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ABSTRACT 
 

REAL TIME LOCATION SYSTEM FOR WIRELESS 
MESH NETWORKS 

 
By 

 
Abdiel Avilés-Jiménez 

 

 

 This thesis presents the design and implementation of a real time location system 

(RTLS) for wireless mesh networks. The system uses the received signal strength as the 

method of distance measurement. A prototype of this system is presented using off-the-shelf 

technology as the tools for design and development. Arguments are made for its benefits on 

ease of development and deployment costs. Also several tests were conducted on a 

preliminary experimental prototype. These tests demonstrate the capabilities and 

functionality of the system. 
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RESUMEN  
 

SISTEMA DE LOCALIZACION EN TIEMPO REAL PARA 
REDES INALAMBRICAS EN TOPOLOGIA DE MALLA 

 
Por 

 
Abdiel Avilés-Jiménez 

 

Este trabajo de tesis presenta el diseño e implementación de un sistema de 

localización en tiempo real para redes inalámbricas en topología de malla. El sistema utiliza 

el indicador de fuerza de señal de radio frecuencia como el método para determinar 

distancias. Se presenta también un prototipo del sistema utilizando tecnología comercial 

como parte de las herramientas para diseño y desarrollo. Se argumenta sobre los beneficios 

de estas decisiones sobre la facilidad de desarrollo y costos de instalación. También se han 

conducido varias pruebas sobre este prototipo experimental. Estas pruebas demostraron las 

capacidades y funcionalidad del sistema. 
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1 INTRODUCTION 

 

Node location in wireless mesh networks is an indispensable requirement for a whole 

array of applications. Node location has uses in network routing optimization, asset tracking, 

asset identification and other areas. As low-cost and low power sensor networks become 

main-stream, an accurate, low-power and low cost scheme for sensor location is needed. This 

kind of peer-to-peer, or mesh, networks provide an inherent flexibility in terms of network 

topology. The location technique and algorithm should be modeled based on the requirement 

of the application such as accuracy, energy efficiency, scalability, or cost. There are various 

distance measurement techniques that could be used for wireless mesh networks location, 

being the most practical for our particular interest time-of-arrival (TOA), angle-of-arrival 

(AOA), and received-signal-strength (RSS) [1]. Based on low-cost, low-power and 

availability constrains, RSS will be the target of our analysis. 

 

1.1 Motivation 

Following the computation era comes the ubiquitous computing era, an age where we 

might not be able to discern from futile and intelligent objects. An age where devices work 

and take decisions for us without us even knowing or commanding it. This is the place where 

wireless sensor networks are guiding us to. Wireless sensor networks are clusters of 

computers nodes that interact with each other to share gathered information, execute 

commands and most importantly to communicate. In the vast ocean of applications and 



 
 
 
 

 11 

purpose of wireless sensor networks, this paper will focus on how sensor networks determine 

their physical location in the network. 

 

1.1.1 Applications 
 

Here we present a minimal subset of applications and possibilities for wireless mesh 

network node location. Their importance will become obvious as they get mentioned. 

1.1.1.1 Animal Tracking 

This application can be very useful in biological research, cattle monitoring and pet 

location. Animal behavior and interaction can be easily characterized by continuously 

acquiring location data for each specimen. Cattle monitoring is another important area in the 

industry for theft prevention as well as health and data collection. No different are the needs 

of pet owners which could greatly benefit by knowing in real time their pet location in 

different scenarios. 

1.1.1.2 Personnel Tracking 

As stated before, people location can be critical for the operations of business and 

events. A hospital is a good example where knowing who and where is the closest doctor or 

nurse can be decisive between life and death. An almost endless list of applications related to 

this area could be enumerated. 

1.1.1.3 Logistics 

Business organizations can benefit from asset location to improve their supply chain 

logistics and processes. Office and warehouse equipment could be monitored on temperature, 

humidity, location and other important information to the processes. Another example where 

logistics can be improved is on massive events like concerts, theatrical pieces, movie 
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productions, and any other event where personnel location could greatly benefit event’s 

goals. 

1.1.1.4 Industrial / Home Automation 

Ubiquitous computing is one of the most hyped areas lately. Home appliances can 

adjust, react and collaborate by being aware of people’s locations as well as other appliances 

and home equipment. 

1.1.1.5 Robotics 

In many applications robots need to be aware of other likes for numerous of reasons. 

Take for example the space exploration. A swarm of robots could be deployed in a vast area. 

All their interaction with their environment and themselves must include the awareness of 

location to maximize their collaboration and scarce resources use. 

 

1.1.2 Market Expectations 

IDTechEx firm develops various reports on RFID (Radio Frequency Identification) 

and related technologies. Their latest report [3] on Real Time Location Systems analyses the 

technologies, the market and related issues. In [3] IDTechEx has constructed a ten year 

forecast in which they state that the active RFID market will grow to over 11 times its 

present size by 2017. Active RFID technologies relates to Real Time Locating Systems 

(RTLS), Ubiquitous Sensor Networks and active RFID tags based on Zigbee, Ultra Wide 

Band and WiFi. They predict that the active RFID market “will rise from 12.7% of the total 

RFID market this year to 26.3% in 2017”, which translates to a $7.07 billion market. 
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Currently, the RTLS market consists on whole systems rather than generic software 

applications for generic hardware infrastructures. 

 

1.2 Proposed Solution 

We want to build a basic, low cost infrastructure for RTLS based on wireless mesh 

networks. The specifics of the network can be modeled based on the applications, and the 

applications are influenced on the market. The hardware infrastructure must be built upon 

off-the-shelf solutions. These decisions must be based on future expectations and current 

adoption of the hardware products. So our focus is on generic software, and innovative 

applications and uses for the hardware infrastructure. RTLS can aid in cattle theft prevention, 

family monitoring in an amusement park, personnel location in a theatrical or musical event, 

soldier assistance in the battle ground, and even in the orchestration of a swarm of house 

keeping robots. 

In a nutshell, our solution creates a software middleware for real-time location based 

on wireless, low-cost, low-power, mesh-networked devices. 

 

1.3 Objectives of this Thesis 

The main objectives of this Thesis are: 

• To design a real time location system based on a wireless mesh network and using 

the received signal strength as the method of distance measurement. 



 
 
 
 

 14 

• To develop an implementation of the real time location system using off-the-shelf 

components. 

• To develop an extensible software middleware for real time location system and 

related applications. 

• To investigate the reliability of RTLS based on wireless mesh networks versus 

other approaches to the problem. 

 

1.4 Contributions 

The major contributions of this work can be summarized as follows: 

• A solution to real time location system based on wireless mesh network is 

presented using off-the-shelf technology as the tools for design and development. 

Arguments are made for its benefits on ease of development and deployment 

costs. 

• An implementation of a software middleware for RTLS is presented as well the 

hardware infrastructure for the underlying wireless network. 

• An implementation of a theoretical environment for simulations was developed to 

test methodology and algorithms. 

• Several tests were conducted on a preliminary experimental prototype. These tests 

demonstrate the capabilities and functionality of the system. 
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• Several tests were conducted on a theoretical environment to prove the 

correctness of our approach and algorithms. 

 

1.5 Thesis Structure 

The remainder of this thesis is structured as follows. In Chapter two we present a 

survey of the most relevant technologies related to our research, namely the different 

techniques for measuring the distance and direction of a wireless signal and various location 

estimation algorithms for wireless nodes. In chapter three we present an overview of the 

proposed solution, a real time location system for wireless mesh networks. Chapter four 

discusses the implementation details of the proposed solution and in chapter five we presents 

the results from several experiments related to the performance of the system. Finally chapter 

six present a summary of contributions, conclusions and directions regarding future work. 
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2 RELATED WORK 

 
 
2.1 Measurements Techniques 

The location of a node in a wireless system involves the measurement and collection 

of information from radio frequency signals traveling between the target nodes and a 

minimum of location aware reference nodes, called beacons [4]. Depending on the technique 

and available circuitry, the received signal strength (RSS), time of arrival (TOA), difference 

on time of arrival (TDOA), and angle of arrival (AOA) information can be used, or a 

combination of some of them. Following is the description of the previous. 

 

2.1.1 Received Signal Strength 
 

Received signal strength (RSS) is defined as the sensed or measured power metric of 

the last received transmission by a node. The loss on the signal can be translated to an 

approximate of the distance between the measuring nodes. It is widely used as a 

measurement technique since the hardware that implements it consists on very simple and 

inexpensive circuitry [5]. It is available on most commercial transceivers, thus its 

importance. Yet these types of measures suffer from an infamous unpredictability. This is 

due to many sources of error. 

 

2.1.2 Time of Arrival 
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Another measuring technique is the time of arrival (TOA) and difference in time of 

arrival (TDOA). TOA is simply the time of transmission plus a propagation time delay. This 

measured delay between sender and receiver is directly translated to their separation distance 

divided to the propagation velocity. The signal could be acoustic, RF or any other. The 

propagation speed for RF is considered to be ten times as fast as the speed of sound. Sensors 

need to have clocks that are accurately synchronized to determine the time delay by 

subtracting the known transmit time from the measured. A common practice is to measure 

the round trip time. This way an asynchronous sensor can be used. A constant delay from the 

re-sender might be taken in to account. 

 

2.1.3 Angle of Arrival 
 

The angle of arrival (AOA) of the signals can be used as complementary location 

information to TOA and RSS measurements. It works by using an array of sensors capable of 

determining the direction of an incoming distance. This method can be made extremely 

accurate if sufficient antennas or sensors are used. The obvious drawback to this technique is 

the increase in device cost. The technique alone cannot determine distance but can 

dramatically improve TOA or RSS calculations. 

 

2.1.4 Connectivity 
 

Connectivity is a simple binary value that only tells whether another device is on 

range or not [6]. This kind of information could be used for simple routing protocols. It might 
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be able to aid in location if the nodes are capable of controlling its signal range and makes a 

relation among transmitted power and distance. 

 

2.2 Location Estimation Algorithms 

Although this review is about cooperative location algorithms, we must first present 

the basics of wireless node location. We start by reviewing the basics of triangulation and 

trilateration. This is the starting point of all the following algorithms and techniques. 

 

2.2.1 Triangulation 
 

 

Figure 2.1 Common circle patterns. (a) Type 1 (b) Type 2 (c) Type 3 
 

Triangulation is a method that solves a set of linear equations involving the 

coordinates of multiple reference points (Xi, Yi) at known coordinates and measurements of 

distance Di to these points [6]. A node can estimate its position given three or more reference 
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points in range. It is limited by the precision of distance measurements and the reference 

point accuracy. The measurements would be based on RSS, TOA, TDOA or AOA. 

 

 
Figure 2.2 Uncommon circle patterns 

 

Triangulation can result in various patterns of circles. The patterns can be classified 

depending on the number of real and imaginary solutions to the system of equations [7]. The 

most common pattern of circles are shown in Figure 2.1. As shown by [7], Type 1 has six 

real solutions, Type 2 has four real solutions and three imaginary solutions, and Type 3 has 

two real and four imaginary solutions. Uncommon circle pattern are shown in Figure 2.2. 

Figure 2.2 (a) shows a pattern with no solutions, (b) show the most desirable pattern, the 
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triple root point, (c) two double roots and two imaginary solutions, (d) one double root and 

four imaginary solutions, and (e) two real solutions and one double root. 

 

2.2.2 Hyperbolic Trilateration 
 

Hyperbolic Trilateration is a geometric method to solve location problems. It works 

by calculating the intersection point of three circles. The method is mathematically 

equivalent to triangulation; with the difference that trilateration only works with distances 

and not angles. There are several hyperbolic trilateration schemes for node location on 

scattered networks, Atomic Multilateration, Iterative Multilateration, and Collaborative 

Multilateration. Atomic multilateration covers the basic case where an unknown node can 

estimate its location if it is within range of three or more beacons. Iterative multilateration is 

the name given to atomic multilateration when used in the context of ad-hoc networks. It is a 

distributed algorithm that works by first determining the location of unknown nodes using 

atomic multilateration. It chooses the unknown node to be closer to the most beacons 

possible for better accuracy and faster convergence [8]. After determining its location, the 

node converts into a beacon for other unknown nodes. The major drawback to this algorithm 

is the obvious error accumulation that results from the use of unknown nodes as beacons. 

Collaborative multilateration occurs when some unknown nodes do not meet the conditions 

for atomic multilateration. When it occurs, the unknown node may be able to estimate its 

position by location information over multiple hops [9]. To estimate its location, sufficient 

information must be available to solve the system of quadratic equations. 
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2.2.3 Maximum Likelihood 
 

Maximum likelihood works by finding a point that stays the closest to as many as 

possible of the nodes of a given set of measurements. It chooses a position so that the 

differences between estimated and measured distances are minimized [8]. 

 

2.2.4 Cooperative Location Topologies 
 

Cooperative location is needed when there are nodes in the network that are various 

hops away from location aware beacons. The location topology refers to where the 

calculations are determined; be it on a central node or in a distributed fashion. The algorithms 

being discussed in here take different approaches including a hybrid location topology where 

some of the calculations are determined locally, hence distributed, and final calculations are 

determined at a central node. The solution will depend on the specific needs of the system. 

2.2.4.1 Centralized 

Centralized topologies work by taking the measures at the nodes and then sending all 

the data to a central server where location is determined. This kind of scheme usually suffers 

from relatively large amounts of communication overhead if only a small fraction of the 

network nodes are in range of location aware beacons. It might be useful for locating nodes 

in range that have strict constrains on processing power. There could be other constrains not 

mentioned here. Otherwise a distributed topology is more appropriate for location algorithms 

[10, 11]. 
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2.2.4.2 Distributed 

Distributed topologies are needed when our specifics include limited communication 

bandwidth and a lack of a central processing node. The processing power is distributed 

locally among neighboring nodes and location information is spread trough the network 

starting at location aware beacons. No matter the algorithm used, the minimum amount of 

beacons needed is three to localize the most of the network. All algorithms based on 

network/cooperative/distributed multilateration suffer from a greater amount of error 

accumulation than atomic multilateration. Successive refinement could be a method used to 

minimize the error accumulation impact upon location estimates. Also hybrid methods could 

improve on this by dividing the network in smaller computational clusters that reduce both 

communication overhead and error accumulation, and then a central node merges and 

optimizes local estimates. Following are example algorithms that implement what was 

described before. 

 

2.2.5 Ranging 
 

[12] presents a range-free geometric localization technique that adjusts the beacons 

radio range to localize unknown nodes.  Their objective is to obtain higher location accuracy 

estimation while taking less communications overhead with a small number of anchors. The 

method starts with two beacons iteratively producing a series of ring intersections and 

narrowing down the possible area in which the sensor node resides. It calculates the centroid 

of the intersection area as its estimated location 
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The algorithm can be described in three steps. First, the beacons broadcast their 

location information and transmitting power. The unknown nodes that receive the beacon 

store the information. If an unknown node hears from two or more beacons, then it should 

select only two of them as its reference beacons. After the reference beacons detect the 

unknown node, they proceed to gradually decrease their transmitting signal strength and 

judge whether the unknown node is still covered. The second step is to determine the area 

formed by the intersection points. After lowering to a minimum range, the unknown node 

could be located into one of four different cases. Depending on the case, an additional beacon 

might be needed. In the third step a centroid is calculated to estimate the highest probability 

location area and thus its final approximate location. 
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3 DESIGN 

 

Here we present the design of our real time location system infrastructure. We start 

by presenting the hardware components and technologies used on our design and the reasons 

we selected them. This could be considered part of the implementation rather than design, but 

the design relies heavily on the hardware to be used. We are discussing only the most 

important aspects of the technologies. 

Fist we present the selected transceivers, microcontrollers, and the network protocol. 

Then we discuss some issues concerning the measurement method. Finally we discuss the 

centralized real time location scheme. 

 

3.1 Off-the-shelf Technology 

In the world of silicon and integrated circuits we can find more solutions than the 

problems we have. This in itself could become a problem. We want to design generic 

software for specific devices that not necessarily are standardized.  

We start by defining the requirements and then looking for solutions. The main goal is a real 

time location system based on a wireless mesh network. The requirements for this system are 

to be low-cost, low-power, and mesh-networked. Other requirements were drawn upon 

several iterations of the design and a specific application as the motivation. The other 

requirements are to have a centralized location server, to use the signal strength as a 

measurement of distance, and to use standardized technologies. Based on these requirements 
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we have selected Digi’s XBee wireless module and TI’s MSP430 microcontroller for the 

wireless nodes. 

 

3.1.1 Digi XBee Wireless Module 
 

The XBee wireless module is a stand-alone, ready-to-use solution for low-power, 

low-cost, wireless sensor networks. They operate within the ZigBee mesh networking 

protocol at the network level or MAC level. The network could grow up to 65,000 wireless 

nodes unique addresses. The network also supports point-to-point, point-to-multipoint and 

peer-to-peer topologies. The modules have an indoor range of up to three hundred feet and 

outdoors of up to one mile. 

Additionally these modules have the capability of sensing the RSS of received data 

frames. This information is available trough a pin on the module which outputs a pulse width 

modulated signal (PWM). This signal is used internally by the module as part of its ZigBee 

routing algorithm. It is only available via this pin or at the MAC level firmware. We are 

coupling a microcontroller to add more functionality and control to the module, and to gain 

access to this RSSI information. 

Our network consists of one coordinator node which is attached to the central server 

and up to 64,999 batteries operated wireless nodes. 

 

3.1.2 TI MSP430F1232 MCU 

As stated above, we need a microcontroller to add functionality, control, and access 

the RSSI information at the network level. We selected the Texas Instrument’s 
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MSP430F1232 microcontroller. The MSP430 is an ultra low-power microcontroller and 

consists of several devices featuring different sets of peripherals targeted for various 

applications. Its architecture, combined with five low power modes is optimized to achieve 

extended battery life in portable measurement applications. It features a 16-bit RISC CPU, 

16-bit registers, a digitally controlled oscillator, 16-bit timer, 10-bit A/D converter with 

integrated reference and data transfer controller and twenty-two I/O pins. In addition, the 

MSP430F1232 microcontroller has built-in communication capability using asynchronous 

(UART) and synchronous protocols. 

Any other ultra low-power microcontroller with similar capabilities could be used. In 

our design we are using the MSP430’s UART module for asynchronous serial 

communication with the XBee module. The microcontroller talks with the module to send 

and receive data frames and to change the modules configuration. We are also using its basic 

clock module, timer, and capture/compare module to read the RSSI PWM signal. 
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3.1.3 Hardware Interface 

 

Figure 3.1 Hardware Block Diagram 
 

Figure 3.1 shows the hardware interface for the wireless nodes. It is a simple 

configuration with minimal interconnection and hardware requirements. Both devices, the 

XBee and the MSP, share the same power source since they both work at 3.3V CMOS logic. 

The additional interconnections are the UART serial port and the RSSI pin. The resulting 

device might not be much larger than the XBee module including a coin sized battery. Figure 

3.2 shows the interface between the coordinator node and the central server. The XBee 

modules can be interfaced to a PC via an RS-232 serial connection or a USB-to-Serial 

converter module. 



 
 
 
 

 28 

 
Figure 3.2 PC – Coordinator Interface 

 

 

3.2 Zigbee Mesh Networking Protocol 

The importance of mesh networking relies on the ease of deployment and 

maintenance of the network. We have selected the ZigBee mesh networking protocol as our 

communications standard. ZigBee is a network layer protocol that uses the MAC layer IEEE 

802.15.4 standard as a baseline. It was developed by the ZigBee Alliance, a group of 

companies that worked in cooperation to develop a network protocol to be used in a variety 

of commercial and industrial low data rate, low power, and low cost applications. It adds 

mesh networking to the underlying 802.15.4 radio. The radios would automatically form a 

network without user intervention. ZigBee also has the ability to self-heal the network. If a 

radio at a mid point is removed for some reason, a new path would be used to route 

messages. This behavior is shown in Figure 3.3. 
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Figure 3.3 Self Healing Mesh Network 
 

 

3.3 RSS Indicator 

As stated before, the received signal strength (RSS) can be used as a metric of 

distance from node to node. The loss on the signal can be translated to an approximate of the 

distance between the measuring nodes. We will use it since it lowers the cost of our device, it 

simplifies the development and it is available on most devices, namely XBee. The greatest 

problem with this kind of measurement is that it suffers unpredictability. 
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This is due to many sources of error. RF signals decay proportionally to the distance 

squared (d2) on free space and clear line of sight (LoS). This is normal and desirable; but the 

environment variables cause two major sources of error for RSS that are shadowing and 

multipath signals [2]. Multipath signals are caused when there is an obstructed LoS and 

objects scatter RF signals on different paths. These multipath signals arrive at the receiver 

with different amplitudes and phases, adding or constructively or destructively as a function 

of the frequency, causing frequency selective fading [1]. A spread-spectrum method could be 

used to average the received power over a wide range of frequencies. Using a wideband 

method to measure the power of the received signal is equivalent to measuring the sum of the 

powers of each multipath signal. 

Shadowing is the attenuation of the signal due to obstructions where the signal muss 

pass trough or diffract around the object. They are considered a random error source. Other 

sources of error could be attributed to measurement circuitry precision and calibration but are 

considered insignificant. 

RSS errors are considered to be multiplicative, in comparison to other techniques 

which error sources are considered to be additive. RSS is considered to be better suited to 

high density sensor networks. 

Given the scope of this research, we are not focusing our efforts on improving the 

RSS indicator quality and accuracy. Instead we can characterize the RSS to distance relation 

for a given environment setting. This method yields acceptable results. 
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3.4 Centralized Location 

Mesh networking is by definition a self configurable and self healing. Our distributed 

location scheme takes advantage of these characteristics to reduce the costs of location in a 

network of wireless nodes. A mesh network does not need a wide coverage antenna since 

each node routes trough its surrounding nodes, thus reducing hardware costs. Another way of 

reducing costs is to minimize the amount of fixed location nodes. Each node in the network 

might be located by taking advantage of a GPS device, yet this increases the cost and size of 

the devices. Our approach uses at least three nodes that serve as initial beacons. The beacons 

must have a fixed and known location. Using cooperative multilateration most nodes in the 

network could be located within an acceptable margin of error for many applications. 

Cooperative multilateration works by locating the unknown nodes closer to at least 

three beacons. This is accomplished by trigonometric multilateration using the distance 

among nodes as measured by the received signal strength. Their location is then propagated 

to the farther unknown nodes by using the location of the newly located nodes. Figure 3.4 

shows the way location spreads.  

An interesting methodology, not included in our discussion, would be the utilization 

of a mobile beacon as introduced by [13], but in the context of cooperative multilateration. 

This mobile beacon could reduce the impact of error accumulation while minimizing the cost 

of the system as a whole. 
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Figure 3.4 Location Propagation 
 

We start with a) three beacon nodes, shown in blue, and several unknown nodes in 

range, shown in green. After the first iteration we can b) locate farther unknown nodes using 

the newly found nodes, shown in black. This method continues until c) most nodes are 

located within the network. Nodes that are not reached by three or more nodes d) cannot be 

located with precision. 
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The calculations of this cooperative multilateration could be achieved either at the 

node or at a centralized server. Our approach uses a centralized server for several reasons. 

Most of our target applications are related to centralize monitoring, so there is no need for the 

nodes to know their location. Another reason is that we can do better data filtering at a 

centralized level than at the nodes. A node can do data filtering related to the nodes that are 

connected to it, but not the ones that are relatively close but not connected, and can give 

useful information.  

 

Figure 3.5 Special Case 
 

Figure 3.5 shows a case where we can make a good prediction of an unknown node at 

a centralized server, but not at the node level. Yet it is still possible for a node to gather the 

necessary data to achieve the same level of knowledge as a server, but this will increase the 

data transfer on the network. 
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4 IMPLEMENTATION 

 

This section describes in detail our implementation of a real time location system for 

wireless mesh networks. We start by describing the system as a whole. Then we describe the 

wireless nodes behavior and internal algorithms. Following that is the central server data 

gathering, trilateration and filtration algorithms. We will also describe the data flow in the 

network of nodes. Finally we will explain the relationship between the RSSI and the distance 

among nodes. 

 

4.1 Trilateration Algorithm 

As stated in chapter 2, trilateration is a geometric method to solve location problems. 

It could be used to solve two dimensional location as well as three dimensional locations. 

Both use similar formulas and techniques, but we will use two dimensional data as far as our 

research concerns. The trilateration algorithm is very simple. It works by calculating the 

intersection point of three circles. The method is mathematically equivalent to triangulation; 

with the difference that trilateration only works with distances and not angles. 
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Figure 4.1 Trilateration 
 

Figure 4.1.a shows three circles and a point equal to the three. Our goal is to find the 

coordinate where all three circles are equal, that being our unknown node location. To make 

calculations simpler, we will choose one of the circles to be at the origin and another to be at 
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the x axis. The third circle will be called beacon and the unknown point will be called 

unknown. 

 
origin = circle at origin 
xAxis = circle at x axis 
beacon = third circle 
unknown = unknown point 
 

After selecting the origin circle, all three circles are translated as shown in Figure 

4.1.b. 

tOx = 0 
tOy = 0 
tXx = xAxis.X - origin.X 
tXy = xAxis.Y - origin.Y 
tBx = beacon.X - origin.X 
tBy = beacon.Y - origin.Y 
 

The circles are then rotated by theta ! , to displace xAxis circle to the x axis. This is 

shown in Figure 4.1.c. 

!
"
#$

%
&='

tXx
tXy

tan           4.1 

ttOx = 0 
ttOy = 0 

ttXx = 22
tXytXx +          4.2 

ttXy = 0 
ttBx = ( ) ( )!"+!" sincos tBytBx        4.3 
ttBy = ( ) ( )!"#!" sincos tBytBx        4.4 

 

Having all points in place we can compute the unknown location by equaling all 

circles to find the coordinate where all three intersect. 

origin = xAxis = beacon 
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Where ,  

rO = origin radius 
rX = xAxis radius 
rB = beacon radius 
ttUx = unknown x coordinate 
ttUy = unknown y coordinate 
 
 
and where each circles equation is given by, 

222
ttUyttUxrO +=           4.5 

( ) 222
ttUyttXxttUxrX +!=          4.6 

( ) ( )222
ttByttUyttBxttUxrB !+!=         4.7 

 
To solve the equations for x, we can subtract xAxis‘s equation to origin‘s 

equation. 

ttXx

ttXxrXrO
ttUx

!

+"
=

2

222

         4.8 

To solve for y we substitute back on origins‘s equation, then we equal this 

resulting formula to the beacon‘s formula and solve for y. 

ttUx
ttBy

ttBx

ttBy

ttByttBxrBrO
ttUy !

"

++!
=

2

2222

      4.9 

Now we have found our unknown point. The remaining calculations are to rotate back 

by !"  and translate by the distance of the original origin circle, as shown in Figure 4.1.d. 

 

4.2 RSSI to Distance Relation Characterization 

We have already have defined RSS as the sensed or measured power metric of the 

last received transmission by a node. We have also stated the reasons for selecting RSS as 
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our measurement of distance between nodes, being those price, simplicity and availability. 

This section will be devoted to describe the way we translate the RSSI PWM signal available 

on the XBee module to an approximate measurement of distance. 

The XBee’s documentation [1] states that it internally measures the power of the 

signal of the last RF frame received by the module. The method used to capture the power is 

neither described nor important for us. They do describe the signal as a pulse width 

modulated signal proportional to the received power at the module. It is a sixty four 

nanoseconds square wave. The percentage of a high voltage to low voltage of this period will 

translate to the fade margin of the radio. For example if our PWM signal has a ten percent 

duty cycle, it translates to a ten decibels fade margin. The XBee’s documentation [1] does 

not mention the XBee’s resolution for that measurement, but their support staff has stated 

that “the period is 64 microseconds and there are 445 steps in the PWM output. So the 

minimum step size is 144 nanoseconds”. This means that the PWM signal has a resolution of 

0.225 dBm (decibels milliwatt). The receiver sensitivity is given by the documentation as -

100 dBm.  

All this information could be useful with the help of a radio propagation model. This 

model is an empirical mathematical formulation for the characterization of the radio wave 

propagation as a function of distance and other conditions. We do not have a defined path 

loss model for the XBee modules neither we are defining one since it is out of the scope of 

this research. Instead we can characterize a model using experimental data for a given 

environment. 
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Distance vs RSSI

y = -40.433Ln(x) + 179.38
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Figure 4.2 Distance vs. RSSI characterization 
 

Figure 4.1 shows the characterization of one our experimental settings. In this 

scenario we have two XBee-Pro modules transmitting at power level 1 (12 dBm), with no 

attached antenna and inside a 20’ x 20’ concrete walls room. The XBee-PRO module has a 

range of five power output levels from 10 dBm to 18 dBm. The RSSI measurements were 

done with an MSP430F1232 microcontroller using its internal timer and capture/compare 

module. The MSP430F1232 capture algorithm is described in the next section. 

In this scenario we have found a similar logarithmic function that relates to an RSSI 

value and a distance. Notice that our setting is only experimental since the modules do not 

have antennas and are not working at their maximum power output. As specified by the 

manufacturer, the indoor/urban range of the XBee-PRO modules is up to 300 feet and the 

outdoor line-of-sight is up to 1 mile. The modules were not designed to work without 
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antennas, so, the erratic behavior in the range of 25 to 40 inches does improve with one 

attached. 

 

4.3 Wireless Nodes Firmware 

This section will briefly explain the software developed to run on the wireless nodes 

and their behavior. The code has been simplified to clearly understand the algorithms. The 

nodes have several tasks to do besides creating and maintaining the wireless mesh network. 

Each node receives and performs commands sent by the central server, also return RSSI 

values to the central server and propagate server broadcasts. 

 

4.3.1 API Mode 

XBee modules have two modes of operation, command mode and API mode. We will 

only describe one, the API mode. This mode specifies the application level protocol in which 

modules and devices talk to each other, be it wirelessly or via serial port. Figure 4.3 shows 

the structure of the API data frames. Any module can communicate with another module in 

the network by defining the destination address and other predefined commands. The 

remaining details are not important in our discussion. 

 

Figure 4.3 General XBee API Frame Structure 
 



 
 
 
 

 41 

 

4.3.2 Main Algorithm 

The central server sends from time to time a broadcast frame to all nodes. This 

broadcast frame serves as a signal for RSSI sensing and value return. Figure 4.4 shows the 

structure of this frame.  

 

Figure 4.4 Broadcast Frame 
 

Notice the destination address and maximum hops count. The destination address 

specifies the broadcast address and up to one hop count. This means that each frame spreads 

only to directly linked nodes. This occurs at the network level. The microcontroller is in 

charge of keeping a list of recent broadcast frames for re-broadcast. This is necessary to keep 

track of the sender address. It changes with every re-broadcast. To clear out the algorithms 

let’s describe it step by step. 
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Figure 4.5 Wireless Node main algorithm pseudo-code 

 

Figure 4.5 shows part of the internal algorithm executed by the microcontroller. The 

pseudo code is shown. We do not have an operating system running on the microcontrollers. 

main(){ 
  // Loop for ever 
  for(;;){ 
    // Go into low power mode and wait for an interrupt 
    goIntoLowPowerMode(); 
    // An event has occurred and returned from low power mode 
    // A broadcast frame was received? 
    if (isTxReady()){ 
      // Sense RSSI value for this last frame 
      senseRSSI(); 
      // Prepare RSSI return frame 
      returnRSSIFrame[]; 
      // Send RSSI return frame to central server 
      sendFrame(returnRSSIFrame); 
    } 
    // Do a re-broadcast? 
    if (ifRetransmit()){ 
      // Prepare Broadcast frame 
      reBroadcastFrame[]; 
      // Send Broadcast 
      sendFrame(reBroadcastFrame); 
    } 
    // Execute a command? 
    if (ifCommand()){ 
      // Prepare Command frame 
      commandFrame[]; 
      // Execute Command on module 
      sendFrame(commandFrame); 
    } 
  } 
} 
 
UART_RX_INTERRUPT(char receivedChar){ 
  // Parse received byte 
  digest(receivedChar); 
  // Complete frame received?  
  if (completeFrame()){ 
    // Broadcast frame?  
    if (isBroadcast()){ 
      // Retreive sender address and broadcast frame ID 
      senderAddress64[]; 
      frameID[]; 
    } 
    // Command frame? 
    else if (isCommand()){ 
      // Save command ID and value 
      commandID[]; 
      commandValue[]; 
    } 
  // Exit Low Power Mode after return from interrupt 
  clearLowPowerMode(); 
  } 
} 
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Events are managed by hardware or software interrupts. The MSP430’s UART module 

generates an event for each character received. This event halts the execution of the main 

code. Events are also generated at the timer capture/compare module. The microcontroller is 

usually at sleep mode to save power. 

Let’s start the description at the UART interrupt function, 

UART_RX_INTERRUPT(char receivedChar). This interrupt function has been 

simplified from the actual function and algorithm. As previously stated, it is called via a 

hardware interrupt every time the UART module receives a character. This character is 

parsed until a complete and valid frame is received. Once a valid frame has arrived, 

important data is extracted and saved for later use. There are two types of frames that are 

relevant for us, broadcast and command. When a broadcast frame is received, the sender 

address and the frame ID are stored. For a command frame, the command ID and the 

command value are stored. Nothing else besides data extraction is done at the interrupt 

service routine. Data flows from the XBee module at random intervals; therefore we must 

reduce the complexity of the interrupt routine to a minimum. 

The main() loop manages the most important logic. As shown in Listing X, 

execution stops until an event occurs. The microcontroller leaves a low power mode when an 

interrupt occurs and the mode is cleared inside the interrupt service routine. Going back to 

the interrupt service routine, the low power mode is cleared only when a complete and valid 

frame is received. After receiving a frame, main loop continues execution. It starts by 

verifying if a broadcast was received. If it was received, the RSSI must be determined and 

sent back to the central server. It will be described in detail in the next section. After this 
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step, it is determined if the broadcast was previously received. If it was not received, the 

broadcast ID is stored in flash memory and resent to the closest nodes. The last step works 

with commands. If the frame contained a command, it is executed. Most commands are 

directed to the XBee module to modify some property of it. 

 

4.3.3 RSSI Sensing 

 

 
 

Figure 4.6 RSSI sensing pseudo-code 

 

Figure 4.6 shows the pseudo code for RSSI sensing. It has been modified from the 

original code for simplicity. As revealed from the code, it is extremely simple. First, set the 

timer and capture/compare module. The setting has been hidden since it is dependent on the 

device. More important details will be given soon. After starting the timer module, it waits 

until measurements are complete. Then do some calculations and return. That simple. Now 

senseRSSI(){ 
  // Start timer and capture/compare module 
  // Go into low power mode and wait for 4 captures 
  // Other events could occur as well 

if(getCount() < 4){ 
  goIntoLowPowerMode(); 
} 
// Calculate RSSI value and return 
calculateRSSI(); 

} 
 
TIMER_INTERRUPT(){ 
  // Four measurements already? 
  if(getCount() < 4){ 
    // Save current capture 
  } 
  else{ 
    // Stop timer 
    // Exit Low Power Mode after return from interrupt 
    clearLowPowerMode(); 
  } 
} 
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let’s examine the timer settings. As stated previously, the XBee module outputs the RSSI 

data via a PWM signal.  

 

Figure 4.7 PWM RSSI signal 

Figure 4.7 shows an example of such a signal. We need to capture four sequential 

edge events. In the example given in Figure 4.7, we could read edge events rise1, fall1, 

rise2, fall2. The timer is counting continuously. On each event the capture module 

registers the timer’s value at the triggered event. Having four events registered we can 

calculate the PWM duty cycle by selecting the first falling edge and then calculating the 

distance to the next two events. Simple mathematics gives us a duty cycle related to the 

received signal strength, this is our RSSI value. 

 

4.3.4 Broadcast Frame ID List 

Received broadcasts are re-transmitted only if they are not found on the node’s 

internal ID list. The list is saved at the MSP430’s flash memory. Figure 4.8 shows the simple 

algorithm that searches and stores these values. 
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Figure 4.8 Frame ID search and store 

It starts by iterating trough the memory segment selected for storing IDs. If the 

current ID is not found, it stores it in the next available slot.  The method 

writeToFlash(byte) is in charge of properly writing to the flash memory module. It is 

not necessary to go into details. 

 

boolean received(char[] frameID){ 
  for (i = 0; i < receivedIndex; i++){ 
    // Search in blocks of two bytes 
    for (j = 0; j < 2; j++){ 
      if (frameID[j+8]) ==  
         *(char *)(0xF000 + j + i * 2)){ 
        continue; 
      } 
      else{ 
        // Not found 
        j = -1; 
        break; 
      } 
    } 
    if (j == -1){ 
      // Not found yet 
      continue; 
    } 
    else{ 
      // Found 
      i = -1; 
      break; 
    } 
  } 
  // Found broadcast frame ID 
  if (i == -1){ 
    return true; 
  } 
  // Not found. Add to flash mem 
  else{ 
    // Up to 2KB for keeping frame IDs. 
    // 0x07F8 = 2040 ~= 2048 ~= 2KB 
    if (currFlashPtr == ((char *)(0xF000 + 0x07F8))){  
      // Full buffer. Reset. 
      receivedIndex = 0; 
      currFlashPtr = (char *)0xF000; 
    } 
    for (i = 0; i < 2; i++){ 
      writeToFlash(frameID[i+8]); 
    } 
    receivedIndex++; 
    return false; 
  } 
} 
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4.4 Central Server Application 

The central server software is in charge of managing the coordinator node, 

configuring the wireless nodes in the network, and calculating the location of all nodes. 

Location information can be used to draw the location of wireless nodes in a map. Our 

implementation includes a basic two dimensional map. This user interface will be described 

briefly on sections ahead. 

 

4.4.1 XBee Software Interface 
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Figure 4.9 Simplified XBee Software Interface Class Diagram 

XBee modules where designed to interface via a serial communications channel. 

They define a proprietary serial communications protocol. The modules have two serial 

modes of operation, command mode and API mode. We chose to work with API mode for 

reliability and compatibility with an object oriented programming model. The modules have 

a variety of commands to configure the network, configure the module, send and retrieve 

data and execute some behaviors. We developed a software library in JAVA to easily 

interface with a module connected via a serial port. Figure 4.9 shows a simplified class 

diagram of our implementation. NetApiComm creates a serial port connection to an XBee 

device connected to the PC. NetApiComm implements two communications paradigms, 

push and pull. It inherits from Observable class thus observers could join to be notified of 

incoming data frames. NetApiComm also implements several methods to read the next 

received frame, send a new data frame, and verify if data frames are available. Data frames 

are created with NetApiFrame class. It defines a general frame structure as shown in 

Figure 4.3. All frame types and command types have been defined and implemented. We 

also did a MAC level implementation of the interface, MacApiComm, MacApiFrame and 

other related classes. It can be used with the 802.15.4 XBee module’s firmware. 

 

4.4.2 Cooperative Trilateration 

On section 4.1 we described the mathematical process and formulas for trilateration. 

This section will focus on the algorithm used by the central server to process all gathered 

data and actually locate each node on the network. 
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Let’s start with a simple diagram to understand how data flows throughout the 

network. Figure 4.10 illustrates several time frames of data flowing trough the network. The 

coordinator node attached to the main server starts the location broadcast among nodes. Data 

packets received by wireless nodes could be used to signal the RSSI sensing process and the 

return the information to the central server. The broadcast and return process continues at 

intervals defined by the server.  

 

Figure 4.10 Broadcast and Return Data Flow 

The coordinator node, shown in blue, starts the broadcast to its neighbors, shown in 

green. Some neighbors might be beacon (known location) nodes. It is necessary to also know 

the RSSI among beacons to adjust the mapped distance at the human interface map. Red 

arrows represent the spreading of the broadcast following standard broadcasting algorithms. 

Blue arrows represent the return of RSSI data frames for each link. A link is defined as a 

physical level communication link between two wireless nodes. The links are all the 

information we need to calculate the locations of the nodes. The central server maintains a 

database of all the links received. The server iterates throughout all links received to 



 
 
 
 

 50 

incrementally locate all nodes. Each link contains the IP addresses of the two nodes, the 

RSSI value, a timestamp and a time-time-to-live value. 

Figure 4.11 shows a simplified version of the algorithm that runs the central server. 

This algorithm performs distributed trilateration. Distributed referring to the fact that location 

data was gathered by distributed collaboration of nodes and that location information 

propagates as new nodes are found. 
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Figure 4.11 Central Server Distributed Trilateration Simplified Algorithm 

void trilaterate(){ 
  // Iterate to find beacon-to-beacon Links 
  Vector<CLink> blinks = new Vector<CLink>(); 
  // Find their mapped distances 
  // Calculate Map-to-Real Ratio 
  mtrRatio; 
  // Verify there is enough beacons to continue 
  if (ls < 3) {return;} 
  blinks = null; 
  // Iterate to find links with unknown nodes 
  for (Iterator<CNode> uit =  

 database.getUnknownNodes().iterator();  
 uit.hasNext();){ 

    Vector<CLink> tlinks = new Vector<CLink>(); 
    /**Filter links**/ 
    // Find links for current node 
    // Remove by duplicates, by timestamp and by unknowns 
    // Sort by closest to the unknown, then by beacons 
    // At least three known nodes? 
    if (bqty < 3){continue;} 
    /**Trilaterate**/ 
    // Select first three filtered beacons 
    CNode origin = tlinks.elementAt(0); 
    CNode xAxis = tlinks.elementAt(1); 
    CNode beacon = tlinks.elementAt(2); 
    // Convert with Map-to-Real ratio to get mapping distance 
    sigStrO = tlinks.elementAt(0).getRssi() / mtrRatio; 
    sigStrX = tlinks.elementAt(1).getRssi() / mtrRatio; 
    sigStrB = tlinks.elementAt(2).getRssi() / mtrRatio; 
    // Trilaterate 
    unknown = Trilateration.trilaterate( 

  origin.getLocation(),  
  xAxis.getLocation(),  
  beacon.getLocation(),  
  sigStrO, sigStrX, sigStrB); 

    // If no real solution is found return 
    if (unknownPoint == null){continue;} 
    // Update Map 
  } 
  // Repeat procedure with known nodes to refresh their position 
  for (Iterator<CNode> uit =  

 database.getKnownNodes().iterator();  
 uit.hasNext();){ 

    // ... 
  } 
} 
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We start with a database of CLink and CNode objects. CLink is an object referring 

to each physical links gathered from the broadcast and return process. Fixed location beacons 

are first retrieved to calculate a Map-to-Real ratio. This ratio is used to convert from real 

distance to the distance displayed at the user interface. After this, a list of CNode‘s 

containing unknown nodes is retrieved from the database. The algorithm iterates trough all 

nodes until all possible locations are calculated. For each CNode a list of Clinks is 

retrieved from the database. The list contains all physical links to this unknown node. The list 

then undergoes several filters to clean data from useless data. It first removes duplicate data, 

the removes old data comparing its timestamp to its TTL (time-to-live) value. Finally it 

removes links with unknown location beacons. The final step towards filtering is to sort by 

the closest to the selected unknown, and then sort by fixed location beacons. Step by step, 

these filters get rid of useless or old data and then sort the list to select the best three known 

location nodes to perform the trilateration. After selecting the best three candidates for 

trilateration, the RSSI is converted using the Map-to-Real ratio. Trilateration is an 

abstract class that implements the trilateration algorithm. The internals of this class is defined 

as described in section 4.1 and 2.2. After iterating all unknown nodes, the same process is 

done for previously located nodes to refresh their location. 
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Figure 4.12 Central Server Simplified Class Diagram 

Figure 4.12 shows a simplified class diagram for the central server. These classes 

implement a representation of the real network of nodes and include a graphical user 

interface for each node. These classes together with the previously described XBee software 

library comprise the software middleware for real time location systems based on the XBee 



 
 
 
 

 54 

platform of wireless sensors. The CUI class is not shown in the diagram. This class 

implements a simple graphical interface. The next section will describe the screens and parts 

of the graphical user interface. 

 

4.4.3 User Interface 

We developed an extremely simple user interface that shows the nodes at the PC 

screen as they are located. We will not go into class internals and details of this 

implementation since it is not the scope of our research to develop the graphical interface. 

Figure 4.13 displays the system at work. The top half shows the user interface. It maps three 

beacon nodes arranged in a triangle shape, and a third unknown node. This setting is only 

experimental, but demonstrates the functionality of the developed software. The bottom half 

of the figure shows a picture of the actual devices working with the system. Notice that the 

unknown node was located at a reasonable location at the map, relative to its actual location. 

This experimental setting only has 4 nodes, but it runs the same software that is able to locate 

a bigger network of nodes. Another important detail of the graphical user interface is the gray 

circle surrounding each node. This circle represents the signal coverage of each node. 

Remember that the wireless modules used do not have an attached antenna and are working 

at one of its lowest power level. We can roughly approximate their range in this scenario to a 

radius of about 40 inches. We described their range capabilities in section 3.1.1. 
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Figure 4.13 RTLS Prototype 
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Real-Time Location Systems are dynamic in nature. This dynamic inherent property 

cannot be observed in Figure 4.13, but our implementation does locate the nodes as they are 

moving. It is also out of our scope to analyze and optimize the time delays of the real 

position versus calculated position or the wireless unknown nodes. Improvements in the 

microcontroller code and some parameter tweaking at the wireless modules will greatly 

increase the time performance of our implementation.  

 

Figure 4.14 Wireless Nodes. (a) Beacon 1, (b) Coordinator, (c) Beacon 2, d) Unknown 

 

In Figure 4.14 we can have a closer look on our prototype setting. The coordinator 

node, Figure 4.14.b, is attached to a USB-to-Serial module to interface with the central server 

PC. Beacon1 is one of the fixed position beacons together with Beacon2. Beacon1 is battery 
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operated, while Beacon2 is powered from the PC. The last node is Unknown, which is 

battery operated. This Unknown is the node to be located at the central server. Beacon1, 

Beacon2 and Unknown are standalone wireless nodes and can operate with a 3.3V power 

source. They all share the same firmware, configurations and circuit interconnections as 

described at section 3.1.3. 
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5 EXPERIMENTAL ANALYSIS 

 

5.1 Introduction 

This chapter presents a working implementation of our proposed software 

middleware for real time location systems on wireless mesh networks. The experiments help 

validate our solutions and ideas, as well as serve as a demonstration of the system. The idea 

is to set up a working network of wireless nodes and a central server using our software, and 

prove it reasonably functional. The specific objectives of the experiments were: 

1. To verify the software middleware as a functional system. 

2. To verify the prototype deployment location capabilities. 

3. To measure the effects of network size in the location error. 

To test the first and second objective, a fixed number of nodes were deployed to try 

and locate the position of just one of its wireless nodes. The same location of this node was 

calculated several times by the central server using different sets of data. Additionally the 

location was changed several times to be relocated by the central server. Each location was 

calculated several times using different sets of data. This experiment is detailed on sections 

ahead. The next experiment was carried out using a simulator developed to test the 

algorithms. The simulator accepts several parameter regarding the network size, error 

thresholds, node positioning and number of beacons. We can, in a theoretical environment, 

easily observe the effects of increasing the network size on the position error of a distributed 

location scheme. 
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Our central server prototype was developed using Java 1.5 programming language, 

GNU/RxTx 2.0 Serial COMM interface for Java. The wireless nodes were composed of one 

DIGI’s XBee-PRO wireless module and one TI’s MSP430F1232 microcontroller. The XBee 

modules were using XBEE PRO ZIGBEE COORDINATOR API V.8117 and XBEE PRO 

ZIGBEE ROUTER API V.8317 firmware code. The MSP430F1232 firmware was developed 

using C programming language and compiled with msp-gcc, a GCC toolchain for MSP430. 

Our network simulator was developed using Java 1.5 programming language. The 

experimental environment was composed by: 

• One generic PC running Microsoft Windows XP, on an Intel Centrino DUO 

processor at 1.6 GHz, and 1GB of memory. 

• Four XBee-PRO modules each attached to a MSP430F1232 microcontroller 

running at 4MHz. 

 

5.2 Prototype Implementation Analysis 

The objective of this experiment is to verify the prototype deployment location 

capabilities and at the same time test the software middleware as a functional system. We 

want to verify that our implementation performs reasonably as expected. 

 Figure 4.13 shows a similar setup used in this experiment. It was composed of three 

wireless beacons arranged in an equilateral triangle. An additional wireless node was used as 

the subject for location. Figure 5.1 illustrates the positions and distance of this setting. Notice 

that the distances are in inches, yet this is not the typical real scenario. Remember that our 

nodes do not have an attached antenna and are working at its lowest power level. Fixed 
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beacons are located twelve inches apart and there are seven important areas of location. The 

wireless unknown node was positioned at each of these areas and several measurements were 

taken. The position was manually measured at the setting and manually located at the 

computer screen, so this might have added some minimal errors to the results.  

 

Figure 5.1 Experimental antennas setting 

 

5.2.1 Prototype Location 

As stated previously we chose seven areas of location around the beacon antennas. A 

wireless node was located at each one and about 20 measurements were taken at each 

location. The measurements are not shown since the data gathered was used internally by the 

server to locate the nodes. What was finally used as a metric was the (x,y) location at the map 
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of the nodes. Figure 4.13 shows a similar setting and result. The positions were then 

compared to its approximate exact location and then a distance difference was calculated. 

This difference was divided by the radius of signal coverage as described at section 4.2 

which is about 40 inches.  

distance error = ( )
radius

calcposrealpos !       5.1 

Figure 5.2 shows the error calculated for each individual measurement as described. It 

does not show the position being measured, but it is not important for the analysis. The graph 

shows an average for all measurements of about 12.42%.  
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Figure 5.2 Position error at different broadcasts measurements 

In real world terms, if we had a radius of about 40 inches, then we had about 5 inches 

of error. Extrapolating to a full blown deployment, the radius is about 100 feet indoors and 
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12.42 feet of error. Depending on the application this might be acceptable or not, but for 

most applications it is acceptable. Yet we demonstrated the capabilities of our prototype of 

locating the node at an acceptable margin of about 12%. What was definitive was the 

functionality of our middleware system. It proved capable of performing as a complete 

system for wireless node location. 

 

5.3 Effects of Network Size in the Location Error 

As shown by our first experiment, our system was capable of handling the data and 

locating one node within acceptable margins of error. The objective of this second 

experiment is to determine how position errors affect the localization of other nodes trough 

the network when we increase the network size. This experiment was carried out by a 

simulator. We start by briefly describing our simulation environment. 

 

5.3.1 Simulator 

The simulator environment is shown in Figure 5.3. It is similar to our prototype as 

shown in figure 4.13. There are various elements that are displayed in the map. We start at 

the center with the beacon antennas shown in blue. These are three nodes with a known fixed 

location and one of them starts the broadcasts, just as the real deployment. The rest of the 

network is filled with pseudo randomly positioned unknown nodes, shown in green. These 

nodes have a known location, but the application simulates wireless communications among 

them and RSSI sensing. With this information their location is estimated using the same 
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trilateration and filtration algorithms described in chapter 4. This simulator also shares 

similar class diagrams as our real prototype. Recently calculated positions are displayed in 

black and a red line linking the dot to its real position. This red line represents the error in the 

calculation. As you might observe, nodes far from the center appear to have greater position 

errors. 

 

Figure 5.3 Simulation Environment 

The menu options allow the user to modify internal simulation parameters. Some 

parameters include network size, amount of beacon nodes, positioning error thresholds, node 

separation and RSSI measurements error thresholds. Individual errors and positions are 

randomized based on the thresholds specified by the user. The user can also insert additional 

nodes or antennas by clicking with the mouse at a desired position. One last element 
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displayed is the gray circles surrounding each node which represent half their signal radius. 

The signal radius is internally defined as 100 feet per node. 

 

5.3.2 Distributed Location Error Propagation 

This second experiment is used to determine how network size affects the average 

position error obtained. Previous section described the simulator’s user interface. We did not 

used the user interface for this experiment, but used an internal programming interface to 

achieve the same simulation environment without the graphical overload.  
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Figure 5.4 Average position error by network size 

 

In our experiment we defined the parameters as follows.  
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// Nodes to Antennas Ratio 
naRatio = 1; 
// Position Error Threshold % 
posErrThres = 40; 
// Extra Antenna separation 
nodeSep = 50; 
// Tri-antennas? 
tri = true; 
// More-antennas? 
more = false; 
// Repeat Broadcast 
repsB = 10; 
// Iterate Calculations 
repsT = 10; 
// Error Threshold Sensed RSSI 12% 
errThresNode = 12; 
 

Then we iterated these parameters with several network sizes and obtained the results 

depicted in Figure 5.4. Notice however that our results show an average error of about 20% 

independent of the network size. If we calculate a global average we obtain 18.69% position 

error. In practical terms we can conclude that based on these findings, an increase in nodes 

will not necessarily result in an increase on the average position error. The graph also shows 

another line which displays the amount of nodes that are not possible to locate. We can 

observe that it linearly increments with the size of the network, this is mostly the nodes at the 

edges of the network.  
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6 CONCLUSIONS 

 

In this thesis we presented a software middleware for real time location systems on 

wireless mesh networks. This software system builds the basic infrastructure for RTLS 

solutions, including wireless nodes, wireless beacon nodes, a central server and a 

programming interface for the XBee module. We described the motivations behind building 

an RTLS solution and numerous applications as well as future markets. The system 

architecture and mathematical procedures were described to some detail. We presented a 

working prototype implementation of the system as well as experiments that demonstrated its 

functionality and performance. 

 

6.1 Summary of Contributions 

The work presented describes and demonstrates our solution to real time location. We 

have been able to produce a software middleware and infrastructure for future RTLS 

applications and developments. Our system could be applied and deployed to numerous 

kinds of applications and problems. 

In Chapter 3, we presented the design of our real time location system infrastructure. 

We started by presenting the hardware components and technologies used on our design and 

the reasons we selected them. Fist we presented the selected transceivers, microcontrollers, 

and the network protocol.  
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• XBee Wireless Module – It is a stand-alone, ready-to-use solution for low-

power, low-cost, wireless sensor networks. They operate within the ZigBee 

mesh networking protocol at the network level or MAC level.  

• MSP430 – The MSP430 is an ultra low-power microcontroller and consists of 

several devices featuring different sets of peripherals targeted for various 

applications.  

Then we discussed some issues concerning the measurement method.  

• Received Signal Strength (RSS) – RSS can be used as a metric of distance 

from node to node. The loss on the signal can be translated to an approximate 

of the distance between the measuring nodes.  

Finally we discussed the centralized real time location scheme. 

• Cooperative Multilateration – Using cooperative multilateration most nodes 

in the network could be located within an acceptable margin of error for many 

applications. Cooperative multilateration works by locating the unknown 

nodes closer to at least three beacons. This is accomplished by trigonometric 

multilateration using the distance among nodes as measured by the received 

signal strength. Their location is then propagated to the farther unknown 

nodes by using the location of the newly located nodes. 

In Chapter 4 we described our system design. We described the wireless nodes 

behavior and internal algorithms.  

• Wireless Nodes – The nodes have several tasks to do besides creating and 

maintaining the wireless mesh network. Each node receives and performs 
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commands sent by the central server, also return RSSI values to the central 

server and propagate server broadcasts. 

• Central Server – The central server software is in charge of managing the 

coordinator node, configuring the wireless nodes in the network, and 

calculating the location of all nodes. Location information can be used to draw 

the location of wireless nodes in a map. 

Following we described the central server data gathering, trilateration and filtration 

algorithms. We also described the data flow in the network of nodes. Finally we explained 

the relationship between the RSSI and the distance among nodes. 

In Chapter 5 we presented a working implementation of our proposed software 

middleware for real time location systems on wireless mesh networks. The experiments 

helped validate our solutions and ideas, as well as serve as a demonstration of the system. 

The experiments helped us verify the software middleware as a functional system, the 

prototype deployment location capabilities, and to measure the effects of network size in the 

location error. We concluded that based on the findings, an increase in nodes will not 

necessarily result in an increase on the average position error. We also demonstrated the 

capabilities of our prototype of locating the node at an acceptable margin of about 12%. 

What was definitive was the functionality of our middleware system. It proved capable of 

performing as a complete system for wireless node location. 
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6.2 Future Work 

This section gives directions and suggestions for future developments concerning our 

work. 

• Wireless Nodes – Wireless nodes firmware could be greatly improved on 

several areas regarding power management, communication speed 

improvements, RSSI sensing precision, calculation speed improvements, 

parallel RSSI sensing and return, frame loss improvements, extension on 

XBee module management, and the ability of remote I/O manipulation. This 

last one is an interesting and useful topic since it enables a remote 

manipulation of the microcontroller’s internal modules. It adds a variety of 

capabilities to the system besides location. 

• Wireless Nodes Hardware – An elegant prototype package with minimal size, 

antenna protection, coin battery, weather protection, and external port 

availability.  

• Central Server – The central server should implement a generic 

communication interface to enable multilanguage programming. 

Improvements should be made to data filters and calculation speeds. A three 

dimensional trilateration scheme is greatly suggested. Also multiple points of 

RSSI data collection are a major improvement to data collection. 
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