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An-Algorithm for the Machine Calculation of
Complex Fourier Series

o By James W. Cooley and John W. Tukey

An efficient method for the calculation of the interactions of a 2" factarial ex-
periment was introduced by Yates and is widely known by his name. The generaliza-
tion to 3™ was given by Box et al. (1). Good [2] generalized these methods and gave
clegant algorithms for which one class of applications is the caleulation of Fourier
series. In their full generality, Good’s methods are applicable to certain problems in
which one must multiply an N-vector by an N X N matrix which can be factored
into m sparse matrices, wherem is proportional to log N'. This results in & procedure
requiring & number of operstions proportional to N log N rather than A", These
methods are applied here to the calculation of complex Fourier series. They are
useful in situations where the number of data points is, or ean be chosen to be, a
highly composite number. The algorithm is here derived and presented in a rather
different form. Attention is given to the choice of . It is also shown haw special
advantage can be obtained in the use of & binary computer with N = 2* and how
the entire calculation can be performed within the array of ¥ data storage locations
used for the given Fourier coeffivients.

Consider the problem of caloulating the complex Fourier series

a1 -
O] XG) = Z AW =01, N =1,

where the given Fourier coefficients A(k) are complex and W is the principal
Nth root of unity,

@ [

A straightforward calculation using (1) would require N” operations where “‘opera-
‘tion” means, 8 it will throughout, this note, a complex multiplication followed by &
complex addition.

The algorithm described here iterates on the array of given complex Fourier
amplitudes and yields the result in less than 2V log, N operations without requiring
‘more data storage than is required for the given array A. To derive the algorithm,
suppose N is a composite, i.e, N' = ri-ry . Then let the indices in (1) be expressed

i=in+i, H=01L - n=k A=0L--,n-—1
E=kntk, k=01 -,na—1 k=01 ,n-1
Then, one can write

@) X(jrro) = ; z Ak, ko) R,

3)
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Since

) . s ppohn
the inner sum, over k; , depends only on j» and ko and can be defined as a new array,
6) Ao, ko) = 3 Ak, ka)- Wi,

The result can then be written
@ X do) = T il ho)- W

There are N elements in the array A , each requiring r, operations, giving  total
of Nr, operations to obtain A, . Similarly, it takes Nr, operations to calculate X
from 4, . Therefore, this two-step algorithm, given by (6) and (7), requires a total
of

(8) T =N(n+n)

operations.
It is easy to see how successive applications of the above procedure, starting with
its application to (8), give an m-step algorithm requiring

® T=Nin+n+ -+
operations, where
(10) N=rn e

If ry = gi; with 85,4 > 1, then &; + ¢, < ryunless 8;.= t; = 2, when & + t; = r;.
In general, then, using as many factors s possible provides a minimum to (), but
factors of 2 can be combined in pairs without loss. If we are able to choose N to be
highly composite, we may make very real gains. If all r; are equal to , then, from
(10) we have

any m = log N
aud the total number of operations is
(12) T(r) = N log, N.

I N = """ -, then we find that

i ;-m-r-i-n-.+p-t+m.

logs N = melogsr + n-logs s + p-logs t + -,

50 that
T
Flog: ¥
is a weighted mean of the quantities
r s t
lomr' Togs lomt’
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‘whose values run as follows

r
2 2.00
3 1.88
4 2.00
5 2.15
6 2.31
4 2.49
8 2.87
9 2.82
10 3.01.

The use of r; = 3 is formally most efficient, but the gain is only about 6% over
the use of 2 or 4, which have other advantages. If necessary, the use of r; up to 10
can increase the number of computations by no mare than 50% . Accordingly, we
can find “highly composite” values of A" within a few percent of any given large
number.

Whenever possible, the use of ¥' = r™ with r = 2 or 4 offers important advantages
far computers with binary arithmetic, both in addressing and in multiplication
economy.

The algorithm with r = 2 is derived by expressing the indices in the form
Jm e 2 )
k= ka2 4 a2+ ke,

where j and k, are equal to 0.or 1 and are the contents of the respetive bit positions
in the binary representation of j and £. All arrays will now be written as functions
of the bits of their indices. With this convention (1) is written

(18) X(jmay ==y d0) = FE"'._Z_,“"*" ooy ko) W kA
where the sums are over k, = 0, 1. Since
(16) PrAn-rtn Tt gt

the innermost sum of (15), over kn._; , depends only on jo, ka-s, *** , ks and can
be written

A7) Ay By oo k) = T Ak, oo k) TP

(14)

Proceeding to the next innermost sum, ‘over kn_; . and o on, and using
(18) Whta-i v et
one obtains successive arrays,
Ay gy ke, k)
un = Tdiler  dearey oy k) WU R A
mei

forl=1,2,--,m.
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" Writing out the sum this appears as
FRCARTIIG Yy SERTRITN 3
= ApGy oo e Ok, he)

B Y T P L)

[
According lo the indexing convention, this is stored in a loeation whose index is
@ e e Rtk
Tt can be seen in (20) that only the two storage locations with indices having 0 and
1 in the 2" bit position are involved in the computation. Parallel computation i
permitted since the operation deseribed by (20) van bo carried out with all values of
Jor <=ty 80d Ry -+ , kn_is simultaneously. In some applieations” it is con-
venient 1o use (20) to express A, in terms of A1, giving what is equivalent to an
algorithm with r = 4,

"The last arrsy calculated gives the desired Fourier sums,

(22) X(Gnea, - 1) = Anly +++ s ua)

in such an order that the index of an X must have its binary bits put in reverse

order to yield its index in the array A .
Tn some applieations, where Fourier sums are to be evaluated twios, the above

procedure eould be programmed eo that 1o bit-inversion is necessary. For example,
cosider the solution of the difference equation,
(23) aX(j + 1) + 0X() + XG = 1) = FG).

The present, method could be first applied to calculate the Fourier amplitudes of
F(j) from the formula

120)

(29) B = 5 T FGW

“The Fourier amplitudes of the solution are, then,
B(K)

(@) AW = s

The B(k) and A(k) arrays are in bit-inverted order, but with an obvious modifi-
cation of (20), A(k) can be used to yield the solution with correct indexing.

'A computer program for the 15w 7004 has been written which calculates three-
dimensional Fourier sums by the above method. The computing time taken for com-
puting three-dimensional 2* X 2% X 2° arrays of data points was as follows:

+ A multiplo-prosessing circuit using this slgorithm was designed by R. E. Miller snd &
Wiaiograd of the TBM Watson Resesrch Centor. In this case r = 4 was found to be most practi
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