple, but slightly obscure, solution. We will not tell you exactly how to solve it, but
we will give you a strong hint. In coolc, we implemented the resolution of the let shift-reduce conflict
by using a CUP feature that allows precedence to be associated with productions (not just operators). See
the CUP documentation for information on how to use this feature.

ICOM 4029 Compiler Writing Handout 3

Fall 2004 page 5 of 5

Since the Cool compiler may use pipes to communicate from one stage to the next, any extraneous
characters produced by the parser can cause errors; in particular, the semantic analyzer may not be able to
parse the AST your parser produces.

8. Notes
You must declare CUP “types" for your non-terminals and terminals that have attributes. For example, in
the skeleton cool.cup is the declaration:

nonterminal program program;

This declaration says that the non-terminal program has type program.

It is critical that you declare the correct types for the attributes of grammar symbols; failure to do so
virtually guarantees that your parser won't work. You do not need to declare types for symbols of your
grammar that do not have attributes.

The javac type checker (used by Eclipse) complains if you use the tree constructors with the wrong type
parameters. If you fix the errors with frivolous casts, your program may throw an exception when the
constructor notices that it is being used incorrectly. Moreover, CUP may complain if you make type
errors.

8. Turning In the Assignment
1. Make sure your code is in cool.cup and that it compiles and works.

2. Your test cases should be in good.cl and bad.cl. Their output should be in good.output

and bad.output, respectively (these are generated by executing gmake).

3. Include any other relevant comments in the README file and answer any questions that appear in it.

4. Make sure everything (cool.cup, good.cl, bad.cl, good.output, bad.output, and

README) is updated in your remote GitHub repository.

5. Use Eclipse to tag your project at the stage that you want to submit for grading and send your tag to

Bienvenido.Velez@upr.edu so we can pull your parser for grading. Your tag should reflect a date on

or before the project deadline (October 20, 2014).

HAVE FUN AND LEARN A LOT!!

